1. (8pts) Consider the initial-value problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0} .
$$

We assume a transformation of the form $y=v Y$, so

$$
y^{\prime}=v Y^{\prime}+v^{\prime} Y \quad \text { and } \quad y^{\prime \prime}=v Y^{\prime \prime}+2 v^{\prime} Y^{\prime}+v^{\prime \prime} Y
$$

which is substituted into the original equation. This gives

$$
\begin{aligned}
v Y^{\prime \prime}+2 v^{\prime} Y^{\prime}+v^{\prime \prime} Y+p(x)\left(v Y^{\prime}+v^{\prime} Y\right)+q(x) v Y & =0 \\
Y^{\prime \prime}+\left(\frac{2 v^{\prime}}{v}+p\right) Y^{\prime}+\left(\frac{v^{\prime \prime}}{v}+\frac{p v^{\prime}}{v}+q\right) Y & =0 .
\end{aligned}
$$

To eliminate the Y^{\prime} term, we must have:

$$
\frac{2 v^{\prime}}{v}+p(x)=0 \quad \text { or } \quad \frac{v^{\prime}}{v}=-\frac{1}{2} p(x) .
$$

Integrating both sides and exponentiating gives:

$$
v(x)=e^{-\frac{1}{2} \int_{0}^{x} p(s) d s} .
$$

It follows that

$$
v^{\prime}(x)=-\frac{p(x)}{2} e^{-\frac{1}{2} \int_{0}^{x} p(s) d s} \quad \text { and } \quad v^{\prime \prime}(x)=\left(-\frac{p^{\prime}(x)}{2}+\left(\frac{p(x)}{2}\right)^{2}\right) e^{-\frac{1}{2} \int_{0}^{x} p(s) d s}
$$

To obtain the form $Y^{\prime \prime}+Q(x) Y=0$, we need:

$$
\begin{aligned}
& Q(x)=\frac{v^{\prime \prime}}{v}+p(x) \frac{v^{\prime}}{v}+q(x) \\
& Q(x)=-\frac{p^{\prime}(x)}{2}+\left(\frac{p(x)}{2}\right)^{2}+p(x)\left(-\frac{p(x)}{2}\right)+q(x), \\
& Q(x)=-\frac{p^{\prime}(x)}{2}-\frac{p^{2}(x)}{4}+q(x) .
\end{aligned}
$$

From above we see

$$
Y(0)=\frac{y(0)}{v(0)}=y_{0}, \quad \text { since } \quad v(0)=e^{0}=1
$$

and

$$
y^{\prime}(0)=v^{\prime}(0) Y(0)+v(0) Y^{\prime}(0)=-\frac{p(0) y_{0}}{2}+Y^{\prime}(0), \quad \text { since } \quad v^{\prime}(0)=-\frac{p(0)}{2} .
$$

It follows that $Y^{\prime}(0)=v_{0}+\frac{p(0) y_{0}}{2}$.
2. a. (10pts) Consider the singular second order ODE given by:

$$
2 x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0
$$

With $P(x)=2 x^{2}, Q(x)=x$, and $R(x)=x^{2}$, we see that

$$
\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{x^{2}}{2 x^{2}}=\frac{1}{2}=p_{0}
$$

and

$$
\lim _{x \rightarrow 0} \frac{x^{2} R(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{x^{4}}{2 x^{2}}=0=q_{0} .
$$

Since these are both finite, it follows that the functions are analytic, which implies that $x=0$ is a regular singular point. Thus, we may attempt solutions of the form:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}, \quad y^{\prime}=\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1}, \quad y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-2} .
$$

This also gives the indicial equation:

$$
r(r-1)+p_{0} r+q_{0}=r^{2}-r+\frac{1}{2} r=r\left(r-\frac{1}{2}\right)=0 .
$$

It follows that $r=0, \frac{1}{2}$.
We substitute our power series into the ODE and obtain:

$$
2 \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r}+\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r}+\sum_{n=0}^{\infty} a_{n} x^{n+r+2}=0
$$

which shifting indices gives:

$$
2 \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r}+\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r}+\sum_{n=2}^{\infty} a_{n-2} x^{n+r}=0 .
$$

When $n=0$, we also obtain the indicial equation, $a_{0}(2 r(r-1)+r)=a_{0}(r(2 r-1))=0$. Note that when $n=1$, we have $a_{1}(2 r(r+1)+r+1)=a_{1}\left(2 r^{2}+3 r+1\right)=0$, which implies $a_{1}=0$ for solutions of the indicial equation. For $n \geq 2$, we obtain the recurrence relation:

$$
a_{n}=-\frac{a_{n-2}}{(n+r)(2 n+2 r-1)} .
$$

The first solution satisfies $r_{1}=\frac{1}{2}$ with a_{0} arbitrary and the recurrence relation, $a_{n}=-\frac{a_{n-2}}{n(2 n+1)}$, so

$$
y_{1}(x)=\sqrt{x} \sum_{n=0}^{\infty} a_{n} x^{n},
$$

where

$$
a_{2}=-\frac{a_{0}}{2 \cdot 5}, \quad a_{4}=-\frac{a_{2}}{4 \cdot 9}=\frac{a_{0}}{2 \cdot 5 \cdot 4 \cdot 9}, \quad a_{6}=-\frac{a_{4}}{6 \cdot 13}=-\frac{a_{0}}{2 \cdot 5 \cdot 4 \cdot \cdot \cdot 6 \cdot 13} \quad \ldots
$$

The second solution satisfies $r_{2}=0$ with b_{0} arbitrary and the recurrence relation, $b_{n}=-\frac{b_{n-2}}{n(2 n-1)}$, so

$$
y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n},
$$

where

$$
b_{2}=-\frac{a_{0}}{2 \cdot 3}, \quad b_{4}=-\frac{b_{2}}{4 \cdot 7}=\frac{b_{0}}{2 \cdot 3 \cdot 4 \cdot 7}, \quad b_{6}=-\frac{b_{4}}{6 \cdot 11}=-\frac{b_{0}}{2 \cdot 3 \cdot 4 \cdot 7 \cdot 6 \cdot 11} \quad \ldots
$$

The complete solution satisfies:

$$
\begin{aligned}
y(x)= & a_{0} \sqrt{x}\left(1-\frac{1}{10} x^{2}+\frac{1}{360} x^{4}-\frac{1}{28080} x^{6}+\frac{1}{3818880} x^{8}+\mathcal{O}\left(x^{10}\right)\right) \\
& +b_{0}\left(1-\frac{1}{6} x^{2}+\frac{1}{168} x^{4}-\frac{1}{11088} x^{6}+\frac{1}{1330560} x^{8}+\mathcal{O}\left(x^{10}\right)\right)
\end{aligned}
$$

b. (10pts) Consider the singular second order ODE given by:

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+(1+x) y=0
$$

With $P(x)=x^{2}, Q(x)=3 x$, and $R(x)=1+x$, we see that

$$
\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{3 x^{2}}{x^{2}}=3=p_{0}
$$

and

$$
\lim _{x \rightarrow 0} \frac{x^{2} R(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{x^{2}+x^{3}}{x^{2}}=1=q_{0} .
$$

Since these are both finite, it follows that the functions are analytic, which implies that $x=0$ is a regular singular point. Thus, we may attempt solutions of the form:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}, \quad y^{\prime}=\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1}, \quad y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-2}
$$

This also gives the indicial equation:

$$
r(r-1)+p_{0} r+q_{0}=r^{2}-r+3 r+1=(r+1)^{2}=0
$$

It follows that $r=-1$ is a double root.
We substitute our power series into the ODE and obtain:

$$
\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r}+3 \sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r}+\sum_{n=0}^{\infty} a_{n} x^{n+r}+\sum_{n=0}^{\infty} a_{n} x^{n+r+1}=0
$$

which shifting indices gives:

$$
\sum_{n=0}^{\infty} a_{n}((n+r)(n+r-1)+3(n+r)+1) x^{n+r}+\sum_{n=1}^{\infty} a_{n-1} x^{n+r}=0
$$

When $n=0$, we also obtain the indicial equation, $a_{0}(r+1)^{2}=0$. For $n \geq 1$, we obtain the recurrence relation:

$$
a_{n}=-\frac{a_{n-1}}{(n+r)(n+r+2)+1}=-\frac{a_{n-1}}{(n+r+1)^{2}}, \quad n=1,2, \ldots
$$

The first solution satisfies $r_{1}=-1$ with a_{0} arbitrary and the recurrence relation, $a_{n}=-\frac{a_{n-1}}{n^{2}}$, so

$$
y_{1}(x)=\frac{1}{x} \sum_{n=0}^{\infty} a_{n} x^{n}
$$

where

$$
a_{1}=-\frac{a_{0}}{1}, \quad a_{2}=-\frac{a_{1}}{2^{2}}=\frac{a_{0}}{(2!)^{2}}, \quad a_{3}=-\frac{a_{2}}{3^{2}}=-\frac{a_{0}}{(3!)^{2}}, \ldots, a_{n}=(-1)^{n} \frac{a_{0}}{(n!)^{2}}, \ldots
$$

Thus, the first solution is given by:

$$
y_{1}(x)=\frac{a_{0}}{x} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}} x^{n}=\frac{a_{0}}{x}\left(1-x+\frac{x^{2}}{(2!)^{2}}-\frac{x^{3}}{(3!)^{2}}+\ldots\right) .
$$

Since $r=-1$ is a repeated root, if we take $y_{1}(x)$ above with $a_{0}=1$, then the second solution has the form:

$$
y_{2}(x)=y_{1}(x) \ln (x)+x^{r} \sum_{n=1}^{\infty} b_{n}(r) x^{n}
$$

where $b_{n}(r)=a_{n}^{\prime}(r)$ and

$$
a_{n}^{\prime}(-1)=\left.\frac{d}{d r}\left[\frac{(-1)^{n}}{((n+r+1)!)^{2}}\right]\right|_{r=-1}
$$

From the lecture notes, we saw that if $f(x)=\left(x-\alpha_{1}\right)^{\beta_{1}} \cdots \cdots\left(x-\alpha_{n}\right)^{\beta_{n}}$, then:

$$
\frac{f^{\prime}(x)}{f(x)}=\frac{\beta_{1}}{x-\alpha_{1}}+\ldots+\frac{\beta_{n}}{x-\alpha_{n}}, \quad \text { for } \quad x \neq \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} .
$$

Therefore,

$$
\begin{aligned}
a_{n}^{\prime}(-1) & =\left.\left[\left(\frac{-2}{r+2}+\frac{-2}{r+3}+\ldots+\frac{-2}{n+r+1}\right) \cdot\left(\frac{(-1)^{n}}{((n+r+1)!)^{2}}\right)\right]\right|_{r=-1} \\
& =\left(-2 \sum_{m=1}^{n} \frac{1}{m}\right)\left(\frac{(-1)^{n}}{(n!)^{2}}\right)=-2 \frac{(-1)^{n}}{(n!)^{2}} \cdot H_{n}
\end{aligned}
$$

where $H_{n}=\sum_{m=1}^{n} \frac{1}{m}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}$. It follows that:

$$
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)-\frac{2}{x} \sum_{n=1}^{\infty} \frac{(-1)^{n} H_{n} x^{n}}{(n!)^{2}} \\
& =y_{1}(x) \ln (x)-\frac{2}{x}\left[-x+\frac{x^{2}}{(2!)^{2}}\left(1+\frac{1}{2}\right)-\frac{x^{3}}{(3!)^{2}}\left(1+\frac{1}{2}+\frac{1}{3}\right)+\frac{x^{4}}{(4!)^{2}}\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\ldots\right]
\end{aligned}
$$

Alternately, one could take the form of $y_{2}(x)$ and insert that into the original ODE. The result is:

$$
\sum_{k=2}^{\infty} k(k-1) b_{k+1} x^{k}+\sum_{k=1}^{\infty} 3 k b_{k+1} x^{k}+\sum_{k=0}^{\infty} b_{k+1} x^{k}+\sum_{k=1}^{\infty} b_{k} x^{k}=-2 x y_{1}^{\prime}-2 y_{1} .
$$

Carefully matching the same powers of x gives the same coefficients b_{k} listed above and below.

Combining these results give:

$$
\begin{aligned}
y(x)= & a_{0} \frac{1}{x}\left(1-x+\frac{1}{4} x^{2}-\frac{1}{36} x^{3}+\frac{1}{576} x^{4}-\frac{1}{14400} x^{5}+\frac{1}{518400} x^{6}+\mathcal{O}\left(x^{7}\right)\right) \\
& +b_{0}\left(\frac{\ln (x)}{x}\left(1-x+\frac{1}{4} x^{2}-\frac{1}{36} x^{3}+\frac{1}{576} x^{4}-\frac{1}{14400} x^{5}+\frac{1}{518400} x^{6}+\mathcal{O}\left(x^{7}\right)\right)\right. \\
& \left.+\frac{1}{x}\left(2 x-\frac{3}{4} x^{2}+\frac{11}{108} x^{3}-\frac{25}{3456} x^{4}+\frac{137}{432000} x^{5}-\frac{49}{5184000} x^{6}+\mathcal{O}\left(x^{7}\right)\right)\right) .
\end{aligned}
$$

c. (10pts) Consider the singular second order ODE given by:

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+(2+x) y=0
$$

With $P(x)=x^{2}, Q(x)=4 x$, and $R(x)=2+x$, we see that

$$
\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{4 x^{2}}{x^{2}}=4=p_{0}
$$

and

$$
\lim _{x \rightarrow 0} \frac{x^{2} R(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{2 x^{2}+x^{3}}{x^{2}}=2=q_{0}
$$

Since these are both finite, it follows that the functions are analytic, which implies that $x=0$ is a regular singular point. Thus, we may attempt solutions of the form:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}, \quad y^{\prime}=\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1}, \quad y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-2}
$$

This also gives the indicial equation:

$$
r(r-1)+p_{0} r+q_{0}=r^{2}-r+4 r+2=(r+1)(r+2)=0
$$

It follows that $r_{1}=-1$ and $r_{2}=-2$.
We substitute our power series into the ODE and obtain:

$$
\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r}+4 \sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r}+2 \sum_{n=0}^{\infty} a_{n} x^{n+r}+\sum_{n=0}^{\infty} a_{n} x^{n+r+1}=0
$$

which shifting indices gives:

$$
\sum_{n=0}^{\infty} a_{n}((n+r)(n+r-1)+4(n+r)+2) x^{n+r}+\sum_{n=1}^{\infty} a_{n-1} x^{n+r}=0
$$

When $n=0$, we also obtain the indicial equation, $a_{0}\left(r^{2}+3 r+2\right)=a_{0}(r+1)(r+2)=0$. For $n \geq 1$, we obtain the recurrence relation:

$$
a_{n}=-\frac{a_{n-1}}{(n+r)(n+r+3)+2}=-\frac{a_{n-1}}{(n+r+1)(n+r+2)}, \quad n=1,2, \ldots
$$

The first solution satisfies $r_{1}=-1$ with a_{0} arbitrary and the recurrence relation, $a_{n}=-\frac{a_{n-1}}{n(n+1)}$, so

$$
y_{1}(x)=\frac{1}{x} \sum_{n=0}^{\infty} a_{n} x^{n}
$$

where

$$
a_{1}=-\frac{a_{0}}{2}, \quad a_{2}=-\frac{a_{1}}{2 \cdot 3}=\frac{a_{0}}{2!3!}, \quad a_{3}=-\frac{a_{2}}{3 \cdot 4}=-\frac{a_{0}}{3!4!}, \ldots, a_{n}=(-1)^{n} \frac{a_{0}}{n!(n+1)!}, \ldots
$$

Thus, the first solution is given by:

$$
y_{1}(x)=\frac{a_{0}}{x} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!((n+1)!} x^{n}=\frac{a_{0}}{x}\left(1-\frac{x}{2!}+\frac{x^{2}}{2!3!}-\frac{x^{3}}{3!4!}+\ldots\right)
$$

Since $r_{2}=-2$ and $r_{1}-r_{2}=1$ is an integer, we evaluate:

$$
\lim _{r \rightarrow r_{2}} a_{N}(r)=\lim _{r \rightarrow-2} a_{1}(r)=\frac{-a_{0}(r)}{(r+2)(r+3)} .
$$

Since a_{0} is an arbitrary, the limit is undefined, so a second series solution requires the logarithmic term. We take $y_{1}(x)$ above with $a_{0}=1$, then the second solution has the form:

$$
y_{2}(x)=y_{1}(x) \ln (x)+x^{-2} \sum_{n=0}^{\infty} b_{n}(r) x^{n} .
$$

This is readily substituted into the original ODE giving:

$$
\begin{aligned}
& 2 k x y_{1}^{\prime}-k y_{1}+\sum_{n=0}^{\infty}(n-2)(n-3) b_{n} x^{n-2}+4 k y_{1}+\sum_{n=0}^{\infty} 4(n-2) b_{n} x^{n-2}+ \\
& \\
& \sum_{n=0}^{\infty} 2 b_{n} x^{n-2}+\sum_{n=0}^{\infty} b_{n} x^{n-1}=0
\end{aligned}
$$

which is readily transformed into the equation:

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n-2}+\sum_{n=1}^{\infty} b_{n-1} x^{n-2} & =-k\left(3 y_{1}+2 x y_{1}^{\prime}\right) \\
& =-k\left(\frac{3}{x}-\frac{3}{2}+\frac{x}{4}-\frac{x^{2}}{48}+\cdots-\frac{2}{x}+\frac{x}{6}-\frac{x^{2}}{36}+\ldots\right)
\end{aligned}
$$

When $n=1$, we have $b_{0} x^{-1}=-k x^{-1}$ or $k=-b_{0}$, where b_{0} is arbitrary. The series produced from b_{1} reproduces the solution $y_{1}(x)$, so we take $b_{1}=0$. The next few coefficients are readily found:

$$
\begin{array}{ll}
n=2: & 2 b_{2}+b_{1}=-\frac{3 b_{0}}{2} \quad \text { or } \quad b_{2}=-\frac{3 b_{0}}{4}, \\
n=3: & 6 b_{3}+b_{2}=\frac{b_{0}}{4}+\frac{b_{0}}{6}, \quad \text { or } \quad b_{3}=\frac{7 b_{0}}{36}, \\
n=4: & 12 b_{4}+b_{3}=-\frac{3 b_{0}}{144}-\frac{b_{0}}{36}, \quad \text { or } b_{4}=-\frac{35 b_{0}}{1728} .
\end{array}
$$

Alternately, from the lecture notes, we compute k from:

$$
k=\lim _{r \rightarrow-2}(r+2) a_{1}(r)=\lim _{r \rightarrow-2} \frac{(r+2)(-1)}{(r+2)(r+3)}=-1
$$

and calculate $b_{n}\left(r_{2}\right)$ from:

$$
b_{n}(-2)=\frac{d}{d r}\left[(r+2) a_{n}(r)\right]_{r=-2} .
$$

Following the techniques similar to those in 2(b) are used to derive the coefficients b_{n}.
Combining these results give:

$$
\begin{aligned}
y(x)= & a_{0} \frac{1}{x}\left(1-\frac{1}{2} x+\frac{1}{12} x^{2}-\frac{1}{144} x^{3}+\frac{1}{2880} x^{4}-\frac{1}{86400} x^{5}+\frac{1}{3628800} x^{6}+\mathcal{O}\left(x^{7}\right)\right) \\
& +b_{0}\left(-\frac{\ln (x)}{x}\left(1-\frac{1}{2} x+\frac{1}{12} x^{2}-\frac{1}{144} x^{3}+\frac{1}{2880} x^{4}-\frac{1}{86400} x^{5}+\frac{1}{3628800} x^{6}+\mathcal{O}\left(x^{7}\right)\right)\right. \\
& \left.+\frac{1}{x^{2}}\left(1-\frac{3}{4} x^{2}+\frac{7}{36} x^{3}-\frac{35}{1728} x^{4}+\frac{101}{86400} x^{5}-\frac{7}{162000} x^{6}+\mathcal{O}\left(x^{7}\right)\right)\right) .
\end{aligned}
$$

3. a. (10pts) Bessel's equation of order $\frac{1}{2}$ satisfies:

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0,
$$

and is important in solving PDEs with spherical geometry. With $P(x)=x^{2}, Q(x)=x$, and $R(x)=x^{2}-\frac{1}{4}$, we see that

$$
\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}}=1=p_{0}, \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{x^{2} R(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{x^{4}-\frac{1}{4} x^{2}}{x^{2}}=-\frac{1}{4}=q_{0}
$$

Since these are both finite, it follows that the functions are analytic, which implies that $x=0$ is a regular singular point. Thus, we may attempt solutions of the form:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}, \quad y^{\prime}=\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1}, \quad y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-2} .
$$

These are substituted into Bessel's equation, giving:

$$
\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r}+\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r}+\sum_{n=0}^{\infty} a_{n} x^{n+r+2}-\frac{1}{4} \sum_{n=0}^{\infty} a_{n} x^{n+r}=0
$$

This becomes:

$$
\sum_{n=0}^{\infty}\left((n+r)(n+r-1)+(n+r)-\frac{1}{4}\right) a_{n} x^{n+r}+\sum_{n=2}^{\infty} a_{n-2} x^{n+r}=0
$$

or

$$
\sum_{n=0}^{\infty}\left((n+r)^{2}-\frac{1}{4}\right) a_{n} x^{n+r}+\sum_{n=2}^{\infty} a_{n-2} x^{n+r}=0
$$

For $n=0$ and $n=1$, we see

$$
\left(r^{2}-\frac{1}{4}\right) a_{0}=0 \quad \text { and } \quad\left((r+1)^{2}-\frac{1}{4}\right) a_{1}=0
$$

The first gives the indicial equation and is satisfied by $r= \pm \frac{1}{2}$. With either value of r, the second equation implies that $a_{1}=0$. For $n \geq 2$, we have:

$$
\left((n+r)^{2}-\frac{1}{4}\right) a_{n}+a_{n-2}=0 \quad \text { or } \quad a_{n}=-\frac{a_{n-2}}{(n+r)^{2}-\frac{1}{4}},
$$

which is the recurrence relation.
The first root, $r_{1}=\frac{1}{2}$, is inserted into the recurrence relation to give:

$$
a_{n}=-\frac{a_{n-2}}{\left(n+\frac{1}{2}\right)^{2}-\frac{1}{4}}=-\frac{a_{n-2}}{n(n+1)}, \quad n \geq 2 .
$$

Since $a_{1}=0$, it follows that $a_{3}=a_{5}=\cdots=a_{2 m+1}=0, \quad m \geq 0$. Continuing we see that:

$$
a_{2}=-\frac{a_{0}}{2 \cdot 3}=-\frac{a_{0}}{3!}, \quad a_{4}=-\frac{a_{2}}{4 \cdot 5}=\frac{a_{0}}{5!}, \quad \ldots \quad a_{2 m}=(-1)^{m} \frac{a_{0}}{(2 m+1)!}, \quad m \geq 1 .
$$

It follows that the first solution to this Bessel's equation is:

$$
y_{1}(x)=a_{0} x^{\frac{1}{2}}\left(1+\sum_{m=1}^{\infty} \frac{(-1)^{m} x^{2 m}}{(2 m+1)!}\right)=a_{0} x^{-\frac{1}{2}} \sum_{m=0}^{\infty} \frac{(-1)^{m} \cdot x^{2 m+1}}{(2 m+1)!}=a_{0} x^{-\frac{1}{2}} \sin (x) .
$$

Since $r_{1}-r_{2}=1$, we investigate:

$$
\lim _{r \rightarrow r_{2}} a_{N}(r)=\lim _{r \rightarrow-\frac{1}{2}} a_{1}(r)=0
$$

This limit exists, so the logarithmic form of $y_{2}(x)$ is unnecessary. It follows that the recurrence relation for r_{2} satisfies:

$$
b_{n}\left(r_{2}\right)=-\frac{b_{n-2}}{\left(n-\frac{1}{2}\right)^{2}-\frac{1}{4}}=-\frac{b_{n-2}}{n(n-1)}, \quad n \geq 2
$$

We note that b_{0} is arbitrary and b_{1} generates the same series as $y_{1}(x)$, so take $b_{1}=0$. Thus, $b_{3}=b_{5}=\cdots=b_{2 m+1}=0, \quad m \geq 0$. It follows that:

$$
b_{2}=-\frac{b_{0}}{2!}, \quad b_{4}=-\frac{b_{2}}{3 \cdot 4}=\frac{b_{0}}{4!}, \quad \ldots \quad b_{2 m}=(-1)^{m} \frac{b_{0}}{(2 m)!}, \quad m \geq 1 .
$$

The second linearly independent solution is:

$$
y_{2}(x)=b_{0} x^{-\frac{1}{2}} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{(2 m)!}=b_{0} x^{-\frac{1}{2}} \cos (x) .
$$

The general solution to Bessel's equation of order $\frac{1}{2}$ is:

$$
y(x)=x^{-\frac{1}{2}}\left(a_{0} \sum_{m=0}^{\infty} \frac{(-1)^{m} \cdot x^{2 m+1}}{(2 m+1)!}+b_{0} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{(2 m)!}\right)=x^{-\frac{1}{2}}\left(a_{0} \sin (x)+b_{0} \cos (x)\right) .
$$

b. (7pts) Consider the change of variables, $y(x)=x^{-\frac{1}{2}} v(x)$. It follows that

$$
y^{\prime}(x)=x^{-\frac{1}{2}} v^{\prime}(x)-\frac{1}{2} x^{-\frac{3}{2}} v(x)
$$

and

$$
y^{\prime \prime}(x)=x^{-\frac{1}{2}} v^{\prime \prime}(x)-x^{-\frac{3}{2}} v^{\prime}(x)+\frac{3}{4} x^{-\frac{5}{2}} v(x)
$$

Substituting this into Bessel's equation gives:

$$
x^{\frac{3}{2}} v^{\prime \prime}-x^{\frac{1}{2}} v^{\prime}+\frac{3}{4} x^{-\frac{1}{2}} v+x^{\frac{1}{2}} v^{\prime}-\frac{1}{2} x^{-\frac{1}{2}} v+x^{\frac{3}{2}} v-\frac{1}{4} x^{-\frac{1}{2}} v=0
$$

which reduces to

$$
x^{\frac{3}{2}}\left(v^{\prime \prime}+v\right)=0 \quad \text { or } \quad v^{\prime \prime}+v=0
$$

The characteristic equation for this equation in v is $\lambda^{2}+1=0$, so $\lambda= \pm i$, giving the general solution:

$$
v(x)=c_{1} \cos (x)+c_{2} \sin (x) \quad \text { or } \quad y(x)=x^{-\frac{1}{2}}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

which are the same solutions formulated by the Method of Frobenius. Note that Bessel's equation of order $\frac{1}{2}$ have solutions:

$$
J_{-\frac{1}{2}}(x)=\left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \cos (x) \quad \text { and } \quad J_{\frac{1}{2}}(x)=\left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \sin (x)
$$

which are appropriately scaled functions of $y(x)$.
4. a. (10pts) Consider the singular second order ODE given by:

$$
\begin{equation*}
x^{2} y^{\prime \prime}+6 x y^{\prime}+\left(6-x^{2}\right) y=0 \tag{1}
\end{equation*}
$$

With $P(x)=x^{2}, Q(x)=6 x$, and $R(x)=6-x^{2}$, we see that

$$
\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{6 x^{2}}{x^{2}}=6=p_{0}, \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{x^{2} R(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{6 x^{2}-x^{4}}{x^{2}}=6=q_{0}
$$

Since these are both finite, it follows that the functions are analytic, which implies that $x=0$ is a regular singular point. Thus, we may attempt solutions of the form:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}, \quad y^{\prime}=\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1}, \quad y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-2}
$$

These are substituted into (1), giving:

$$
\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r}+6 \sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r}+6 \sum_{n=0}^{\infty} a_{n} x^{n+r}-\sum_{n=0}^{\infty} a_{n} x^{n+r+2}=0
$$

This becomes:

$$
\sum_{n=0}^{\infty}(n+r+2)(n+r+3) a_{n} x^{n+r}-\sum_{n=2}^{\infty} a_{n-2} x^{n+r}=0
$$

For $n=0$ and $n=1$, we see

$$
(r+2)(r+3) a_{0}=0 \quad \text { and } \quad(r+3)(r+4) a_{1}=0
$$

The first gives the indicial equation and is satisfied by $r_{1}=-2$ and $r_{2}=-3$. With $r_{1}=-2$, the second equation implies that $a_{1}(-2)=0$. For $n \geq 2$, we have:

$$
a_{n}(r)=\frac{a_{n-2}(r)}{(n+r+2)(n+r+3)}
$$

which is the recurrence relation.
The first root, $r_{1}=-2$, is inserted into the recurrence relation to give:

$$
a_{n}=\frac{a_{n-2}}{n(n+1)}, \quad n \geq 2
$$

Since $a_{1}=0$, it follows that $a_{3}=a_{5}=\cdots=a_{2 m+1}=0, \quad m \geq 0$. Continuing we see that:

$$
a_{2}=\frac{a_{0}}{2 \cdot 3}=\frac{a_{0}}{3!}, \quad a_{4}=\frac{a_{2}}{4 \cdot 5}=\frac{a_{0}}{5!}, \quad \ldots \quad a_{2 m}=\frac{a_{0}}{(2 m+1)!}, \quad m \geq 1
$$

It follows that the first solution to (1) is:

$$
y_{1}(x)=a_{0} x^{-2}\left(\sum_{m=0}^{\infty} \frac{x^{2 m}}{(2 m+1)!}\right)=a_{0} x^{-3} \sum_{m=0}^{\infty} \frac{x^{2 m+1}}{(2 m+1)!}=a_{0} x^{-3} \sinh (x)
$$

Since $r_{1}-r_{2}=1$, we investigate:

$$
\lim _{r \rightarrow r_{2}} a_{N}(r)=\lim _{r \rightarrow-3} a_{1}(r)=0
$$

This limit exists, so the logarithmic form of $y_{2}(x)$ is unnecessary. It follows that the recurrence relation for r_{2} satisfies:

$$
b_{n}\left(r_{2}\right)=\frac{b_{n-2}}{(n-1) n}, \quad n \geq 2
$$

We note that b_{0} is arbitrary and b_{1} generates the same series as $y_{1}(x)$, so take $b_{1}=0$. Thus, $b_{3}=b_{5}=\cdots=b_{2 m+1}=0, \quad m \geq 0$. It follows that:

$$
b_{2}=\frac{b_{0}}{2!}, \quad b_{4}=\frac{b_{2}}{3 \cdot 4}=\frac{b_{0}}{4!}, \quad \ldots \quad b_{2 m}=\frac{b_{0}}{(2 m)!}, \quad m \geq 1
$$

The second linearly independent solution is:

$$
y_{2}(x)=b_{0} x^{-3} \sum_{m=0}^{\infty} \frac{x^{2 m}}{(2 m)!}=b_{0} x^{-3} \cosh (x)
$$

The general solution to (1) is:

$$
y(x)=x^{-3}\left(a_{0} \sum_{m=0}^{\infty} \frac{x^{2 m+1}}{(2 m+1)!}+b_{0} \sum_{m=0}^{\infty} \frac{x^{2 m}}{(2 m)!}\right)=x^{-3}\left(a_{0} \sinh (x)+b_{0} \cosh (x)\right)
$$

b. (7pts) Consider the change of variables, $y(x)=x^{\alpha} v(x)$. It follows that

$$
y^{\prime}(x)=\alpha x^{\alpha-1} v(x)+x^{\alpha} v^{\prime}(x)
$$

and

$$
y^{\prime \prime}(x)=\alpha(\alpha-1) x^{\alpha-2} v(x)+2 \alpha x^{\alpha-1} v^{\prime}(x)+x^{\alpha} v^{\prime \prime}(x)
$$

Substituting this into (1) gives:

$$
\alpha(\alpha-1) x^{\alpha} v+2 \alpha x^{\alpha+1} v^{\prime}+x^{\alpha+2} v^{\prime \prime}+6 \alpha x^{\alpha} v+6 x^{\alpha+1} v^{\prime}+6 x^{\alpha} v-x^{\alpha+2} v=0
$$

or

$$
x^{\alpha+2} v^{\prime \prime}+x^{\alpha+1}(2 \alpha+6) v^{\prime}+\left[\alpha(\alpha-1) x^{\alpha}+6 \alpha x^{\alpha}+6 x^{\alpha}-x^{\alpha+2}\right] v=0
$$

We choose α such that $2 \alpha+6=0$ or $\alpha=-3$ to eliminate the v^{\prime} term. It follows that:

$$
x^{-1} v^{\prime \prime}+\left[12 x^{-3}-18 x^{-3}+6 x^{-3}-x^{-1}\right] v=0
$$

or

$$
x^{-1} v^{\prime \prime}-x^{-1} v=0, \quad \text { so } \quad v^{\prime \prime}-v=0
$$

This ODE in $v(x)$ has the characteristic equation $\lambda= \pm 1$, so has the general solution:

$$
v(x)=c_{1} e^{x}+c_{2} e^{-x}=d_{1} \cosh (x)+d_{2} \sinh (x)
$$

using a different linear combination of the exponentials, where $c_{1}=\frac{d_{1}+d_{2}}{2}$ and $c_{2}=\frac{d_{1}-d_{2}}{2}$. Since $y(x)=x^{\alpha} v(x)$, it follows that:

$$
y(x)=x^{-3}\left(d_{1} \cosh (x)+d_{2} \sinh (x)\right)
$$

which are the same solutions formulated by the Method of Frobenius.
5. a. (10pts) Consider the singular second order ODE given by:

$$
\begin{equation*}
x y^{\prime \prime}+(1+2 x) y^{\prime}+(x+1) y=0 \tag{2}
\end{equation*}
$$

With $P(x)=x, Q(x)=1-2 x$, and $R(x)=x-1$, we see that

$$
\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{x+2 x^{2}}{x}=1=p_{0}, \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{x^{2} R(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{x^{3}+x^{2}}{x}=0=q_{0}
$$

Since these are both finite, it follows that the functions are analytic, which implies that $x=0$ is a regular singular point. Thus, we may attempt solutions of the form:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}, \quad y^{\prime}=\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1}, \quad y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-2}
$$

These are substituted into (2), giving:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-1}+\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1}+2 \sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r} \\
&+\sum_{n=0}^{\infty} a_{n} x^{n+r+1}+\sum_{n=0}^{\infty} a_{n} x^{n+r}=0
\end{aligned}
$$

Shifting indices to match powers of x, this becomes:

$$
\sum_{n=0}^{\infty} a_{n}(n+r)^{2} x^{n+r-1}+2 \sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r-1}+\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}+\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}=0
$$

For $n=0$, we have $a_{0} r^{2}=0$, which gives the indicial equation, $r^{2}=0$, so $r_{1}=r_{2}=0$. For $n=1$, we have $a_{1}(r+1)^{2}+(2 r+1) a_{0}=0$. For $n \geq 2$, we have

$$
\sum_{n=2}^{\infty}\left(a_{n}(n+r)^{2}+(2 n+2 r-1) a_{n-1}+a_{n-2}\right) x^{n+r-1}=0
$$

which gives the recurrence relation:

$$
a_{n}(r)=-\frac{(2 n+2 r-1) a_{n-1}(r)+a_{n-2}(r)}{(n+r)^{2}}, \quad n \geq 2
$$

The first root, $r_{1}=0$, gives $a_{1}=-a_{0}$ and is inserted into the recurrence relation to give:

$$
a_{n}=-\frac{(2 n-1) a_{n-1}+a_{n-2}}{n^{2}}, \quad n \geq 2
$$

It follows that

$$
\begin{aligned}
a_{2}= & -\frac{3 a_{1}+a_{0}}{2^{2}}=\frac{3 a_{0}-a_{0}}{2^{2}}=\frac{a_{0}}{2}=\frac{a_{0}}{2!}, \\
a_{3}= & -\frac{5 a_{2}+a_{1}}{3^{2}}=-\frac{\frac{5 a_{0}}{2}-a_{0}}{3^{2}}=-\frac{3 a_{0}}{2 \cdot 3^{2}}=-\frac{a_{0}}{3!}, \\
a_{4}= & -\frac{7 a_{3}+a_{2}}{4^{2}}=\frac{\frac{7 a_{0}}{3!}-\frac{a_{0}}{2!}}{4^{2}}=\frac{4 a_{0}}{3!4^{2}}=\frac{a_{0}}{4!}, \\
\vdots & \vdots \\
a_{n}= & (-1)^{n} \frac{a_{0}}{n!} .
\end{aligned}
$$

Thus, the first solution to (2) is:

$$
y_{1}(x)=a_{0} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!}=a_{0} e^{-x} .
$$

Since $r_{1}=r_{2}=0$, the second solution has the form:

$$
y_{2}(x)=y_{1}(x) \ln x+\sum_{n=1}^{\infty} b_{n} x^{n},
$$

so

$$
y_{2}^{\prime}=y_{1}^{\prime} \ln (x)+\frac{y_{1}}{x}+\sum_{n=1}^{\infty} n b_{n} x^{n-1}, \quad y_{2}^{\prime \prime}=y_{1}^{\prime \prime} \ln (x)+2 \frac{y_{1}^{\prime}}{x}-\frac{y_{1}}{x^{2}}+\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n-2}
$$

Substituting this into (2) gives:

$$
\begin{aligned}
x\left(y_{1}^{\prime \prime} \ln (x)+2 \frac{y_{1}^{\prime}}{x}-\frac{y_{1}}{x^{2}}+\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n-2}\right)+ \\
(1+2 x)\left(y_{1}^{\prime} \ln (x)+\frac{y_{1}}{x}+\sum_{n=1}^{\infty} n b_{n} x^{n-1}\right)+ \\
(x+1)\left(y_{1} \ln x+\sum_{n=1}^{\infty} b_{n} x^{n}\right)=0 .
\end{aligned}
$$

This simplifies to:

$$
\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n-1}+(1+2 x) \sum_{n=1}^{\infty} n b_{n} x^{n-1}+(x+1) \sum_{n=1}^{\infty} b_{n} x^{n}=-2 y_{1}-2 y_{1}^{\prime}=0
$$

since $y_{1}(x)=a_{0} e^{-x}=-y_{1}^{\prime}(x)$. Shifting indices so that all terms have x^{n}, the above equation becomes:

$$
\sum_{n=1}^{\infty}(n+1) n b_{n+1} x^{n}+2 \sum_{n=1}^{\infty} n b_{n} x^{n}+\sum_{n=0}^{\infty}(n+1) b_{n+1} x^{n}+\sum_{n=1}^{\infty} b_{n} x^{n}+\sum_{n=2}^{\infty} b_{n-1} x^{n}=0 .
$$

For $n=0$, we see that $b_{1}=0$. For $n=1$, it follows that $4 b_{2}+3 b_{1}=0$ or $b_{2}=0$. For $n \geq 2$, we have the recurrence relation:

$$
(n+1)^{2} b_{n+1}+(2 n+1) b_{n}+b_{n-1}=0 \quad \text { or } \quad b_{n+1}=-\frac{(2 n+1) b_{n}+b_{n-1}}{(n+1)^{2}}
$$

Thus, $b_{3}=0, \ldots, b_{n}=0$, for all n. Hence, $y_{2}(x)=y_{1}(x) \ln (x)=a_{0} e^{-x} \ln (x)$, so the general solution is:

$$
y(x)=a_{0} e^{-x}+b_{0} e^{-x} \ln (x)
$$

b. (6pt) Consider the linear ODE, $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$. If $y_{1}(x)$ is one solution, then one attempts a solution of the form $y(x)=v(x) y_{1}(x)$ to find the second solution. We saw that $v(x)$ satisfies:

$$
v(x)=\int \frac{e^{-\int p(x) \cdot d x}}{\left[y_{1}(x)\right]^{2}} d x
$$

Since $y_{1}(x)=e^{-x}$ is one solution to (2), we have:

$$
y_{2}(x)=e^{-x} \int \frac{e^{-\int\left(\frac{1}{x}+2\right) d x}}{e^{-2 x}} d x=e^{-x} \int \frac{x^{-1} e^{-2 x}}{e^{-2 x}} d x=e^{-x} \ln |x|
$$

Alternately, let $y=e^{-x} v$. so $y^{\prime}=e^{-x}\left(v^{\prime}-v\right)$ and $y^{\prime \prime}=e^{-x}\left(v^{\prime \prime}-2 v^{\prime}+v\right)$. When this is inserted into (2), we have:

$$
x e^{-x}\left(v^{\prime \prime}-2 v^{\prime}+v\right)+(1+2 x) e^{-x}\left(v^{\prime}-v\right)+(1+x) e^{-x} v=0
$$

or

$$
e^{-x}\left(x v^{\prime \prime}+v^{\prime}\right)=0
$$

Let $w=v^{\prime}$, then

$$
w^{\prime}=-\frac{w}{x} \quad \text { or } \quad \ln (w)=-\ln (x)+c \quad \text { or } \quad w(x)=v^{\prime}(x)=\frac{c_{1}}{x} .
$$

Integrating this gives:

$$
v(x)=c_{1} \ln (x)+c_{2}, \quad \text { so } \quad y(x)=\left(c_{1} \ln (x)+c_{2}\right) e^{-x}
$$

The solutions match with the solutions from Part a.
6. (10pt) Consider the singular second order ODE given by:

$$
\begin{equation*}
x y^{\prime \prime}-\left(2+x^{2}\right) y^{\prime}+x y=0 \tag{3}
\end{equation*}
$$

With $P(x)=x, Q(x)=-2-x^{2}$, and $R(x)=x$, we see that

$$
\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{-2 x-x^{3}}{x}=-2=p_{0}, \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{x^{2} R(x)}{P(x)}=\lim _{x \rightarrow 0} \frac{x^{3}}{x}=0=q_{0}
$$

Since these are both finite, it follows that the functions are analytic, which implies that $x=0$ is a regular singular point. Thus, we may attempt solutions of the form:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}, \quad y^{\prime}=\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1}, \quad y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-2}
$$

These are substituted into (3), giving:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-1}-2 \sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1} \\
&-\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r+1}+\sum_{n=0}^{\infty} a_{n} x^{n+r+1}=0,
\end{aligned}
$$

so matching terms and shifting indices gives:

$$
\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-3) x^{n+r-1}-\sum_{n=2}^{\infty} a_{n-2}(n+r-3) x^{n+r-1}=0
$$

It follows that for $n=0, a_{0} r(r-3)=0$, which give the indicial equation with roots, $r_{1}=3$ and $r_{2}=0$. For $n=1$, we have $a_{1}(r+1)(r-2)=0$, which implies $a_{1}=0$ for r_{1}. The recurrence relation becomes:

$$
a_{n}(r)=\frac{a_{n-2}(r)}{n+r}, \quad n \geq 2 .
$$

With the first root, $r_{1}=3$, we see that all odd coefficients are $a_{1}=a_{3}=\cdots=a_{2 k+1}=0$, and the recurrence relation is written:

$$
a_{n}=\frac{a_{n-2}}{n+3}, \quad n \geq 2
$$

It follows that

$$
\begin{aligned}
a_{2} & =\frac{a_{0}}{5} \\
a_{4} & =\frac{a_{2}}{7}=\frac{a_{0}}{5 \cdot 7}, \\
a_{6} & =\frac{a_{4}}{9}=\frac{a_{0}}{5 \cdot 7 \cdot 9}, \\
\vdots & \vdots \\
a_{2 k} & =\frac{a_{0}}{5 \cdot 7 \cdot \cdots \cdot(2 k+3)} .
\end{aligned}
$$

Thus, the first solution to (3) is:

$$
y_{1}(x)=a_{0} x^{3}\left(1+\frac{x^{2}}{5}+\frac{x^{4}}{35}+\frac{x^{6}}{315}+\ldots\right) .
$$

Since $r_{1}-r_{2}=3$, the second solution has the form:

$$
y_{2}(x)=k y_{1}(x) \ln (x)+x^{0} \sum_{n=0}^{\infty} b_{n} x^{n},
$$

so
$y_{2}^{\prime}=k\left(y_{1}^{\prime} \ln (x)+\frac{y_{1}}{x}\right)+\sum_{n=1}^{\infty} n b_{n} x^{n-1}, \quad y_{2}^{\prime \prime}=k\left(y_{1}^{\prime \prime} \ln (x)+2 \frac{y_{1}^{\prime}}{x}-\frac{y_{1}}{x^{2}}\right)+\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n-2}$.

Substituting this into (3) gives:

$$
\begin{aligned}
x\left(k\left(y_{1}^{\prime \prime} \ln (x)+2 \frac{y_{1}^{\prime}}{x}-\frac{y_{1}}{x^{2}}\right)+\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n-2}\right)- \\
\left(2+x^{2}\right)\left(k\left(y_{1}^{\prime} \ln (x)+\frac{y_{1}}{x}\right)+\sum_{n=1}^{\infty} n b_{n} x^{n-1}\right)+ \\
x\left(k y_{1}(x) \ln (x)+\sum_{n=0}^{\infty} b_{n} x^{n}\right)=0 .
\end{aligned}
$$

This simplifies to:

$$
-2 b_{1}+\sum_{n=1}^{\infty}\left[(n+1)(n-2) b_{n+1}-(n-2) b_{n-1}\right] x^{n}=k\left(\frac{3}{x}+x\right) y_{1}-2 k y_{1}^{\prime} .
$$

Expanding the left hand side, we see the x^{2} term is zero and we have:

$$
-2 b_{1}+\left(-2 b_{2}+b_{0}\right) x+\left(4 b_{4}-b_{2}\right) x^{3}+\left(15 b_{5}-2 b_{3}\right) x^{4}+\left(18 b_{6}-3 b_{4}\right) x^{5}+\ldots
$$

In $y_{1}(x)$, we let $a_{0}=1$, then expanding the right hand side gives:

$$
\begin{array}{r}
k\left(\frac{3}{x}+x\right)\left(x^{3}+\frac{x^{5}}{5}+\frac{x^{7}}{35}+\frac{x^{9}}{315}+\ldots\right)-2 k\left(3 x^{2}+x^{4}+\frac{x^{6}}{5}+\frac{x^{8}}{35}+\ldots\right) \\
=k\left(-3 x^{2}-\frac{2}{5} x^{4}-\frac{4}{35} x^{6}-\frac{6}{315} x^{8}-\ldots\right)
\end{array}
$$

The leading term on the rhs is $-3 k x^{2}$, which must be zero as there are no x^{2} terms on the lhs. It follows that $k=0$. Alternately, with $r_{1}-r_{2}=3$, we examine:

$$
k=\lim _{r \rightarrow r_{2}}\left(r-r_{2}\right) a_{3}(r)=0,
$$

as $a_{3}=0$. The leading term on the lhs must satisfy $b_{1}=0$. This simplifies our series expression to:

$$
\sum_{n=1}^{\infty}\left[(n+1)(n-2) b_{n+1}-(n-2) b_{n-1}\right] x^{n}=0
$$

which has the recurrence relation:

$$
b_{n+1}=\frac{b_{n-1}}{n+1} .
$$

With b_{0} arbitrary and $b_{1}=b_{3}=b_{5}=\cdots=b_{2 k+1}=0$, we obtain the even coefficients:

$$
\begin{aligned}
b_{2} & =\frac{b_{0}}{2}=\frac{b_{0}}{1!2^{1}} \\
b_{4} & =\frac{b_{2}}{4}=\frac{b_{0}}{2!\cdot 2^{2}}=, \\
b_{6} & =\frac{b_{4}}{6}=\frac{b_{0}}{3!\cdot 2^{3}} \\
\vdots & \vdots \\
b_{2 k} & =\frac{b_{0}}{k!\cdot 2^{k}} .
\end{aligned}
$$

Thus, the second solution is

$$
y_{2}(x)=b_{0} \sum_{m=0}^{\infty} \frac{x^{2 m}}{2^{m} \cdot m!}=b_{0} \sum_{m=0}^{\infty} \frac{\left(\frac{x^{2}}{2}\right)^{m}}{m!}=b_{0} e^{\frac{x^{2}}{2}} .
$$

b. (6 pt) To verify that $y_{1}(x)=e^{\frac{x^{2}}{2}}$ is one solution, we compute

$$
y_{1}^{\prime}(x)=x e^{\frac{x^{2}}{2}} \quad \text { and } \quad y_{1}^{\prime \prime}(x)=e^{\frac{x^{2}}{2}}+x^{2} e^{\frac{x^{2}}{2}}=\left(1+x^{2}\right) e^{\frac{x^{2}}{2}} .
$$

Substituting back into the ODE:

$$
x\left(1+x^{2}\right) e^{\frac{x^{2}}{2}}-\left(2+x^{2}\right) x e^{\frac{x^{2}}{2}}+x e^{\frac{x^{2}}{2}}=0,
$$

which is clearly satisfied, so $y_{1}(x)=e^{\frac{x^{2}}{2}}$ is a solution to (3). This matches the result of $y_{2}(x)$ from Part a.
With $p(x)=-\frac{\left(2+x^{2}\right)}{x}=-\frac{2}{x}-x$ and using the Reduction of Order method to obtain the second solution, we obtain:

$$
\begin{aligned}
y_{2}(x) & =y_{1}(x) \int \frac{e^{-\int p(x) d x}}{\left(y_{1}(x)\right)^{2}} d x, \\
& =e^{\frac{x^{2}}{2}} \int \frac{e^{\int\left(\frac{2}{x}+x\right)}}{e^{x^{2}}} d x, \\
& =e^{\frac{x^{2}}{2}} \int \frac{x^{2} e^{\frac{x^{2}}{2}}}{e^{x^{2}}} d x .
\end{aligned}
$$

It follows that the second solution is:

$$
y_{2}(x)=e^{\frac{x^{2}}{2}} \int x^{2} e^{-\frac{x^{2}}{2}} d x .
$$

