1. (10pts) Consider the differential equation

$$
\varepsilon \frac{d y}{d t}+y=f(t / \varepsilon), \quad y(0)=y_{0}, \quad t \geq 0
$$

where $f(t)$ satisfies $f(t+T)=f(t)$, and on $[0, T], f(t)$ is defined to be

$$
f(t)= \begin{cases}1 & 0 \leq t<T / 2 \\ 0 & T / 2 \leq t<T\end{cases}
$$

We rescale this problem by letting $\xi=\frac{t}{\varepsilon}$. It follows that $\varepsilon \frac{d y}{d t}=\varepsilon \frac{d y}{d \xi} \frac{d \xi}{d t}=\frac{d y}{d \xi}$, so the scaled ODE becomes:

$$
\begin{equation*}
\frac{d y}{d \xi}+y=f(\xi), \quad y(0)=y_{0} . \tag{1}
\end{equation*}
$$

This has the integrating factor $\mu(\xi)=e^{\xi}$, so

$$
\frac{d}{d \xi}\left[e^{\xi} y(\xi)\right]=e^{\xi} f(\xi), \quad \text { or } \quad e^{\xi} y(\xi)-y_{0}=\int_{0}^{\xi} e^{s} f(s) d s
$$

Thus, the solution is given by:

$$
y(\xi)=e^{-\xi}\left(y_{0}+\int_{0}^{\xi} e^{s} f(s) d s\right),
$$

which is readily integrated. However, since $f(\xi)$ is discontinuous (series of step functions), this problem is most amenable to solution by Laplace transforms. Let $Y(s)=\mathcal{L}[y(\xi)]$, then transforming (1) gives:

$$
s Y(s)-y_{0}+Y(s)=\mathcal{L}[f(\xi)] \quad \text { or } \quad(s+1) Y(s)=y_{0}+\mathcal{L}[f(\xi)] .
$$

A theorem for periodic functions with period T states that

$$
\begin{aligned}
\mathcal{L}[f(\xi)] & =\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s \xi} f(\xi) d \xi=\frac{1}{1-e^{-s T}} \int_{0}^{T / 2} e^{-s \xi} d \xi \\
& =\frac{1}{1-e^{-s T}} \cdot \frac{1-e^{-s T / 2}}{s}=\frac{1}{s\left(1+e^{-s T / 2}\right)} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
Y(s) & =\frac{y_{0}}{s+1}+\frac{1}{s(s+1)} \cdot \frac{1}{1+e^{-s T / 2}}=\frac{y_{0}}{s+1}+\frac{1}{1+e^{-s T / 2}}\left(\frac{1}{s}-\frac{1}{s+1}\right), \\
& =\frac{y_{0}}{s+1}+\sum_{n=0}^{\infty}(-1)^{n} e^{-s n T / 2}\left(\frac{1}{s}-\frac{1}{s+1}\right) .
\end{aligned}
$$

One takes the inverse Laplace transform and obtains the solution:

$$
y(\xi)=y_{0} e^{-\xi}+\sum_{n=0}^{\infty}(-1)^{n} u_{n T / 2}(\xi)\left(1-e^{-(\xi-n T / 2)}\right) .
$$

Thus, the original ODE has the solution:

$$
y(t)=y_{0} e^{-t / \varepsilon}+\sum_{n=0}^{\infty}(-1)^{n} u_{n T / 2}(t / \varepsilon)\left(1-e^{-(t / \varepsilon-n T / 2)}\right) .
$$

This previous expression readily shows that the solution $y(t)$ is not T-periodic, as $y(t) \neq y(t+T)$ for all y_{0}. However there exists a specific $y_{0} \approx 0.377541$ that gives a periodic solution. This is shown with the Method of Averaging and a fixed point theorem.

2. (10pts) Show that if $\|A\|<1$, then one has that $(I-A)^{-1}$ exists and

$$
\left\|(I-A)^{-1}\right\| \leq \frac{1}{1-\|A\|}
$$

Proof: We prove by contradiction that $(I-A)^{-1}$ exists. If $(I-A)$ is singular, then there exists a vector x such that $(I-A) x=0$ or $x=A x$. Taking norms we have

$$
\|x\|=\|A x\| \leq\|A\|\|x\| \quad \text { or } \quad\|A\| \geq 1, \quad \text { as } \quad\|x\| \neq 0,
$$

which is a contradiction and $(I-A)^{-1}$ exists.
Define

$$
\begin{aligned}
\tilde{A}_{N} & =(I-A) \sum_{j=0}^{N} A^{j}-I=\sum_{j=0}^{N} A^{j}-\sum_{j=0}^{N} A^{j+1}-I, \\
& =\sum_{j=0}^{N} A^{j}-\sum_{j=0}^{N+1} A^{j}=-A^{N+1}
\end{aligned}
$$

It follows that

$$
\left\|\tilde{A}_{N}\right\|=\left\|-A^{N+1}\right\|=\left\|A^{N+1}\right\| \leq\|A\|^{N+1} .
$$

Since $\|A\|<1$, we have $\|A\|^{N+1} \rightarrow 0$ as $N \rightarrow \infty$, which implies that $\left\|\tilde{A}_{N}\right\|=0$ as $N \rightarrow \infty$. It follows that

$$
\lim _{N \rightarrow \infty} \tilde{A}_{N}=0, \quad \text { so } \quad I=(I-A) \sum_{j=0}^{\infty} A^{j}
$$

This is equivalent to

$$
(I-A)^{-1}=\sum_{j=0}^{\infty} A^{j}
$$

Taking norms and using the triangle inequality, we have

$$
\left\|(I-A)^{-1}\right\|=\left\|\sum_{j=0}^{\infty} A^{j}\right\| \leq \sum_{j=0}^{\infty}\left\|A^{j}\right\| \leq \sum_{j=0}^{\infty}\|A\|^{j} .
$$

With $\|A\|<1$, we have a geometric series, so

$$
\left\|(I-A)^{-1}\right\| \leq \sum_{j=0}^{\infty}\|A\|^{j}=\frac{1}{1-\|A\|} . \quad \text { q.e.d. }
$$

3. (15pts) This problem examines the system of differential equations given by:

$$
\dot{\mathbf{x}}=\left(\begin{array}{cc}
-3 & -1 \\
3-\alpha & -3
\end{array}\right) \mathbf{x}
$$

where α is a real parameter.
a. The characteristic equation satisfies:

$$
\left|\begin{array}{cc}
-3-\lambda & -1 \\
3-\alpha & -3-\lambda
\end{array}\right|=(\lambda+3)^{2}+3-\alpha=0 .
$$

It follows that $\lambda=-3 \pm \sqrt{\alpha-3}$.
b and c . There are two critical values of α, where the qualitative nature of the phase portrait changes. When $\alpha=3$, there is a change in the eigenvalues between being real and complex. The other critical value is when $\alpha=12$, where one of the eigenvalues becomes positive.

For $\alpha<3$, the eigenvalues are complex with the real part less than zero, which results in a stable spiral. Below left shows the phase portrait for this region.

For $\alpha=3$, the eigenvalues, $\lambda=-3$, are repeated roots, which results in an improper stable node. Above right shows the phase portrait for this value of α.

For $3<\alpha<12$, the eigenvalues are distinct real and less than zero, $\lambda_{1}<\lambda_{2}<0$, which results in a stable node. Below left shows the phase portrait for this region.

For $\alpha=12$, the eigenvalues, $\lambda=-6,0$, are distinct roots. The eigenvalue, $\lambda_{1}=0$, results in a line of equilibria, $x_{2}=-3 x_{1}$, while $\lambda_{2}=-6$ results in all solutions approaching (stable) these equilibria. Above right shows the phase portrait for this value of α.

For $\alpha>12$, the eigenvalues are distinct real and opposite signs, $\lambda_{1}<0<\lambda_{2}$, which results in a saddle node. Below shows the phase portrait for this region.

4. (10pts) a. Consider the linear system of ODEs given by

$$
\dot{\mathbf{x}}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -3 & 0 \\
-9 & 0 & -6
\end{array}\right) \mathbf{x}=A \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0} .
$$

The characteristic equation satisfies $\operatorname{det}|A-\lambda I|=0$:

$$
\begin{aligned}
\left|\begin{array}{ccc}
-\lambda & 0 & 1 \\
0 & -3-\lambda & 0 \\
-9 & 0 & -6-\lambda
\end{array}\right| & =-\lambda\left|\begin{array}{cc}
-3-\lambda & 0 \\
0 & -6-\lambda
\end{array}\right|+1 \cdot\left|\begin{array}{cc}
0 & -3-\lambda \\
-9 & 0
\end{array}\right| \\
& =-\lambda(\lambda+3)(\lambda+6)-9(\lambda+3)=-(\lambda+3)^{3}=0 .
\end{aligned}
$$

It follows that $\lambda=-3$ is an eigenvalue with algebraic multiplicity $\mathbf{3}$. We examine $A+3 I$ and can see that this is a rank 1 matrix, so the $\operatorname{ker}(A+3 I)$ is two-dimensional, which implies the geometric multiplicity of $\lambda=-3$ is $\mathbf{2}$. (Also, note that $(A+3 I)^{2}=0$, giving the same geometric multiplicity.) It is easy to see that

$$
(A+3 I) \mathbf{v}=\left(\begin{array}{ccc}
3 & 0 & 1 \\
0 & 0 & 0 \\
-9 & 0 & -3
\end{array}\right) \mathbf{v}=0 \quad \text { has eigenvectors } \quad \mathbf{v}=\left(\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

If we take $\mathbf{v}_{2}=[1,0,0]^{T}$ to be in the generalized eigenspace of A, then the Jordan chain process gives:

$$
(A+3 I) \mathbf{v}_{2}=\left(\begin{array}{ccc}
3 & 0 & 1 \\
0 & 0 & 0 \\
-9 & 0 & -3
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\mathbf{v}_{1}, \quad \text { which gives } \quad \mathbf{v}_{1}=\left(\begin{array}{c}
3 \\
0 \\
-9
\end{array}\right)
$$

With these eigenvectors, we obtain a transition matrix and with the help of Maple find its inverse:

$$
P=\left(\begin{array}{ccc}
3 & 1 & 0 \\
0 & 0 & 1 \\
-9 & 0 & 0
\end{array}\right) \quad \text { and } \quad P^{-1}=\left(\begin{array}{ccc}
0 & 0 & -\frac{1}{9} \\
1 & 0 & \frac{1}{3} \\
0 & 1 & 0
\end{array}\right)
$$

Subsequently, we obtain the Jordan canonical form:

$$
J=P^{-1} A P=\left(\begin{array}{ccc}
-3 & 1 & 0 \\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right)
$$

A fundamental solution satisfies:

$$
\boldsymbol{\Psi}(t)=e^{J t}=\left(\begin{array}{ccc}
e^{-3 t} & t e^{-3 t} & 0 \\
0 & e^{-3 t} & 0 \\
0 & 0 & e^{-3 t}
\end{array}\right)=e^{-3 t}\left(\begin{array}{ccc}
1 & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

b. Now consider the linear system of ODEs given by

$$
\dot{\mathbf{x}}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 16 & -8 & 4
\end{array}\right) \mathbf{x}=A \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

This is a Vandermonde matrix, and with $y=x_{1}, \dot{x}_{1}=x_{2}, \dot{x}_{2}=x_{3}$, and $\dot{x}_{3}=x_{4}$, we obtain the $4^{\text {th }}$ order scalar ODE:

$$
y^{\prime \prime \prime \prime}-4 y^{\prime \prime \prime}+8 y^{\prime \prime}-16 y^{\prime}+16=0
$$

which has the characteristic equation:

$$
\lambda^{4}-4 \lambda^{3}+8 \lambda^{2}-16 \lambda+16=(\lambda-2)^{2}\left(\lambda^{2}+4\right)=0 .
$$

It follows that the eigenvalues are $\lambda= \pm 2 i, 2,2$. For the Vandermonde matrix, the eigenvalue $\lambda_{1}=2$ has algebraic multiplicity of $\mathbf{2}$, but geometric multiplicity of $\mathbf{1}$ with $\mathbf{v}_{1}=[1,2,4,8]^{T}$. To find an eigenvector in the higher dimensional null space, we solve $(A-2 I) \mathbf{v}_{2}=\mathbf{v}_{1}$ or:

$$
\left(\begin{array}{cccc}
-2 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & -2 & 1 \\
-16 & 16 & -8 & 2
\end{array}\right) \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
2 \\
4 \\
8
\end{array}\right), \quad \text { so } \quad \mathbf{v}_{2}=\left(\begin{array}{c}
0 \\
1 \\
4 \\
12
\end{array}\right)+s\left(\begin{array}{l}
1 \\
2 \\
4 \\
8
\end{array}\right) .
$$

Again because this is a Vandermonde matrix, the eigenvalue $\lambda_{3}=2 i$ has the associated eigenvector $\mathbf{v}_{3}=[1,2 i,-4,-8 i]^{T}$ (with $\lambda_{4}=-2 i$ having associated eigenvector $\mathbf{v}_{4}=\overline{\mathbf{v}_{3}}$). To obtain the real Jordan canonical form, we write $\mathbf{v}_{3}=\mathbf{u}+i \mathbf{w}$, so

$$
\mathbf{u}=\left(\begin{array}{c}
1 \\
0 \\
-4 \\
0
\end{array}\right), \quad \text { and } \quad \mathbf{w}=\left(\begin{array}{c}
0 \\
2 \\
0 \\
-8
\end{array}\right)
$$

It follows that an appropriate transition matrix and its inverse (from Maple) are:

$$
P=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
2 & 1 & 0 & 2 \\
4 & 4 & -4 & 0 \\
8 & 12 & 0 & -8
\end{array}\right) \quad \text { and } \quad P^{-1}=\left(\begin{array}{cccc}
1 & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{16} \\
-1 & \frac{1}{2} & -\frac{1}{4} & \frac{1}{8} \\
0 & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{16} \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{8} & 0
\end{array}\right)
$$

It follows that the real Jordan canonical form is given by:

$$
J=P^{-1} A P=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & -2 & 0
\end{array}\right)
$$

A fundamental solution satisfies:

$$
\boldsymbol{\Psi}(t)=e^{J t}=\left(\begin{array}{cccc}
e^{2 t} & t e^{2 t} & 0 & 0 \\
0 & e^{2 t} & 0 & 0 \\
0 & 0 & \cos (2 t) & \sin (2 t) \\
0 & 0 & -\sin (2 t) & \cos (2 t)
\end{array}\right)
$$

5. a. For the nonhomogeneous system of linear ODEs:

$$
\dot{\mathbf{x}}=A \mathbf{x}+g(t)=\left(\begin{array}{cccc}
-\alpha & 1 & 0 & 0 \\
0 & -\alpha & 0 & 0 \\
0 & 0 & 0 & \beta \\
0 & 0 & -\beta & 0
\end{array}\right) \mathbf{x}+\left(\begin{array}{c}
e^{-\gamma t} \\
0 \\
0 \\
\sin (\omega t)
\end{array}\right), \quad \mathbf{x}(0)=\left(\begin{array}{c}
1 \\
2 \\
4 \\
-2
\end{array}\right)
$$

with $\alpha, \beta, \gamma, \omega>0$, we see that the matrix, A, given below is in real Jordan canonical form:

$$
A=\left(\begin{array}{cccc}
-\alpha & 1 & 0 & 0 \\
0 & -\alpha & 0 & 0 \\
0 & 0 & 0 & \beta \\
0 & 0 & -\beta & 0
\end{array}\right)
$$

Thus, the fundamental matrix solution of the homogeneous part of the ODE is given by:

$$
\Phi(t)=e^{A t}=\left(\begin{array}{cccc}
e^{-\alpha t} & t e^{-\alpha t} & 0 & 0 \\
0 & e^{-\alpha t} & 0 & 0 \\
0 & 0 & \cos (\beta t) & \sin (\beta t) \\
0 & 0 & -\sin (\beta t) & \cos (\beta t)
\end{array}\right)
$$

with its inverse

$$
\Phi^{-1}(t)=e^{-A t}=\left(\begin{array}{cccc}
e^{\alpha t} & -t e^{\alpha t} & 0 & 0 \\
0 & e^{\alpha t} & 0 & 0 \\
0 & 0 & \cos (\beta t) & -\sin (\beta t) \\
0 & 0 & \sin (\beta t) & \cos (\beta t)
\end{array}\right) .
$$

The general solution satisfies:

$$
\mathbf{x}(t)=e^{A t} \mathbf{x}(0)+e^{A t} \int_{0}^{t} e^{-A s} g(s) d s
$$

so the particular solution is given by:

$$
\begin{aligned}
\mathbf{x}_{p}(t) & =e^{A t} \int_{0}^{t} e^{-A s} g(s) d s \\
& =e^{A t} \int_{0}^{t}\left(\begin{array}{cccc}
e^{\alpha s} & -s e^{\alpha s} & 0 & 0 \\
0 & e^{\alpha s} & 0 & 0 \\
0 & 0 & \cos (\beta s) & -\sin (\beta s) \\
0 & 0 & \sin (\beta s) & \cos (\beta s)
\end{array}\right)\left(\begin{array}{c}
e^{-\gamma s} \\
0 \\
0 \\
\sin (\omega s)
\end{array}\right) d s \\
& =e^{A t} \int_{0}^{t}\left(\begin{array}{c}
e^{(\alpha-\gamma) s} \\
0 \\
-\sin (\beta s) \sin (\omega s) \\
\cos (\beta s) \sin (\omega s)
\end{array}\right) d s
\end{aligned}
$$

We examine the $\mathbf{3}$ integrals above (with Maple), considering the special cases where $\alpha=\gamma$, and $\beta=\omega$.

$$
\begin{aligned}
\int_{0}^{t} e^{(\alpha-\gamma) s} d s & =\left\{\begin{array}{cc}
\frac{1}{\alpha-\gamma}\left(e^{(\alpha-\gamma) t}-1\right), & \alpha \neq \gamma, \\
t, & \alpha=\gamma
\end{array}\right. \\
-\int_{0}^{t} \sin (\beta s) \sin (\omega s) d s & =\left\{\begin{array}{cc}
\frac{1}{2\left(\beta^{2}-\omega^{2}\right)}((\beta-\omega) \sin ((\beta+\omega) t)-(\beta+\omega) \sin ((\beta-\omega) t)), & \beta \neq \omega, \\
\frac{\sin (2 \beta t)}{4 \beta}-\frac{t}{2} & \beta=\omega
\end{array}\right. \\
\int_{0}^{t} \cos (\beta s) \sin (\omega s) d s & =\left\{\begin{array}{cc}
\frac{1}{2\left(\beta^{2}-\omega^{2}\right)}((\beta+\omega) \cos ((\beta-\omega) t)-(\beta-\omega) \cos ((\beta+\omega) t)-2 \omega), & \beta \neq \omega, \\
\frac{\sin ^{2}(\beta t)}{2 \beta} & \beta=\omega
\end{array}\right.
\end{aligned}
$$

Technically, there are 4 cases, but since the system is decoupled, the solution will look at the generic case when $\alpha \neq \gamma$ and $\beta \neq \omega$, then combine the cases where $\alpha=\gamma$ and $\beta=\omega$ and understand there are permutations of these solutions. First we write the generic case when $\alpha \neq \gamma$ and $\beta \neq \omega$. The solution of the IVP is
$\mathbf{x}(t)=\left(\begin{array}{c}(1+2 t) e^{-\alpha t}+\frac{\left(e^{-\gamma t}-e^{-\alpha t}\right)}{\alpha-\gamma} \\ 2 e^{-\alpha t} \\ 4 \cos (\beta t)-2 \sin (\beta t)+\frac{\cos (\beta t)}{2}\left(\frac{\sin ((\beta+\omega) t)}{\beta+\omega}-\frac{\sin ((\beta-\omega) t)}{\beta-\omega}\right)+\frac{\sin (\beta t)}{2}\left(\frac{\cos ((\beta-\omega) t)}{\beta-\omega}-\frac{\cos ((\beta+\omega) t)}{\beta+\omega}\right) \\ -4 \sin (\beta t)-2 \cos (\beta t)-\frac{\sin (\beta t)}{2}\left(\frac{\sin ((\beta+\omega) t)}{\beta+\omega}-\frac{\sin ((\beta-\omega) t)}{\beta-\omega}\right)+\frac{\cos (\beta t)}{2}\left(\frac{\cos ((\beta-\omega) t)}{\beta-\omega}-\frac{\cos ((\beta+\omega) t)}{\beta+\omega}\right)\end{array}\right)$.
With Maple, this is simplified:

$$
\mathbf{x}(t)=\left(\begin{array}{c}
(1+2 t) e^{-\alpha t}+\frac{\left(e^{-\gamma t}-e^{-\alpha t}\right)}{\alpha-\gamma} \\
2 e^{-\alpha t} \\
4 \cos (\beta t)-2 \sin (\beta t)+\frac{\beta \sin (\omega t)-\omega \sin (\beta t)}{\beta^{2} \omega^{2}} \\
-4 \sin (\beta t)-2 \cos (\beta t)+\frac{\omega \cos (\omega t)-\omega \cos (\beta t)}{\beta^{2}-\omega^{2}}
\end{array}\right) .
$$

We combine the two special cases, $\alpha=\gamma$ and $\beta=\omega$, where the first two elements are for $\alpha=\gamma$ and the last two rows are for $\beta=\omega$. The resulting solution to the IVP is

$$
\mathbf{x}(t)=\left(\begin{array}{c}
(1+3 t) e^{-\alpha t} \\
2 e^{-\alpha t} \\
4 \cos (\beta t)-2 \sin (\beta t)+\frac{\cos (\beta t) \sin (2 \beta t)}{4 \beta}-\frac{t \cos (\beta t)}{2}+\frac{\sin ^{3}(\beta t)}{2 \beta} \\
-4 \sin (\beta t)-2 \cos (\beta t)-\frac{\sin (\beta t) \sin (2 \beta t)}{4 \beta}+\frac{t \sin (\beta t)}{2}+\frac{\cos (\beta t) \sin ^{2}(\beta t)}{2 \beta}
\end{array}\right) .
$$

With Maple, this is simplified:

$$
\mathbf{x}(t)=\left(\begin{array}{c}
(1+3 t) e^{-\alpha t} \\
2 e^{-\alpha t} \\
4 \cos (\beta t)-2 \sin (\beta t)+\frac{\sin (\beta t)-\beta t \cos (\beta t)}{2 \beta} \\
-4 \sin (\beta t)-2 \cos (\beta t)+\frac{t \sin (\beta t)}{2}
\end{array}\right) .
$$

It is clear that when $\beta=\omega$, the solution becomes unbounded from the resonance (t term).
b. The homogeneous part of the non-constant, nonhomogeneous system of linear ODEs with $t>0$:

$$
\dot{\mathbf{y}}=\left(\begin{array}{cc}
0 & 1 \\
\frac{3}{t^{2}} & \frac{1}{t}
\end{array}\right) \mathbf{y}+\binom{-16 t^{2}}{8 t}, \quad \mathbf{y}(1)=\binom{4}{-2} .
$$

can be readily seen to satisfy the Cauchy-Euler equation:

$$
\ddot{y}-\frac{1}{t} \dot{y}-\frac{3}{t^{2}} y=0,
$$

which has the auxiliary equation, $r(r-1)-r-3=r^{2}-2 r-3=(r+1)(r-3)=0$. This gives the homogeneous solution:

$$
y_{h}(t)=y_{1}(t)=c_{1} t^{-1}+c_{2} t^{3}
$$

With $y_{2}=\dot{y}_{1}$, we can write the fundamental solution and its inverse:

$$
\boldsymbol{\Phi}(t)=\left(\begin{array}{cc}
t^{-1} & t^{3} \\
-t^{-2} & 3 t^{2}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-1}(t)=\left(\begin{array}{cc}
\frac{3 t}{4} & -\frac{t^{2}}{4} \\
\frac{1}{4 t^{3}} & \frac{1}{4 t^{2}}
\end{array}\right)
$$

using $\operatorname{det}|\boldsymbol{\Phi}|=4 t$. The variation of parameters method can be used to find the solution:

$$
\begin{aligned}
\mathbf{y}(t) & =\boldsymbol{\Phi}(t) \boldsymbol{\Phi}^{-1}(1) \mathbf{y}(1)+\boldsymbol{\Phi}(t) \int_{1}^{t} \boldsymbol{\Phi}^{-1}(s) g(s) d s, \\
& =\left(\begin{array}{cc}
\frac{1}{t} & t^{3} \\
-\frac{1}{t^{2}} & 3 t^{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{3}{4} & -\frac{1}{4} \\
\frac{1}{4} & \frac{1}{4}
\end{array}\right)\binom{4}{-2}+\left(\begin{array}{cc}
\frac{1}{t} & t^{3} \\
-\frac{1}{t^{2}} & 3 t^{2}
\end{array}\right) \int_{1}^{t}\left(\begin{array}{cc}
\frac{3 s}{4} & -\frac{s^{2}}{4} \\
\frac{1}{4 s^{3}} & \frac{1}{4 s^{2}}
\end{array}\right)\binom{-16 s^{2}}{8 s} d s, \\
& =\left(\begin{array}{cc}
\frac{1}{t} & t^{3} \\
-\frac{1}{t^{2}} & 3 t^{2}
\end{array}\right)\binom{\frac{7}{2}}{\frac{1}{2}}+\left(\begin{array}{cc}
\frac{1}{t} & t^{3} \\
-\frac{1}{t^{2}} & 3 t^{2}
\end{array}\right) \int_{1}^{t}\binom{-14 s^{3}}{-\frac{2}{s}} d s \\
& =\binom{\frac{7}{2 t}+\frac{t^{3}}{2}}{-\frac{7}{2 t^{2}}+\frac{3 t^{2}}{2}}+\left.\left(\begin{array}{cc}
\frac{1}{t} & t^{3} \\
-\frac{1}{t^{2}} & 3 t^{2}
\end{array}\right)\binom{-\frac{7 s^{4}}{2}}{-2 \ln (s)}\right|_{1} ^{t} \\
& =\binom{\frac{7}{2 t}+\frac{t^{3}}{2}}{-\frac{7}{2 t^{2}}+\frac{3 t^{2}}{2}}+\left(\begin{array}{cc}
\frac{1}{t} & t^{3} \\
-\frac{1}{t^{2}} & 3 t^{2}
\end{array}\right)\binom{-\frac{7}{2}\left(t^{4}-1\right)}{-2 \ln (t)} \\
& =\binom{\frac{7}{t}-3 t^{3}-2 t^{3} \ln (t)}{5 t^{2}-\frac{7}{t^{2}}-6 t^{2} \ln (t)}
\end{aligned}
$$

