This assignment is your second Lecture Activity to have you actively work with the lecture notes presented in class and available on my website. This activity is due by Mon. Sep 6 by noon. There are 4 problems that require written answers, which are entered into Gradescope.

Note: For full credit you must show intermediate steps in your calculations.

1. (3pts) We examined carbon radiodating, using the isotope ${ }^{14} \mathrm{C}$, which has a half-life of 5730 yr . Find the age of a fossilized bone from a man in Western Pennsylvania that contains 16% of its original ${ }^{14} \mathrm{C}$. When did a Kenyan man die if his bone contains 8% of its original ${ }^{14} \mathrm{C}$? Suppose the error in each of the readings above is $\pm 1 \%$. Find the range of possible ages for each of the bones. (Slides Linear 3-5)
2. (6 pts) Consider a hypothetical cascade of radioactive elements, x_{0}, x_{1}, x_{2}, and x_{3} with x_{4} a stable element.

$$
x_{0} \xrightarrow{h_{0}} x_{1} \xrightarrow{h_{1}} x_{2} \xrightarrow{h_{2}} x_{3} \xrightarrow{h_{3}} x_{4}
$$

The half-lives are given by h_{i} with

$$
h_{1}=1 \text { da }, \quad h_{2}=10 \text { da }, \quad h_{3}=400 \text { da. }
$$

Define the decay rates $k_{i}=\frac{\ln (2)}{h_{i}}, \quad i=1,2,3$, then the linear nonhomogeneous system of ODEs satisfies:

$$
\dot{x}_{i}=k_{i-1} x_{i-1}-k_{i} x_{i}, \quad i=1,2,3
$$

where $r=k_{0} x_{0}$ is the rate of decay of x_{0}, which is assumed to be constant. Let $r=10$. With $\mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right]^{T}$, this can be written as the ODE system:

$$
\dot{\mathbf{x}}=A \mathbf{x}+B
$$

where

$$
A=\left(\begin{array}{ccc}
-k_{1} & 0 & 0 \\
k_{1} & -k_{2} & 0 \\
0 & k_{2} & -k_{3}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{l}
r \\
0 \\
0
\end{array}\right)
$$

Solve this cascading system of ODEs with the initial condition:

$$
\left[x_{1}(0), x_{2}(0), x_{3}(0)\right]^{T}=[0,0,0]^{T}
$$

Find the values of $\left[x_{1}(t), x_{2}(t), x_{3}(t)\right]^{T}$ at $t=100$ and $t=400$. (Slides Linear 7-8)
3. (4pts) Continuing Problem 2: We see that the half-lives h_{1} and h_{2} are significantly shorter than h_{3}, so the time scales suggest that one can implement a quasi-steady state approximation for \dot{x}_{1} and \dot{x}_{2}. Use this approximation to reduce the system of equations into a scalar ODE in \dot{x}_{3}. Solve this scalar equation in x_{3}. Find $x_{3}(t)$ at $t=100$ and $t=400$ and compare your answers to Problem 2. (The algebraic equations will provide the values for x_{1} and x_{2}.) (Slide 9)
4. (3pts) Solve the linear ODE given by:

$$
t \frac{d y}{d t}-y=3 t^{2} \sin (t)
$$

(Slides Linear 17-21)

