Fall 2021 Math 537 Lecture Introduction - Soln

1. (2pts) The fourth order scalar ODE given by:
y//// _ 16y — 07
with y1(t) = y(t), y2 = 91, y3 = U2, and ys = ys satisfies g4 = 16y;. It is easy to see that a first

order linear system can be written:
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2. (4pts) From Eqn. (1), the eigenvalues satisfy the characteristic equation:
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Expanding the determinant by the first column gives:
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It follows that the eigenvalues are A = 2, —2, 2¢, —2i. This form of matrix can readily be shown to

have eigenvectors of the form, §; =
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[1, A, A2, X317 so the associated eigenvectors are:

1
Ay =—2, &= _42 ;
-8
1
M=—2i, &= __%f
8i

3. (4pts) The complex solution of Eqn. (1) is readily written from the e.v.s and e.f.s and has the

form:
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The real solution of of Eqn. (1) is readily written using the real and imaginary parts of the complex
solution, so

1 1 cos(2t) sin(2t)
B 2 | o -2 _ot —2sin(2t) 2 cos(2t)
y(t) - Cl 4 (& + CQ 4 & + d3 _4 COS(2t) + d4 _4 Sln(2t)
8 -8 8 sin(2t) —8 cos(2t)

4. (6pts) A Hermite differential equation satisfies:
" —2zy’ 4+ 10y = 0.
Assume a power series of the form:
oo
= Z anx"”,
n=0
then

o0
= Z apnz™ ' and y” Z apn(n — 1)z
n=1

Substituting these into the Hermite ODE gives:

Zan n—1)x —QZannx —1—102% =

By shifting the dummy index of the first term and noting the second term can start at n = 0, we
have
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The coeflicient of z™ gives the recurrence relation:
2n —10
m+2)n+1)""
Since this is a second order ODE, there are the two arbitrary constants, y(0) = ag and y'(0) = a;.

From the recurrence formula, the other coefficients are obtained with the table below showing the
coefficients to powers of n = 8.
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It is clear that ys is a polynomial of order 5.



