This Lecture Activity has you actively work with the lecture notes presented in class and available on my website. This activity is due by Mon. Oct 4 by noon. The problems below require written answers, which are entered into Gradescope.

Note: For full credit you must show intermediate steps in your calculations.
All of the matrices below are companion matrices. It follows that an eigenvector for an eigenvalue, λ, is $\mathbf{v}=\left[1, \lambda, \lambda^{2}, \ldots, \lambda^{n}\right]^{T}$. In all of the problems below use this information to obtain the columns of the transformation matrix, P. For complex eigenvalues the real and imaginary parts of \mathbf{v} form two of the columns. This vector is also used to obtain vectors in the higher null spaces.

1. (8pts) Consider the companion matrix:

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-9 & -18 & -10 & -2
\end{array}\right)
$$

Write the characteristic equation and give the eigenvalues and corresponding eigenvectors, noting their algebraic and geometric multiplicities. Using the form noted above (v), find the linear transformation matrix, P, such that

$$
P^{-1} A P=J,
$$

where J is a real matrix in real Jordan form. Show how you obtain any eigenvectors in a higher null space if they are required. Give the matrix J. (You don't have to show P^{-1}.)

Now consider the system of linear ODEs

$$
\dot{\mathbf{y}}=J \mathbf{y} .
$$

Give the real fundamental solution to this ODE, $\Psi(t)$. (Slide Fundamental 27-46)
2. (8pts) Consider the companion matrix:

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
25 & 15 & -14 & -18 & -7
\end{array}\right) .
$$

Repeat the steps in Problem 1 to find eigenvalues and eigenvectors with their multiplicities, P, J, and the real fundamental solution, $\Psi(t)$.

