The WeBWorK Power Series assignment had one problem where you write details. The details of the individual problems vary randomly.

WW Problem 5. (6pts) Consider the initial value problem:

$$
\left(4-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+30 y=0, \quad y(0)=7, \quad y^{\prime}(0)=4 .
$$

With a power series solution of the form:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad \text { so } \quad y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}, \quad y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} .
$$

It follows that

$$
\left(4-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-2 x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+30 \sum_{n=0}^{\infty} a_{n} x^{n}=0,
$$

or

$$
4 \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}-2 \sum_{n=1}^{\infty} n a_{n} x^{n}+30 \sum_{n=0}^{\infty} a_{n} x^{n}=0 .
$$

The $1^{\text {st }}$ term can have indices shifted, while the $2^{\text {nd }}$ and $3^{r d}$ terms can start at $n=0$. Thus, we have:

$$
4 \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty}(n(n-1)+2 n-30) a_{n} x^{n}=0 .
$$

From this equation, we obtain the recurrence relation as follows:

$$
a_{n+2}=\frac{n^{2}+n-30}{4(n+2)(n+1)} a_{n}=\frac{(n-5)(n+6)}{4(n+2)(n+1)} a_{n}, \quad n=0,1,2, \ldots
$$

The initial conditions give $a_{0}=7$ and $a_{1}=4$. From the recurrence relation, we obtain the following:

$$
\begin{aligned}
& a_{2}=\frac{(-5)(6)}{4(2)(1)} a_{0}=\frac{-30}{8}(7)=-\frac{105}{4}, \\
& a_{3}=\frac{(-4)(7)}{4(3)(2)} a_{1}=\frac{-28}{24}(4)=-\frac{14}{3}, \\
& a_{4}=\frac{(-3)(8)}{4(4)(3)} a_{2}=\frac{-24}{48}\left(\frac{-105}{4}\right)=\frac{105}{8}, \\
& a_{5}=\frac{(-2)(9)}{4(5)(4)} a_{3}=\frac{-18}{80}\left(\frac{-14}{3}\right)=\frac{21}{20}, \\
& a_{6}=\frac{(-1)(10)}{4(6)(5)} a_{4}=\frac{-10}{120}\left(\frac{105}{8}\right)=-\frac{35}{32}, \\
& a_{7}=\frac{(0)(11)}{4(7)(6)} a_{5}=0 .
\end{aligned}
$$

It follows that

$$
y_{1}(x)=a_{0}\left(1-\frac{15}{4} x^{2}+\frac{15}{8} x^{4}-\frac{5}{32} x^{6}+\ldots\right),
$$

while

$$
y_{2}(x)=a_{1}\left(x-\frac{7}{6} x^{3}+\frac{21}{80} x^{5}\right)
$$

Thus, $y_{2}(x)$ is a polynomial, so converges for all x, while $y_{1}(x)$ is an infinite series. We apply the ratio test to successive terms in y_{1}, giving:

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+2} x^{n+2}\right|}{\left|a_{n} x^{n}\right|}=\lim _{n \rightarrow \infty}\left|\frac{(n-5)(n+6)}{4(n+2)(n+1)}\right| x^{2}=\frac{x^{2}}{4}<1
$$

Thus, this series converges absolutely for $|x|<2$, which is the radius where the ODE becomes singular.

