1. (5pts) The example:

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
2 & 0 \\
0 & -0.5
\end{array}\right)\binom{x_{1}}{x_{2}},
$$

has eigenvalues, $\lambda_{1}=2$ with associated eigenvector $\xi_{1}=\binom{1}{0}$ and $\lambda_{2}=-0.5$ with associated eigenvector $\xi_{2}=\binom{0}{1}$, since this is a diagonal matrix. It follows that the general solution is:

$$
\binom{x_{1}(t)}{x_{2}(t)}=c_{1}\binom{e^{2 t}}{0}+c_{2}\binom{0}{e^{-0.5 t}}
$$

This example produces a saddle node with the unstable direction in the x_{1} direction and the stable direction following the x_{2} axis. Below is a phase portrait of this system.

A fundamental solution is given by:

$$
\Phi(t)=\left(\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{-0.5 t}
\end{array}\right) .
$$

2. (4pts) Prove the equivalence of $\|\cdot\|_{\infty}$ and $\|\cdot\|_{2}$, i.e., show that

$$
C\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq D\|\mathbf{x}\|_{\infty},
$$

for some constants C and D.

Proof: For some $n \geq 1$, let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$. Suppose that $\left|x_{i}\right|=M$ and $\left|x_{j}\right| \leq M$ for all $j \neq i$ with $1 \leq i, j \leq n$. By definition, $\|\mathbf{x}\|_{\infty}=M$. It follows that:

$$
M^{2}=\|\mathbf{x}\|_{\infty}^{2} \leq \sum_{j=1}^{n}\left|x_{j}\right|^{2}, \quad \text { so } \quad\|\mathbf{x}\|_{\infty} \leq\left(\sum_{j=1}^{n}\left|x_{j}\right|^{2}\right)^{\frac{1}{2}}=\|\mathbf{x}\|_{2}
$$

In addition, we have

$$
\sum_{j=1}^{n}\left|x_{j}\right|^{2} \leq n M^{2}=n\|\mathbf{x}\|_{\infty}^{2}, \quad \text { so } \quad\left(\sum_{j=1}^{n}\left|x_{j}\right|^{2}\right)^{\frac{1}{2}}=\|\mathbf{x}\|_{2} \leq \sqrt{n}\|\mathbf{x}\|_{\infty}
$$

Thus, we have shown equivalence with $C=1$ and $D=\sqrt{n}$ and

$$
\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq \sqrt{n}\|\mathbf{x}\|_{\infty}
$$

3. (7pts) a. Let:

$$
A=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad \text { and } \quad C=A+B=\left(\begin{array}{ccc}
4 & 1 & 0 \\
0 & 4 & 1 \\
0 & 0 & 4
\end{array}\right)
$$

From lecture we know $\|C\|_{1}$ is the maximum column sum of the absolute values of the elements, which is 5 . Similarly, we know $\|C\|_{\infty}$ is the maximum row sum of the absolute values of the elements, which is also 5 .
b. Showing that A and B commute follows from:

$$
A B=4 I B=4 B=\left(\begin{array}{lll}
0 & 4 & 0 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right)=B(4 I)=B A
$$

Since A and B commute, the lecture notes give that

$$
e^{C t}=e^{(A+B) t}=e^{A t} e^{B t}
$$

However, we have shown that

$$
e^{A t}=\left(\begin{array}{ccc}
e^{4 t} & 0 & 0 \\
0 & e^{4 t} & 0 \\
0 & 0 & e^{4 t}
\end{array}\right)=e^{4 t} I
$$

From the definition of the matrix exponential, we have

$$
e^{B t}=\left(I+B t+\frac{B^{2}}{2!} t^{2}+\ldots+\frac{B^{n}}{n!} t^{n}+\ldots\right)=\left(\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) t+\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \frac{t^{2}}{2}+\mathbf{0}\right)
$$

It follows that $e^{C t}=e^{(A+B) t}=e^{A t} e^{B t}=e^{4 t} e^{B t}$. Thus, the fundamental solution is given by:

$$
e^{C t}=e^{4 t} e^{B t}=e^{4 t}\left(\begin{array}{ccc}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
e^{4 t} & t e^{4 t} & \frac{t^{2} e^{4 t}}{2} \\
0 & e^{4 t} & t e^{4 t} \\
0 & 0 & e^{4 t}
\end{array}\right)
$$

