1. (2pts) The fourth order scalar ODE given by:

$$
y^{\prime \prime \prime \prime}-16 y=0,
$$

with $y_{1}(t)=y(t), y_{2}=\dot{y}_{1}, y_{3}=\dot{y}_{2}$, and $y_{4}=\dot{y}_{3}$ satisfies $\dot{y}_{4}=16 y_{1}$. It is easy to see that a first order linear system can be written:

$$
\dot{\mathbf{y}}=\left(\begin{array}{l}
\dot{y}_{1} \tag{1}\\
\dot{y}_{2} \\
\dot{y}_{3} \\
\dot{y}_{4}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
16 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=A \mathbf{y} .
$$

2. (4pts) From Eqn. (1), the eigenvalues satisfy the characteristic equation:

$$
\operatorname{det}|A-\lambda I|=\left|\begin{array}{cccc}
-\lambda & 1 & 0 & 0 \\
0 & -\lambda & 1 & 0 \\
0 & 0 & -\lambda & 1 \\
16 & 0 & 0 & -\lambda
\end{array}\right|=0 .
$$

Expanding the determinant by the first column gives:

$$
\operatorname{det}|A-\lambda I|=-\lambda\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
0 & 0 & -\lambda
\end{array}\right|-16\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=\lambda^{4}-16=0 .
$$

It follows that the eigenvalues are $\lambda=2,-2,2 i,-2 i$. This form of matrix can readily be shown to have eigenvectors of the form, $\xi_{i}=\left[1, \lambda, \lambda^{2}, \lambda^{3}\right]^{T}$, so the associated eigenvectors are:

$$
\begin{aligned}
& \text { For } \lambda_{1}=2, \quad \xi_{1}=\left(\begin{array}{l}
1 \\
2 \\
4 \\
8
\end{array}\right), \quad \text { for } \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}
1 \\
-2 \\
4 \\
-8
\end{array}\right), \\
& \text { for } \quad \lambda_{3}=2 i, \quad \xi_{3}=\left(\begin{array}{c}
1 \\
2 i \\
-4 \\
-8 i
\end{array}\right), \quad \text { for } \quad \lambda_{4}=-2 i, \quad \xi_{4}=\left(\begin{array}{c}
1 \\
-2 i \\
-4 \\
8 i
\end{array}\right) .
\end{aligned}
$$

3. (4pts) The complex solution of Eqn. (1) is readily written from the e.v.s and e.f.s and has the form:

$$
\begin{aligned}
\mathbf{y}(t) & =c_{1}\left(\begin{array}{l}
1 \\
2 \\
4 \\
8
\end{array}\right) e^{2 t}+c_{2}\left(\begin{array}{c}
1 \\
-2 \\
4 \\
-8
\end{array}\right) e^{-2 t}+c_{3}\left(\begin{array}{c}
1 \\
2 i \\
-4 \\
-8 i
\end{array}\right) e^{2 i t}+c_{4}\left(\begin{array}{c}
1 \\
-2 i \\
-4 \\
8 i
\end{array}\right) e^{-2 i t} \\
& =c_{1}\left(\begin{array}{l}
1 \\
2 \\
4 \\
8
\end{array}\right) e^{2 t}+c_{2}\left(\begin{array}{c}
1 \\
-2 \\
4 \\
-8
\end{array}\right) e^{-2 t}+c_{3}\left(\begin{array}{c}
1 \\
2 i \\
-4 \\
-8 i
\end{array}\right)(\cos (2 t)+i \sin (2 t))+c_{4}\left(\begin{array}{c}
1 \\
-2 i \\
-4 \\
8 i
\end{array}\right)(\cos (2 t)-i \sin (2 t)) .
\end{aligned}
$$

The real solution of of Eqn. (1) is readily written using the real and imaginary parts of the complex solution, so

$$
\mathbf{y}(t)=c_{1}\left(\begin{array}{l}
1 \\
2 \\
4 \\
8
\end{array}\right) e^{2 t}+c_{2}\left(\begin{array}{c}
1 \\
-2 \\
4 \\
-8
\end{array}\right) e^{-2 t}+d_{3}\left(\begin{array}{c}
\cos (2 t) \\
-2 \sin (2 t) \\
-4 \cos (2 t) \\
8 \sin (2 t)
\end{array}\right)+d_{4}\left(\begin{array}{c}
\sin (2 t) \\
2 \cos (2 t) \\
-4 \sin (2 t) \\
-8 \cos (2 t)
\end{array}\right)
$$

4. (6pts) A Hermite differential equation satisfies:

$$
y^{\prime \prime}-2 x y^{\prime}+10 y=0
$$

Assume a power series of the form:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

then

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} a_{n} n x^{n-1} \quad \text { and } \quad y^{\prime \prime}(x)=\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}
$$

Substituting these into the Hermite ODE gives:

$$
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}-2 \sum_{n=1}^{\infty} a_{n} n x^{n}+10 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

By shifting the dummy index of the first term and noting the second term can start at $n=0$, we have

$$
\sum_{n=0}^{\infty} a_{n+2}(n+2)(n+1) x^{n}-\sum_{n=0}^{\infty}(2 n-10) a_{n} x^{n}=\sum_{n=0}^{\infty}\left[a_{n+2}(n+2)(n+1)-(2 n-10) a_{n}\right] x^{n}=0
$$

The coefficient of x^{n} gives the recurrence relation:

$$
a_{n+2}(n+2)(n+1)=(2 n-10) a_{n} \quad \text { or } \quad a_{n+2}=\frac{2 n-10}{(n+2)(n+1)} a_{n}
$$

Since this is a second order ODE, there are the two arbitrary constants, $y(0)=a_{0}$ and $y^{\prime}(0)=a_{1}$. From the recurrence formula, the other coefficients are obtained with the table below showing the coefficients to powers of $n=8$.

$$
\begin{array}{ll}
a_{2}=-5 a_{0} & a_{3}=\frac{-8 a_{1}}{3 \cdot 2}=-\frac{4}{3} a_{1} \\
a_{4}=\frac{-6 a_{2}}{4 \cdot 3}=\frac{5}{2} a_{0} & a_{5}=\frac{-4 a_{3}}{5 \cdot 4}=\frac{4}{15} a_{1} \\
a_{6}=\frac{-2 a_{4}}{6 \cdot 5}=-\frac{a_{0}}{6} & a_{7}=0=a_{9}=a_{11}=\ldots=a_{2 n+1}, \quad n \geq 3 \\
a_{8}=\frac{2 a_{6}}{8 \cdot 7}=-\frac{1}{168} a_{0} &
\end{array}
$$

It follows that the two linearly independent solutions are:

$$
\begin{aligned}
y_{1}(x) & =a_{0}\left(1-5 x^{2}+\frac{5}{2} x^{4}-\frac{1}{6} x^{6}-\frac{1}{168} x^{8}+\ldots\right) \\
y_{2}(x) & =a_{1}\left(x-\frac{4}{3} x^{3}+\frac{4}{15} x^{5}\right)
\end{aligned}
$$

It is clear that y_{2} is a polynomial of order 5.

