This Lecture Activity has you actively work with the lecture notes presented in class and available on my website. This activity is due by Thur. Oct 14 by noon. The problems below require written answers, which are entered into Gradescope.

Note: For full credit you must show intermediate steps in your calculations.

1. (3pts) Consider the homogeneous ODE:

$$
\dot{\mathbf{x}}=\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -1 & 1 \\
0 & -1 & -1
\end{array}\right) \mathbf{x} .
$$

Find a fundamental solution to this ODE. Use the Corollary of Abel's formula to show that you have a fundamental solution. (Slide Fundamental 49-67)
2. (5pts) Consider the nonhomogeneous ODE:

$$
\dot{\mathbf{x}}=\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -1 & 1 \\
0 & -1 & -1
\end{array}\right) \mathbf{x}+\left(\begin{array}{c}
e^{-2 t} \\
1 \\
t
\end{array}\right), \quad x(0)=\left(\begin{array}{c}
x_{10} \\
x_{20} \\
x_{30}
\end{array}\right) .
$$

Using your fundamental solution, solve this ODE. It is recommended that something like Maple is used to solve the integrals. (Slide Fundamental 49-67)
3. (3pts) Consider the homogeneous ODE:

$$
\dot{\mathrm{x}}=\left(\begin{array}{cc}
0 & 1 \\
2 t^{-2} & -2 t^{-1}
\end{array}\right) \mathbf{x}, \quad t>0 .
$$

Find a fundamental solution to this ODE. Use the Corollary of Abel's formula to show that you have a fundamental solution. (Slide Fundamental 49-67)
4. (5pts) Consider the nonhomogeneous ODE:

$$
\dot{\mathbf{x}}=\left(\begin{array}{cc}
0 & 1 \\
2 t^{-2} & -2 t^{-1}
\end{array}\right) \mathbf{x}+\binom{6 t}{9 t^{-4}}, \quad x(1)=\binom{x_{10}}{x_{20}}, \quad t>0 .
$$

Using your fundamental solution, solve this ODE. It is recommended that something like Maple is used to solve the integrals. (Slide Fundamental 49-67)

