Math 537 －Ordinary Differential Equations
 Lecture Notes－Singular Perturbations

> Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu

Fall 2021

Outline

(1) Singular Algebraic Equation

- Quadratic Equation
- Complex Algebraic Equation
(2) Differential Equations
- Boundary Value Problems
(3) Boundary Layers
- BVP Examples
- BVP Example 1
- Example 1: Outer Solution
- Example 1: Inner Solution
- Example 1: Matching
- BVP Example 2
- General Singular Perturbation
- IVP Example
- Enzyme Kinetics
- Enzyme Kinetics-Singular Perturbation

Algebraic Equation

Quadratic Equation: Consider the equation:

$$
\varepsilon x^{2}+2 x+1=0, \quad 0<\varepsilon \ll 1 .
$$

The unperturbed equation satisfies:

$$
2 x+1=0,
$$

which has the solution $x=-\frac{1}{2}$.
Note that the unperturbed equation is linear, while the original problem is quadratic.

Consider a regular perturbation for solving the original quadratic problem:

$$
x=x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\ldots
$$

This inserted into the original quadratic equation gives:

$$
\varepsilon\left(x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\ldots\right)^{2}+2\left(x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\ldots\right)+1=0 .
$$

Algebraic Equation

Regular Perturbation: The ε powers give the following sequence of equations:

$$
\begin{array}{rr}
\varepsilon^{0}: & 2 x_{0}+1=0, \\
\varepsilon^{1}: & x_{0}^{2}+2 x_{1}=0, \\
\varepsilon^{2}: & 2 x_{1} x_{0}+2 x_{2}=0,
\end{array}
$$

Sequentially solving these equations give:

$$
x_{0}=-\frac{1}{2}, \quad x_{1}=-\frac{1}{8}, \quad x_{2}=-\frac{1}{16},
$$

which results in the regular perturbation solution:

$$
x=-\frac{1}{2}-\frac{1}{8} \varepsilon-\frac{1}{16} \varepsilon^{2}-\ldots
$$

For the case $\varepsilon=0.1$, we solve $0.1 x^{2}+2 x+1=0$, which has the solutions:

$$
x=\frac{-1 \pm \sqrt{0.9}}{0.1}=-0.513167,-19.48683
$$

The approximation gives

$$
x=-0.513125 .
$$

Algebraic Equation

What happened to the other solution of the quadratic?

The regular perturbation assumes a leading term of order unity, so this method only recovers a root of order unity.

In this example, the first root gives εx^{2} small compared to $2 x$ and 1 , so it may be ignored.

The second root could be a different order, either large or small.
For the case $\varepsilon=0.01$, we solve $0.01 x^{2}+2 x+1=0$, which has the solutions:

$$
x=\frac{-1 \pm \sqrt{0.99}}{0.01}=-0.50125629,-199.4987437 .
$$

The approximation gives $x=-0.50125625$, and we observe the second solution is large.

When εx^{2} is not small for a large second root, then either

- εx^{2} and 1 are the same order and $2 x \ll 1$, or
- εx^{2} and $2 x$ are the same order and large compared to 1 .
- This is an example of dominant balancing, finding which terms are dominant and similar in order.

Algebraic Equation

If εx^{2} and 1 are the same order, then $x=\mathcal{O}(1 / \sqrt{\varepsilon})$ and $2 x \ll 1$ doesn't hold.
Thus, εx^{2} and $2 x$ are the same order with $x=\mathcal{O}(1 / \varepsilon)$, and both dwarf 1 , providing a clue to the new scaling to recover the second root.

Choose a new variable y of order unity defined by

$$
y=\frac{x}{1 / \varepsilon}=\varepsilon x
$$

Inserted into the original quadratic equation gives:

$$
y^{2}+2 y+\varepsilon=0 \text {. }
$$

A regular perturbation uses:

$$
y=y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2} \ldots,
$$

so

$$
\left(y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2} \ldots\right)^{2}+2\left(y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2} \ldots\right)+\varepsilon=0 .
$$

Algebraic Equation

From

$$
\left(y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2} \ldots\right)^{2}+2\left(y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2} \ldots\right)+\varepsilon=0,
$$

the ε powers give the following sequence of equations:

$$
\begin{array}{rr}
\varepsilon^{0}: & y_{0}^{2}+2 y_{0}=0, \\
\varepsilon^{1}: & 2 y_{0} y_{1}+2 y_{1}+1=0, \\
\varepsilon^{2}: & 2 y_{0} y_{2}+y_{1}^{2}+2 y_{2}=0,
\end{array}
$$

Sequentially solving these equations give:

$$
y_{0}=-2, \quad y_{1}=\frac{1}{2}, \quad y_{2}=\frac{1}{8},
$$

so

$$
y=-2+\frac{1}{2} \varepsilon+\frac{1}{8} \varepsilon^{2} \ldots,
$$

or

$$
x=-\frac{2}{\varepsilon}+\frac{1}{2}+\frac{1}{8} \varepsilon \ldots
$$

For $\varepsilon=0.1$ and 0.01 , we obtain second root approximations of

$$
x_{2}=-19.4875 \text { and } \quad-199.49875 \quad\left(x_{2 e}=-19.48683298, \quad-199.4987437\right) .
$$

Complex Algebraic Equation

Complex Algebraic Equation: If z_{0} is a fixed complex number, then its $n^{t h}$ roots are found by solving

$$
z^{n}=z_{0}
$$

The fundamental theorem of algebra states that the're n roots to this equation.
Let $z=r e^{i \theta}$ and $z_{0}=r_{0} e^{i \theta_{0}}$ are complex numbers in polar form.
It follows that $r=r_{0}^{1 / n}$ and $\operatorname{in} \theta=i \theta_{0}+2 k \pi i$ for $k=0, \pm 1, \pm 2, \ldots$, so the n roots of z_{0} are

$$
z=z_{0}^{1 / n}=r_{0}^{1 / n} e^{i\left(\frac{\theta_{0}}{n}+\frac{2 k \pi}{n}\right)}, \quad k=0,1, \ldots, n-1 .
$$

If $z_{0}=1$, then this produces the n roots of unity.
Example: Find a leading order approximation for the four roots of

$$
\varepsilon x^{4}-x-1=0, \quad \text { with } \quad 0<\varepsilon \ll 1 .
$$

When $\varepsilon=0$, this only has the single root, $x=-1$, which is order 1 .
Dominant balancing is used to find the leading order other roots.

Complex Algebraic Equation

Example: If the first and third terms of

$$
\varepsilon x^{4}-x-1=0,
$$

balance, then $x=\mathcal{O}\left(\varepsilon^{-1 / 4}\right)$, which is large, so is inconsistent.
If the first and second terms balance, then $x=\mathcal{O}\left(\varepsilon^{-1 / 3}\right)$, which is large compared to 1 .

This suggests re-scaling with $y=\varepsilon^{1 / 3} x$, which gives

$$
y^{4}-y-\varepsilon^{1 / 3}=0 .
$$

The leading order becomes $y^{4}-y=0$, which after discarding $y=0$ gives $y=1, \quad e^{2 \pi i / 3}, \quad e^{-2 \pi i / 3}$.

It follows that the leading order four roots are

$$
x=-1, \quad \varepsilon^{-1 / 3}, \quad \varepsilon^{-1 / 3} e^{2 \pi i / 3}, \quad \varepsilon^{-1 / 3} e^{-2 \pi i / 3}
$$

The last three are large.

Complex Algebraic Equation

Example: The leading order four roots are:

$$
x=-1, \quad \varepsilon^{-1 / 3}, \quad \varepsilon^{-1 / 3} e^{2 \pi i / 3}, \quad \varepsilon^{-1 / 3} e^{-2 \pi i / 3}
$$

which for $\varepsilon=0.001$ gives:

$$
x=-1, \quad 10, \quad-5 \pm i 5 \sqrt{3}=-5 \pm 8.660254 i .
$$

Maple gives the 4 roots of $0.001 x^{4}-x-1=0$, as

$$
x=-0.99900398, \quad 10.313290, \quad-4.6571430 \pm 8.6815875 i .
$$

Higher-order approximations are found with the series:

$$
y=y_{0}+\varepsilon^{1 / 3} y_{1}+\varepsilon^{2 / 3} y_{2}+\ldots
$$

so

$$
\begin{array}{cc}
\left(y_{0}+\varepsilon^{1 / 3} y_{1}+\ldots\right)^{4}-\left(y_{0}+\varepsilon^{1 / 3} y_{1}+\ldots\right)-\varepsilon^{1 / 3}=0, & \text { or } \\
\varepsilon^{0}: & y_{0}^{4}-y_{0}=0 \\
\varepsilon^{1 / 3}: & 4 y_{0}^{3} y_{1}-y_{1}-1=0
\end{array}
$$

Complex Algebraic Equation

Example: For $y=y_{0}+\varepsilon^{1 / 3} y_{1}+\ldots$, the ε^{0}-order terms gave the leading order approximation, and specifically gave $y_{0}^{3}=1$.

Since the $\varepsilon^{1 / 3}$-order term satisfies the equation, $4 y_{0}^{3} y_{1}-y_{1}-1=0$, it follows that:

$$
y_{1}=\frac{1}{4 y_{0}^{3}-1} \quad \text { or } \quad y_{1}=\frac{1}{3}
$$

Thus, the two term approximation is

$$
y \approx y_{0}+\frac{1}{3} \varepsilon^{1 / 3} \quad \text { or } \quad x \approx \varepsilon^{-1 / 3} y_{0}+\frac{1}{3} .
$$

With $\varepsilon=0.001$ from above, this improves our approximations to

$$
x \approx x=-1, \quad 10.33333, \quad-4.66667 \pm 8.660254 i
$$

which compare quite favorably to the Maple solution:

$$
x=-0.99900398, \quad 10.313290, \quad-4.6571430 \pm 8.6815875 i .
$$

Boundary Value Problem

Consider the boundary value problem (BVP):

$$
y^{\prime \prime}-y=0, \quad y(0)=A, \quad \text { and } \quad y(1)=B
$$

which again has the general solution $y(t)=c_{1} e^{t}+c_{2} e^{-t}$.
With algebra, the unique solution becomes

$$
y(t)=-\frac{(A \mathrm{e}-B) \mathrm{e}^{-t}}{\mathrm{e}^{-1}-\mathrm{e}}+\frac{\left(A \mathrm{e}^{-1}-B\right) \mathrm{e}^{t}}{\mathrm{e}^{-1}-\mathrm{e}}
$$

Since $\sinh (t)$ and $\sinh (1-t)$ are linearly independent combinations of e^{t} and e^{-t}, we could write

$$
y(t)=d_{1} \sinh (t)+d_{2} \sinh (1-t)
$$

The algebra makes it much easier to see that

$$
y(t)=\frac{B}{\sinh (1)} \sinh (t)+\frac{A}{\sinh (1)} \sinh (1-t) .
$$

Harmonic Oscillator

Example (Harmonic Oscillator): Consider the BVP:

$$
y^{\prime \prime}+y=0, \quad y(0)=A, \quad y(1)=B,
$$

which has the general solution

$$
y(t)=c_{1} \cos (t)+c_{2} \sin (t) .
$$

The boundary conditions are easily solved to give

$$
y(t)=A \cos (t)+\frac{B-A \cos (1)}{\sin (1)} \sin (t) .
$$

This again gives a unique solution, but the denominator of $\sin (1)$ suggests potential problems at certain t values.

Harmonic Oscillator

Example (Harmonic Oscillator): Now consider the BVP:

$$
y^{\prime \prime}+y=0, \quad y(0)=A, \quad y(\pi)=B
$$

which again has the general solution

$$
y(t)=c_{1} \cos (t)+c_{2} \sin (t)
$$

The condition $y(0)=A$ implies $c_{1}=A$. However, $y(\pi)=B$ gives

$$
y(\pi)=A \cos (\pi)+c_{2} \sin (\pi)=-A=B .
$$

This only has a solution if $B=-A$. Furthermore, if $B=-A$, the arbitrary constant c_{2} remains undetermined, so takes any value.

- If $B \neq-A$, then no solution exists.
- If $B=-A$, then infinity many solutions exist and satisfy

$$
y(t)=A \cos (t)+c_{2} \sin (t), \quad \text { where } c_{2} \text { is arbitrary. }
$$

General Case

Theorem (Boundary Value Problem)

Consider the second order linear $B V P$

$$
y^{\prime \prime}+p y^{\prime}+q y=0, \quad y(a)=A, \quad y(b)=B,
$$

where $p, q, a \neq b$, A, and B are constants. Exactly one of the following conditions hold:

- There is a unique solution to the BVP.
- There is no solution to the BVP.
- There are infinity many solutions to the BVP.

Boundary value problems have many practical applications and form a base for many problems in partial differential equations.

Boundary Layers

Boundary Layers: Consider the BVP:

$$
\begin{align*}
\varepsilon y^{\prime \prime}+(1+\varepsilon) y^{\prime}+y & =0, & & 0<x<1, \tag{1}\\
y(0) & =0, & & y(1)=1 .
\end{align*}
$$

Begin by solving this equation, and examining its behavior as ε varies.
The characteristic equation satisfies:

$$
\varepsilon \lambda^{2}+(1+\varepsilon) \lambda+1=(\lambda+1)(\varepsilon \lambda+1)=0
$$

which gives $\lambda_{1}=-1$ and $\lambda_{2}=-\frac{1}{\varepsilon}$.
The general solution of (1) is

$$
y(x)=c_{1} e^{-x}+c_{2} e^{-x / \varepsilon}
$$

the boundary conditions give:

$$
y(0)=c_{1}+c_{2}=0 \quad \text { or } \quad c_{2}=-c_{1}, \quad \text { and } \quad y(1)=c_{1}\left(e^{-1}-e^{-1 / \varepsilon}\right)=1
$$

The unique solution to the $\boldsymbol{B} \boldsymbol{V} \boldsymbol{P}(1)$ is

$$
y(x)=\frac{e^{-x}-e^{-x / \varepsilon}}{e^{-1}-e^{-1 / \varepsilon}}
$$

Boundary Layers

Below are graphs of solutions for several values of ε to the $B V P$. The graph shows early rapid rise followed by slow decay (common in drug kinetic problems).

Boundary Layers

Perturbation Method: Attempt to naively solve the $\boldsymbol{B V} \boldsymbol{P}$

$$
\begin{aligned}
\varepsilon y^{\prime \prime}+(1+\varepsilon) y^{\prime}+y & =0, & & 0<x<1, \\
y(0) & =0, & & y(1)=1,
\end{aligned}
$$

with our regular perturbation method.
Assume a solution

$$
y(x)=y_{0}(x)+\varepsilon y_{1}(x)+\varepsilon^{2} y_{2}(x)+\ldots
$$

The differential equation becomes:

$$
\begin{aligned}
& \varepsilon\left(y_{0}^{\prime \prime}+\varepsilon y_{1}^{\prime \prime}+\varepsilon^{2} y_{2}^{\prime \prime}+\ldots\right)+\left(y_{0}^{\prime}+\varepsilon y_{1}^{\prime}+\varepsilon^{2} y_{2}^{\prime}+\ldots\right) \\
& \quad+\varepsilon\left(y_{0}^{\prime}+\varepsilon y_{1}^{\prime}+\varepsilon^{2} y_{2}^{\prime}+\ldots\right)+\left(y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2}+\ldots\right)=0
\end{aligned}
$$

Equating coefficients of like powers of ε gives the sequences of problems:

$$
\begin{aligned}
y_{0}^{\prime}+y_{0} & =0 \\
y_{1}^{\prime}+y_{1} & =-y_{0}^{\prime \prime}-y_{0}^{\prime}, \ldots
\end{aligned}
$$

Boundary Layers

Perturbation Method: From before the leading order problem is

$$
y_{0}^{\prime}+y_{0}=0, \quad y_{0}(0)=0, \quad y_{0}(1)=1,
$$

which is readily seen to have a problem as it is a first order ODE with two conditions.

The general solution is:

$$
y_{0}(x)=c e^{-x} .
$$

If $y_{0}(0)=0$, then the solution satisfies $c=0$ or $y(x) \equiv 0$, which cannot work.
If $y_{0}(1)=1$, then the solution becomes

$$
y(x)=e^{1-x}
$$

which fails at $x=0$.
It follows that at the first step of the regular perturbation method the method fails.

Boundary Layers

Boundary Layers: Recall the unique solution to the $\boldsymbol{B V} \boldsymbol{P}(1)$ is

$$
y(x)=\frac{e^{-x}-e^{-x / \varepsilon}}{e^{-1}-e^{-1 / \varepsilon}}
$$

For small ε the graph showed $y(x)$ rapidly increasing in a small interval near the origin, which is called a boundary layer.

In the interval outside this region the solution slowly decayed, and this region is called the outer layer.

This suggests the need for two spatial scales.
With the solution for this problem, we examine each term in the $\boldsymbol{O D E}$.

$$
\begin{aligned}
y^{\prime}(x) & =\frac{1}{e^{-1}-e^{-1 / \varepsilon}}\left(-e^{-x}+\frac{1}{\varepsilon} e^{-x / \varepsilon}\right) \\
y^{\prime \prime}(x) & =\frac{1}{e^{-1}-e^{-1 / \varepsilon}}\left(e^{-x}-\frac{1}{\varepsilon^{2}} e^{-x / \varepsilon}\right)
\end{aligned}
$$

Boundary Layers

Boundary Layers: Near the origin, say $x=\varepsilon$, we evaluate both y^{\prime} and $y^{\prime \prime}$, then it is an easy calculation to see that

$$
y^{\prime}(\varepsilon)=\mathcal{O}\left(\varepsilon^{-1}\right) \quad \text { and } \quad y^{\prime \prime}(\varepsilon)=\mathcal{O}\left(\varepsilon^{-2}\right)
$$

It follows that these terms in the original $O D E$ are not small for x small, so requires a rescaling.

For larger $x, \varepsilon y^{\prime \prime}(x)=\mathcal{O}(\varepsilon)$ and similar for $\varepsilon y^{\prime}(x)$, so these terms may be ignored, so the original regular perturbation method should provide a very good outer approximation,

$$
y_{0}(x)=e^{1-x} .
$$

For ε small, $e^{-1}-e^{-1 / \varepsilon} \approx e^{-1}$, so expect an inner approximation given by:

$$
y_{i}(x)=e-e^{1-x / \varepsilon},
$$

based on the known solution.
Here we knew the exact solution, so were able to obtain the inner approximation. We need to develop a scaling technique to find this boundary layer approximation.

Singular Algebraic Equation

Boundary Layers

The graph below shows the exact solution of the original $O D E$ with overlays for the outer approximation and inner approximation.

Inner and Outer Approximations

Inner and Outer Approximations: We return to the $B V P$:

$$
\begin{aligned}
\varepsilon y^{\prime \prime}+(1+\varepsilon) y^{\prime}+y & =0, & & 0<x<1, \quad 0<\varepsilon \ll 1 \\
y(0) & =0, & & y(1)=1 .
\end{aligned}
$$

We showed that the original regular perturbation method provided a very good outer approximation,

$$
y_{0}(x)=e^{1-x}
$$

by setting $\varepsilon=0$ and selecting only the boundary condition, $y(1)=1$.
There are significant changes in the boundary layer, which suggests making a length scale on the order of a function of $\varepsilon, \delta(\varepsilon)$.

Consider the change of variables:

$$
\xi=\frac{x}{\delta(\varepsilon)} \quad \text { and } \quad Y(\xi)=y(\delta(\varepsilon) \xi)
$$

With the chain rule the $O D E$ becomes:

$$
\frac{\varepsilon}{\delta(\varepsilon)^{2}} Y^{\prime \prime}(\xi)+\frac{(1+\varepsilon)}{\delta(\varepsilon)} Y^{\prime}(\xi)+Y(\xi)=0
$$

where prime is differentiation with respect to ξ.

Inner and Outer Approximations

Inner and Outer Approximations: The $O D E$

$$
\frac{\varepsilon}{\delta(\varepsilon)^{2}} Y^{\prime \prime}(\xi)+\frac{(1+\varepsilon)}{\delta(\varepsilon)} Y^{\prime}(\xi)+Y(\xi)=0
$$

has the coefficients $\frac{\varepsilon}{\delta(\varepsilon)^{2}}, \frac{1}{\delta(\varepsilon)}, \frac{\varepsilon}{\delta(\varepsilon)}$, and 1 .
We know the first coefficient must be significant. The possibilities are:
(1) The terms $\varepsilon / \delta(\varepsilon)^{2}$ and $1 / \delta(\varepsilon)$ have the same order, while $\varepsilon / \delta(\varepsilon)$ and 1 are comparatively small.
(2) The terms $\varepsilon / \delta(\varepsilon)^{2}$ and 1 have the same order, while $1 / \delta(\varepsilon)$ and $\varepsilon / \delta(\varepsilon)$ are comparatively small.
(3) The terms $\varepsilon / \delta(\varepsilon)^{2}$ and $\varepsilon / \delta(\varepsilon)$ have the same order, while $1 / \delta(\varepsilon)$ and 1 are comparatively small.
Only Case (1) is possible.
For Case (2) if $\varepsilon / \delta(\varepsilon)^{2} \sim 1$, then $\delta(\varepsilon)=\mathcal{O}(\sqrt{\varepsilon})$ and $1 / \delta(\varepsilon)$ is not small compared to 1 .

For Case (3) if $\varepsilon / \delta(\varepsilon)^{2} \sim \varepsilon / \delta(\varepsilon)$, then $\delta(\varepsilon)=\mathcal{O}(1)$ and leads to the outer approximation.

Inner and Outer Approximations

Inner and Outer Approximations: For Case (1) if $\varepsilon / \delta(\varepsilon)^{2} \sim 1 / \delta(\varepsilon)$, then $\delta(\varepsilon)=\mathcal{O}(\varepsilon)$, so take

$$
\delta(\varepsilon)=\varepsilon .
$$

This leads to the scaled $O \boldsymbol{O D}$

$$
Y^{\prime \prime}+Y^{\prime}+\varepsilon Y^{\prime}+\varepsilon Y=0
$$

which is amenable to regular perturbation.
The leading-order approximation $(\varepsilon=0)$ gives:

$$
Y^{\prime \prime}+Y^{\prime}=0, \quad Y(0)=0
$$

The solution to this initial value problem is

$$
Y(x)=c_{0}\left(1-e^{-\xi}\right),
$$

which is the inner approximation for $x=\mathcal{O}(\varepsilon)$.

Matching

Matching Approximations: The BVP:

$$
\begin{aligned}
\varepsilon y^{\prime \prime}+(1+\varepsilon) y^{\prime}+y & =0, & & 0<x<1, \\
y(0) & =0, & & y(1)=1,
\end{aligned}
$$

gave the inner approximation, y_{i} and outer approximation, y_{0} :

$$
\begin{aligned}
y_{0}(x) & =e^{1-x}, \quad x=\mathcal{O}(1) \\
y_{i}(x) & =c_{0}\left(1-e^{-x / \varepsilon}\right), \quad x=\mathcal{O}(\varepsilon)
\end{aligned}
$$

for the appropriate range of x.
There is still an arbitrary constant, c_{0}.
The goal is to construct a single composite expansion in ε that is uniformly valid for $x \in[0,1]$, as $\varepsilon \rightarrow 0$.

The width of the boundary layer varies according to the scaling factor $\delta(\varepsilon)$, so it is reasonable to have the inner and outer expansions agree to some order in an overlap domain.

Matching

Matching Approximations: The inner approximation, y_{i}, is valid for $x=\mathcal{O}(\varepsilon)$, while the outer approximation, y_{0}, is valid for $x=\mathcal{O}(1)$.
This suggests an overlap region, which is characterized by $x=\mathcal{O}(\sqrt{\varepsilon})$.

Matching

Matching Approximations: The overlap region suggests creating an intermediate variable, which is $\mathcal{O}(\sqrt{\varepsilon})$, say

$$
\eta=\frac{x}{\sqrt{\varepsilon}} .
$$

The inner approximation, y_{i}, in terms of the intermediate variable, should agree with the outer approximation, y_{0}, in the limit as $\varepsilon \rightarrow 0$ or for fixed η

$$
\lim _{\varepsilon \rightarrow 0+} y_{0}(\sqrt{\varepsilon} \eta)=\lim _{\varepsilon \rightarrow 0+} y_{i}(\sqrt{\varepsilon} \eta)
$$

For this example

$$
\lim _{\varepsilon \rightarrow 0+} y_{0}(\sqrt{\varepsilon} \eta)=\lim _{\varepsilon \rightarrow 0+} e^{1-\sqrt{\varepsilon} \eta}=e
$$

and

$$
\lim _{\varepsilon \rightarrow 0+} y_{i}(\sqrt{\varepsilon} \eta)=\lim _{\varepsilon \rightarrow 0+} c_{0}\left(1-e^{-\eta / \sqrt{\varepsilon}}\right)=c_{0}
$$

Thus, matching requires that $c_{0}=e$, and the inner approximation becomes:

$$
y_{i}(x)=e\left(1-e^{-x / \varepsilon}\right)
$$

Matching

Matching Approximations: Because our approximations only use leading order terms, the introduction of an intermediate variable is not necessary.

The matching condition simply requires:

$$
\lim _{x \rightarrow 0+} y_{0}(x)=\lim _{\xi \rightarrow \infty} Y_{i}(\xi)=e,
$$

which is stating that the outer approximation, as the outer variable moves into the inner region, must equal the inner approximation, as the inner variable moves to the outer region.

Higher order approximations require more complex matching schemes.
Uniform Approximations: To obtain a uniformly valid approximation for $x \in[0,1]$, examine the sum of the inner and outer approximations:

$$
\begin{aligned}
& y_{0}(x)+y_{i}(x)=e^{1-x}+e-e^{1-x / \varepsilon}, \\
& = \begin{cases}e^{1-x}+e, & x=\mathcal{O}(1), \\
2 e-e^{1-x / \varepsilon}, & x=\mathcal{O}(\varepsilon) .\end{cases}
\end{aligned}
$$

Matching

Matching Approximations: From the composite expansion the common limit (e) is subtracted to obtain a uniform approximation, which follows the inner approximation for $x=\mathcal{O}(\varepsilon)$, the outer approximation for $x=\mathcal{O}(1)$, and matches uniformly for $x=\mathcal{O}(\sqrt{\varepsilon})$:

$$
y_{u}(x)=y_{0}(x)+y_{i}(x)-e=e^{1-x}-e^{1-x / \varepsilon} .
$$

BVP Example 2

BVP Example 2: Consider the BVP:

$$
\begin{align*}
\varepsilon y^{\prime \prime}+y^{\prime}=2 x, & 0<x<1, \quad 0<\varepsilon \ll 1 \tag{2}\\
y(0)=1, & y(1)=1 .
\end{align*}
$$

Begin by solving this equation.
The characteristic equation satisfies $\varepsilon \lambda^{2}+\lambda=\lambda(\varepsilon \lambda+1)=0$, so the homogeneous solution of (2) is

$$
y_{h}(x)=c_{1}+c_{2} e^{-x / \varepsilon} .
$$

The particular solution is easily seen to satisfy:

$$
y_{p}(x)=x^{2}-2 \varepsilon x .
$$

With the boundary conditions the unique solution becomes

$$
y(x)=\frac{(2 \varepsilon-1) e^{-\frac{x}{\varepsilon}}+e^{-\frac{1}{\varepsilon}}-2 \varepsilon}{e^{-\frac{1}{\varepsilon}}-1}+x^{2}-2 \varepsilon x .
$$

BVP Example 2

The Regular Perturbation Method allows obtaining the outer solution for $x=\mathcal{O}(1)$. This is accomplished by letting $\varepsilon=0$ in (2) and taking only the outer boundary condition, so

$$
y^{\prime}=2 x, \quad \text { with } \quad y(1)=1
$$

This is easily solved giving the outer solution:

$$
y_{o}(x)=x^{2} .
$$

The next step is to find the appropriate scaling for the inner solution by letting

$$
\xi=\frac{x}{\delta(\varepsilon)}, \quad \text { and taking } \quad Y(\xi)=y(x)
$$

The original $\boldsymbol{B V P}, \varepsilon y^{\prime \prime}+y^{\prime}=2 x$, becomes

$$
\frac{\varepsilon}{\delta^{2}} Y^{\prime \prime}+\frac{1}{\delta} Y^{\prime}=2 \delta \xi
$$

If $\varepsilon / \delta(\varepsilon)^{2} \sim 2 \delta(\varepsilon)$, then $\delta(\varepsilon)=\mathcal{O}\left(\varepsilon^{1 / 3}\right)$ and the term with Y^{\prime} is $\mathcal{O}\left(\varepsilon^{-1 / 3}\right)$, which ${ }_{50 S O}$ is large or dominant.

BVP Example 2

It follows that $\varepsilon / \delta(\varepsilon)^{2} \sim 1 / \delta(\varepsilon)$, so $\delta(\varepsilon)=\mathcal{O}(\varepsilon)$ and we take $\delta(\varepsilon)=\varepsilon$.
The scaled $\boldsymbol{B V P}$ becomes:

$$
Y^{\prime \prime}+Y^{\prime}=2 \varepsilon^{2} \xi
$$

This has a first order approximation $\left(Y^{\prime \prime}+Y^{\prime}=0\right)$:

$$
Y_{i}(\xi)=c_{1}+c_{2} e^{-\xi}, \quad \text { with } \quad Y_{i}(0)=1
$$

so

$$
Y_{i}(\xi)=\left(1-c_{2}\right)+c_{2} e^{-\xi} \quad \text { or } \quad y_{i}(x)=\left(1-c_{2}\right)+c_{2} e^{-\frac{x}{\varepsilon}},
$$

which gives the inner approximation.
For the matching condition, we introduce an overlap region, $\mathcal{O}(\sqrt{\varepsilon})$ by letting $x=\sqrt{\varepsilon} \eta$. The matching condition becomes:

$$
\lim _{\varepsilon \rightarrow 0^{+}} y_{o}(\sqrt{\varepsilon} \eta)=\lim _{\varepsilon \rightarrow 0^{+}} y_{i}(\sqrt{\varepsilon} \eta)
$$

or

$$
\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon \eta^{2}=0=\lim _{\varepsilon \rightarrow 0^{+}}\left(1-c_{2}\right)+c_{2} e^{-\frac{\eta}{\sqrt{\varepsilon}}}=1-c_{2}
$$

BVP Example 2

The matching condition gave $c_{2}=1$, so the inner approximation and outer approximation are:

$$
y_{i}(x)=e^{-\frac{x}{\varepsilon}} \quad \text { and } \quad y_{o}(x)=x^{2} .
$$

Since the common limit in the overlap region is zero, the uniform composite approximation satisfies:

$$
y_{u}(x)=x^{2}+e^{-\frac{x}{\varepsilon}}
$$

Singular Perturbation

Singular Perturbation: Below are some indicators that the regular perturbation method will fail.
(1) When a small parameter multiplies the highest derivative in the problem.
(2) When a small parameter in a problem is set to zero results in a fundamentally different problem.
(3) When problems occur on infinite domains, like when secular terms arise.
(4) When singular points are present in the interval of interest.
(5) When the equations that model physical processes have multiple time or spatial scales.

Singular Perturbation

Singular Perturbation: Our examples all had their boundary layer at $x=0$.

- Boundary layers can occur at any point, including the right end point or an interior point, and multiple boundary layers can occur.
- Boundary layers can occur in initial value problems.
- Assume the boundary layer at $x=0$, then if incorrect the procedure will break down when trying to match inner and outer solutions.
- For a boundary layer at the right end the inner variable is scaled

$$
\xi=\frac{x_{0}-x}{\delta(\varepsilon)} .
$$

- This case gives

$$
\frac{d y}{d x}=-\frac{1}{\delta(\varepsilon)} \frac{d Y}{d \xi} \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}=\frac{1}{\delta(\varepsilon)^{2}} \frac{d^{2} Y}{d \xi^{2}}
$$

- The matching condition is

$$
\lim _{\xi \rightarrow \infty} Y_{i}(\xi)=\lim _{x \rightarrow x_{0}} y_{0}(x) .
$$

- Our examples had a scaling of $\delta(\varepsilon)=\varepsilon$, but this is not the rule in general.
- Refinements for higher order approximations are needed, and often problems need significant modifications. (Research ongoing.)

General Singular Perturbation

General Singular Perturbation: Linear equations with variable coefficients can be completely characterized.

Theorem (Singular Perturbation)

Consider the boundary value problem

$$
\begin{aligned}
\varepsilon y^{\prime \prime}+p(x) y^{\prime}+q(x) y & =0, & & 0<x<1, \quad 0<\varepsilon \ll 1, \\
y(0) & =a, & & y(1)=b,
\end{aligned}
$$

where p and q are continuous functions with $p(x)>0$ for $x \in[0,1]$. Then there exists a boundary layer at $x=0$ with inner and outer approximations given by

$$
\begin{aligned}
y_{i}(x) & =C_{1}+\left(a-C_{1}\right) e^{-p(0) x / \varepsilon} \\
y_{o}(x) & =b \exp \left(\int_{x}^{1} \frac{q(s)}{p(s)} d s\right)
\end{aligned}
$$

where

$$
C_{1}=b \exp \left(\int_{0}^{1} \frac{q(s)}{p(s)} d s\right) .
$$

General Singular Perturbation

Proof: Assume that the boundary value problem of the theorem,

$$
\varepsilon y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

has a boundary layer at $x=0$.
It follows that the outer approximation satisfies the initial value problem:

$$
p(x) y_{o}^{\prime}+q(x) y_{o}=0, \quad y_{o}(1)=b
$$

Solving this first order linear $O D E$ gives:

$$
y_{o}(x)=b \exp \left(\int_{x}^{1} \frac{q(s)}{p(s)} d s\right) .
$$

This solution is a good approximation for $x=\mathcal{O}(1)$.

General Singular Perturbation

The scaled variable in the boundary layer, $\xi=x / \delta(\varepsilon)$, is introduced, where $\delta(\varepsilon)$ is to be determined.

If $Y(\xi)=y(\delta(\varepsilon) \xi)$, then the $\boldsymbol{O D E}$ becomes:

$$
\frac{\varepsilon}{\delta(\varepsilon)^{2}} Y^{\prime \prime}+\frac{p(\delta(\varepsilon) \xi)}{\delta(\varepsilon)} Y^{\prime}+q(\delta(\varepsilon) \xi) Y=0
$$

The coefficients behave like $\frac{\varepsilon}{\delta(\varepsilon)^{2}}, \frac{p(0}{\delta(\varepsilon)}$, and $q(0)$, as $\varepsilon \rightarrow 0^{+}$.
The dominant balance is $\frac{\varepsilon}{\delta(\varepsilon)^{2}} \sim \frac{p(0}{\delta(\varepsilon)}$, so $\delta(\varepsilon)=\mathcal{O}(\varepsilon)$.
It suffices to take $\delta(\varepsilon)=\varepsilon$, so the rescaled $\boldsymbol{O D E}$ becomes:

$$
Y^{\prime \prime}+p(\varepsilon \xi) Y^{\prime}+\varepsilon q(\varepsilon \xi) Y=0
$$

which to a leading order becomes

$$
Y_{i}^{\prime \prime}+p(0) Y_{i}^{\prime}=0
$$

General Singular Perturbation

The $O D E$ for the inner approximation is

$$
Y_{i}^{\prime \prime}+p(0) Y_{i}^{\prime}=0
$$

which has the general solution:

$$
Y_{i}(\xi)=c_{1}+c_{2} e^{-p(0) \xi}
$$

which with the other boundary condition $Y_{i}(0)=a$ gives

$$
y_{i}(x)=c_{1}+\left(a-c_{1}\right) e^{-p(0) x / \varepsilon}
$$

Introduce the intermediate scaling variable $\eta=x / \sqrt{\varepsilon}$, then the matching condition for fixed η is

$$
\lim _{\varepsilon \rightarrow 0^{+}} y_{i}(\sqrt{\varepsilon} \eta)=\lim _{\varepsilon \rightarrow 0^{+}} y_{o}(\sqrt{\varepsilon} \eta)
$$

or equivalently

$$
\lim _{\varepsilon \rightarrow 0^{+}} c_{1}+\left(a-c_{1}\right) e^{-p(0) \eta / \sqrt{\varepsilon}}=\lim _{\varepsilon \rightarrow 0^{+}} b \exp \left(\int_{\sqrt{\varepsilon} \eta}^{1} \frac{q(s)}{p(s)} d s\right) .
$$

General Singular Perturbation

This forces

$$
c_{1}=b \exp \left(\int_{0}^{1} \frac{q(s)}{p(s)} d s\right) .
$$

A uniform composite approximation is given by

$$
\begin{aligned}
y_{u}(x) & =y_{o}(x)+y_{i}(x)-c_{1} \\
& =b \exp \left(\int_{x}^{1} \frac{q(s)}{p(s)} d s\right)+\left(a-c_{1}\right) e^{-p(0) x / \varepsilon} .
\end{aligned}
$$

It can be shown that $y_{u}(x)-y(x)=\mathcal{O}(\varepsilon)$ as $\varepsilon \rightarrow 0^{+}$, uniformly on $[0,1]$, where $y(x)$ is the exact solution.

If $p(x)<0$ for $x \in[0,1]$, then no match is possible because of the exponential growth of $y_{i}(x)$ (unless $c_{1}=a$). However, with $p(x)<0$ a match is possible for the boundary layer occurring at $x=1$.

It follows that a boundary layer occurs at $x=0$, if $p(x)>0$, and it occurs at $x=1$, if $p(x)<0$. If $p(x)$ changes signs for $x \in[0,1]$, then an interior boundary layer is possible, and these points are called turning point problems.

Enzyme Kinetics

Enzyme Kinetics: Chemical processes are very dependent on concentrations of the chemical species and can readily be described by differential equations.

The chemical reactions are usually nonlinear problems and often occur on different time scales, which make these problems a rich source of singular perturbation problems and other types of analyses.

The enzyme reaction is given by the chemical equation:

$$
S+E \underset{k_{1}}{\stackrel{k_{-1}}{\leftrightarrows}} C \xrightarrow{k_{2}} P+E,
$$

which says that a molecule of substrate, S, combines with a molecule of enzyme, E, to form a molecule of complex, C, which can either disassociate or proceed forward to produce a product, P.

Enzyme Kinetics

Enzyme Kinetics: The enzyme reaction given by:

$$
S+E \underset{k_{1}}{\stackrel{k_{-1}}{\leftrightarrows}} C \xrightarrow{k_{2}} P+E
$$

can be written as the following system of ODEs:

$$
\begin{aligned}
\frac{d S}{d \tau} & =-k_{1} S E+k_{-1} C \\
\frac{d E}{d \tau} & =-k_{1} S E+\left(k_{-1}+k_{2}\right) C \\
\frac{d C}{d \tau} & =k_{1} S E-\left(k_{-1}+k_{2}\right) C \\
\frac{d P}{d \tau} & =k_{2} C
\end{aligned}
$$

where E, S, C, and P are concentrations of enzyme, substrate, complex, and product, respectively.

Enzymatic reactions generally form the complex very rapidly with the formation of product being the slowest (rate limiting) reaction.

Initially, it is assumed that $S(0)=S_{0}, E(0)=E_{0}, C(0)=0$, and $P(0)=0$, where E_{0} is small relative compared to S_{0}.

Enzyme Kinetics

Enzyme Kinetics: The system of ODEs shows that P is immediately found by integrating the solution for C.

Since there is no loss of material in this system, there are the conservation laws:

$$
E+C=E_{0} \quad \text { and } \quad S+C+P=S_{0} .
$$

This allows reduction to a system of nonlinear equations:

$$
\begin{aligned}
\frac{d S}{d \tau} & =-k_{1} E_{0} S+\left(k_{-1}+k_{1} S\right) C \\
\frac{d C}{d \tau} & =k_{1} E_{0} S-\left(k_{2}+k_{-1}+k_{1} S\right) C .
\end{aligned}
$$

Generally, there is a rapid rise (boundary layer) of the complex, C, followed by a much slower conversion of the substrate, S, into the product P.

This problem is rescaled and solved as a singular perturbation problem.

Scaling

Enzyme Kinetics: For the system of nonlinear equations:

$$
\begin{aligned}
\frac{d S}{d \tau} & =-k_{1} E_{0} S+\left(k_{-1}+k_{1} S\right) C \\
\frac{d C}{d \tau} & =k_{1} E_{0} S-\left(k_{2}+k_{-1}+k_{1} S\right) C
\end{aligned}
$$

we take

$$
x=\frac{S}{S_{0}}, \quad y=\frac{C}{E_{0}}, \quad t=\frac{\tau}{T},
$$

where T is still an unknown time scale.
The resulting scaled system is:

$$
\begin{aligned}
\frac{d x}{d t} & =-k_{1} E_{0} T x+\left(k_{-1}+k_{1} S_{0} x\right) T \frac{E_{0}}{S_{0}} y \\
\frac{d y}{d t} & =k_{1} S_{0} T x-\left(k_{2}+k_{-1}+k_{1} S_{0} x\right) T y
\end{aligned}
$$

There are two obvious time scales, T :

$$
T_{s}=\frac{1}{k_{1} E_{0}} \quad \text { and } \quad T_{f}=\frac{1}{k_{1} S_{0}}
$$

where the subscripts denote the slow and fast time scales, as typically E_{0} is much smaller than S_{0}.

Scaling

Scaled System: For the scaled system:

$$
\begin{aligned}
\frac{d x}{d t} & =-k_{1} E_{0} T x+\left(k_{-1}+k_{1} S_{0} x\right) T \frac{E_{0}}{S_{0}} y \\
\frac{d y}{d t} & =k_{1} S_{0} T x-\left(k_{2}+k_{-1}+k_{1} S_{0} x\right) T y
\end{aligned}
$$

with the slow time scale, $T_{s}=\frac{1}{k_{1} E_{0}}$ and the defined parameters:

$$
\mu=\frac{k_{-1}}{k_{1} S_{0}}, \quad \lambda=\frac{k_{-1}+k_{2}}{k_{1} S_{0}}, \quad \varepsilon=\frac{E_{0}}{S_{0}},
$$

we obtain

$$
\begin{aligned}
\frac{d x}{d t} & =-x+(\mu+x) y \\
\varepsilon \frac{d y}{d t} & =x-(\lambda+x) y
\end{aligned}
$$

Usually, k_{1} and k_{-1} are relatively large (fast equilibrating dynamics) and are sometimes used in what is called quasi-steady state analysis for a differential equation.

This results in μ and λ being $\mathcal{O}(1)$ with $\varepsilon \ll 1$.

Outer Approximation

Outer Approximation: The scaled system is:

$$
\begin{aligned}
\frac{d x}{d t} & =-x+(\mu+x) y \\
\varepsilon \frac{d y}{d t} & =x-(\lambda+x) y
\end{aligned}
$$

Let $x=x_{0}+\varepsilon x_{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ and $y=y_{0}+\varepsilon y_{1}+\mathcal{O}\left(\varepsilon^{2}\right)$, then the zeroth order approximation is:

$$
\begin{aligned}
\frac{d x_{0}}{d t} & =-x_{0}+\left(\mu+x_{0}\right) y_{0} \\
0 & =x_{0}-\left(\lambda+x_{0}\right) y_{0}
\end{aligned}
$$

where the last equation becomes an algebraic equation, $y_{0}=\frac{x_{0}}{\lambda+x_{0}}$.
The system reduces to a single first order nonlinear ODE:

$$
\frac{d x_{0}}{d t}=\frac{(\mu-\lambda) x_{0}}{\lambda+x_{0}}, \quad x_{0}(0)=1
$$

Separation of variables solves the second equation, giving the implicit solution:

$$
x_{0}(t)+\lambda \ln \left(x_{0}(t)\right)=(\mu-\lambda) t+c_{0},
$$

where c_{0} is a constant and $x_{0}(0)=c_{0}=1$.

Inner Approximation

Inner Approximation: Now change the time scale for $t=\mathcal{O}(\varepsilon)$ by creating the fast timescale:

$$
\bar{t}=\frac{t}{\varepsilon}=\frac{\tau}{T_{f}}
$$

By letting $X(\bar{t})=x(\varepsilon \bar{t})$ and $Y(\bar{t})=y(\varepsilon \bar{t})$, we obtain the scaled system:

$$
\begin{aligned}
\frac{d X}{d t} & =\varepsilon(-X+(\mu+X) Y) \\
\frac{d Y}{d t} & =X-(\lambda+X) Y .
\end{aligned}
$$

Let $X=X_{0}+\varepsilon X_{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ and $Y=Y_{0}+\varepsilon Y_{1}+\mathcal{O}\left(\varepsilon^{2}\right)$, then the zeroth order approximation is:

$$
\begin{aligned}
\frac{d X_{0}}{d t} & =0 \\
\frac{d Y_{0}}{d t} & =X_{0}-\left(\lambda+X_{0}\right) Y_{0}
\end{aligned}
$$

with the initial conditions, $X_{0}(0)=1$ and $Y_{0}(0)=0$.
Solving first equation gives $X_{0}(\bar{t})=c_{0}=1$ from the initial condition.
This leaves the linear initial value problem:

$$
\frac{d Y_{0}}{d t}=1-(\lambda+1) Y_{0}, \quad Y_{0}(0)=0 .
$$

Inner Approximation

Inner Approximation: From the linear initial value problem:

$$
\frac{d Y_{0}}{d t}=1-(\lambda+1) Y_{0}, \quad Y_{0}(0)=0
$$

we obtain the general solution:

$$
Y_{0}(\bar{t})=c_{1} e^{-(\lambda+1) \bar{t}}+\frac{1}{\lambda+1}
$$

which with the initial condition gives:

$$
Y_{0}(\bar{t})=\frac{1}{\lambda+1}\left(1-e^{-(\lambda+1) \bar{t}}\right)
$$

It follows that the inner approximation satisfies:

$$
\begin{aligned}
x_{i}(t) & =1 \\
y_{i}(t) & =\frac{1}{\lambda+1}\left(1-e^{-(\lambda+1) t / \varepsilon}\right)
\end{aligned}
$$

Just as with the the outer approximation, the inner approximation is readily solved. These solutions are combined with our matching conditions to obtain a uniformly converging solution as $\varepsilon \rightarrow 0$.

Matching Condition

Matching Condition: The approximations need to match in the limit as $\varepsilon \rightarrow 0$, so for the substrate, x, we have

$$
\lim _{t \rightarrow 0} x_{o}(t)=\lim _{\varepsilon \rightarrow 0} x_{i}(t)
$$

but $x_{i}(t) \equiv 1$ and $x_{o}(t)$ was taken so that $x_{o}(0)=1$, which shows that this condition is always satisfied.

Similarly, the approximations need to match in the limit as $\varepsilon \rightarrow 0$, so for the complex, y, we have

$$
\lim _{t \rightarrow 0} y_{o}(t)=\lim _{\varepsilon \rightarrow 0} y_{i}(t)
$$

However, $y_{o}(t)=\frac{x_{o}(t)}{\lambda+x_{o}(t)}$, which clearly converges to $\frac{1}{\lambda+1}$, while for fixed $t>0$,

$$
\lim _{\varepsilon \rightarrow 0} y_{i}(t)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\lambda+1}\left(1-e^{-(\lambda+1) t / \varepsilon}\right)=\frac{1}{\lambda+1}
$$

Uniform Solution

Uniform Solution: The uniform approximation is the sum of the inner and outer approximations minus the common limit:

$$
\begin{aligned}
x_{u}(t) & =x_{o}(t)+1-1=x_{o}(t) \\
y_{u}(t) & =\frac{x_{o}(t)}{\lambda+x_{o}(t)}+\frac{1}{\lambda+1}\left(1-e^{-(\lambda+1) t / \varepsilon}\right)-\frac{1}{\lambda+1}, \\
& =\frac{x_{o}(t)}{\lambda+x_{o}(t)}-\frac{1}{\lambda+1} e^{-(\lambda+1) t / \varepsilon},
\end{aligned}
$$

where $x_{o}(t)$ satisfies the implicit equation:

$$
x_{0}(t)+\lambda \ln \left(x_{0}(t)\right)=(\mu-\lambda) t+1 .
$$

Note: That this implicit equation is readily solved for t and is readily solvable for $x_{o} \in(0,1)$, which gives an easy method to graph the solution.

However, our MatLab program graphing below just integrates the scalar scalar $O D E$ for x_{o}.

Graphs for Enzyme Problem

Graphs for Enzyme Problem: Letting $\varepsilon=0.01$ the graphs below show that the singular perturbation method gives very good approximations to the "exact" solution for long term behavior.

Singular Algebraic Equation

Graphs for Enzyme Problem

Graphs for Enzyme Problem: Letting $\varepsilon=0.01$ the graphs also show that the singular perturbation method gives reasonable approximations to the "exact" solution for early kinetics, failing a bit for the very rapid decline of the substrate initially.

Graphs for Enzyme Problem

Graphs for Enzyme Problem: Letting $\varepsilon=0.1$ the graphs below show that the singular perturbation method gives good approximations to the "exact" solution for long term behavior, but these approximations separate more with the larger ε.

Graphs for Enzyme Problem

Graphs for Enzyme Problem: Letting $\varepsilon=0.1$ the graphs also show that the singular perturbation method gives reasonable approximations to the "exact" solution for early kinetics, but failing worse for these approximations separate with the larger ε.

