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Algebraic Equation 1

Quadratic Equation: Consider the equation:

εx2 + 2x+ 1 = 0, 0 < ε� 1.

The unperturbed equation satisfies:

2x+ 1 = 0,

which has the solution x = − 1
2

.

Note that the unperturbed equation is linear, while the original problem is
quadratic.

Consider a regular perturbation for solving the original quadratic problem:

x = x0 + εx1 + ε2x2 + . . .

This inserted into the original quadratic equation gives:

ε(x0 + εx1 + ε2x2 + . . . )2 + 2(x0 + εx1 + ε2x2 + . . . ) + 1 = 0.
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Algebraic Equation 2

Regular Perturbation: The ε powers give the following sequence of equations:

ε0 : 2x0 + 1 = 0,

ε1 : x2
0 + 2x1 = 0,

ε2 : 2x1x0 + 2x2 = 0, . . .

Sequentially solving these equations give:

x0 = − 1
2
, x1 = − 1

8
, x2 = − 1

16
,

which results in the regular perturbation solution:

x = − 1
2
− 1

8
ε− 1

16
ε2 − . . .

For the case ε = 0.1, we solve 0.1x2 + 2x+ 1 = 0, which has the solutions:

x = −1±
√

0.9
0.1

= −0.513167,−19.48683.

The approximation gives
x = −0.513125.
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Algebraic Equation 3

What happened to the other solution of the quadratic?

The regular perturbation assumes a leading term of order unity, so this method
only recovers a root of order unity.

In this example, the first root gives εx2 small compared to 2x and 1, so it may be
ignored.

The second root could be a different order, either large or small.

For the case ε = 0.01, we solve 0.01x2 + 2x+ 1 = 0, which has the solutions:

x = −1±
√

0.99
0.01

= −0.50125629,−199.4987437.

The approximation gives x = −0.50125625, and we observe the second solution is
large.

When εx2 is not small for a large second root, then either

εx2 and 1 are the same order and 2x� 1, or

εx2 and 2x are the same order and large compared to 1.

This is an example of dominant balancing, finding which terms are
dominant and similar in order.
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Algebraic Equation 4

If εx2 and 1 are the same order, then x = O
(
1/
√
ε
)

and 2x� 1 doesn’t hold.

Thus, εx2 and 2x are the same order with x = O (1/ε), and both dwarf 1,
providing a clue to the new scaling to recover the second root.

Choose a new variable y of order unity defined by

y =
x

1/ε
= εx.

Inserted into the original quadratic equation gives:

y2 + 2y + ε = 0.

A regular perturbation uses:

y = y0 + εy1 + ε2y2 . . . ,

so
(y0 + εy1 + ε2y2 . . . )

2 + 2(y0 + εy1 + ε2y2 . . . ) + ε = 0.
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Algebraic Equation 5

From
(y0 + εy1 + ε2y2 . . . )

2 + 2(y0 + εy1 + ε2y2 . . . ) + ε = 0,

the ε powers give the following sequence of equations:

ε0 : y2
0 + 2y0 = 0,

ε1 : 2y0y1 + 2y1 + 1 = 0,

ε2 : 2y0y2 + y2
1 + 2y2 = 0, . . .

Sequentially solving these equations give:

y0 = −2, y1 = 1
2
, y2 = 1

8
,

so
y = −2 + 1

2
ε+ 1

8
ε2 . . . ,

or
x = − 2

ε
+ 1

2
+ 1

8
ε . . .

For ε = 0.1 and 0.01, we obtain second root approximations of

x2 = −19.4875 and − 199.49875 (x2e = −19.48683298, −199.4987437).
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Complex Algebraic Equation 1

Complex Algebraic Equation: If z0 is a fixed complex number, then its nth

roots are found by solving
zn = z0.

The fundamental theorem of algebra states that the’re n roots to this equation.

Let z = reiθ and z0 = r0eiθ0 are complex numbers in polar form.

It follows that r = r
1/n
0 and inθ = iθ0 + 2kπi for k = 0,±1,±2, . . . , so the n roots

of z0 are

z = z
1/n
0 = r

1/n
0 e

i
(
θ0
n

+ 2kπ
n

)
, k = 0, 1, ..., n− 1.

If z0 = 1, then this produces the n roots of unity.

Example: Find a leading order approximation for the four roots of

εx4 − x− 1 = 0, with 0 < ε� 1.

When ε = 0, this only has the single root, x = −1, which is order 1.

Dominant balancing is used to find the leading order other roots.
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Complex Algebraic Equation 2

Example: If the first and third terms of

εx4 − x− 1 = 0,

balance, then x = O
(
ε−1/4

)
, which is large, so is inconsistent.

If the first and second terms balance, then x = O
(
ε−1/3

)
, which is large

compared to 1.

This suggests re-scaling with y = ε1/3x, which gives

y4 − y − ε1/3 = 0.

The leading order becomes y4 − y = 0, which after discarding y = 0 gives
y = 1, e2πi/3, e−2πi/3.

It follows that the leading order four roots are

x = −1, ε−1/3, ε−1/3e2πi/3, ε−1/3e−2πi/3.

The last three are large.
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Complex Algebraic Equation 3

Example: The leading order four roots are:

x = −1, ε−1/3, ε−1/3e2πi/3, ε−1/3e−2πi/3.

which for ε = 0.001 gives:

x = −1, 10, −5± i5
√

3 = −5± 8.660254i.

Maple gives the 4 roots of 0.001x4 − x− 1 = 0, as

x = −0.99900398, 10.313290, −4.6571430± 8.6815875i.

Higher-order approximations are found with the series:

y = y0 + ε1/3y1 + ε2/3y2 + . . . ,

so
(y0 + ε1/3y1 + . . . )4 − (y0 + ε1/3y1 + . . . )− ε1/3 = 0, or

ε0 : y4
0 − y0 = 0,

ε1/3 : 4y3
0y1 − y1 − 1 = 0.
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Complex Algebraic Equation 4

Example: For y = y0 + ε1/3y1 + . . . , the ε0-order terms gave the leading order
approximation, and specifically gave y3

0 = 1.

Since the ε1/3-order term satisfies the equation, 4y3
0y1 − y1 − 1 = 0, it follows that:

y1 =
1

4y3
0 − 1

or y1 = 1
3
.

Thus, the two term approximation is

y ≈ y0 + 1
3
ε1/3 or x ≈ ε−1/3y0 + 1

3
.

With ε = 0.001 from above, this improves our approximations to

x ≈ x = −1, 10.33333, −4.66667± 8.660254i,

which compare quite favorably to the Maple solution:

x = −0.99900398, 10.313290, −4.6571430± 8.6815875i.
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Boundary Value Problem

Consider the boundary value problem (BVP):

y ′′ − y = 0, y(0) = A, and y(1) = B,

which again has the general solution y(t) = c1et + c2e−t.

With algebra, the unique solution becomes

y(t) = −
(Ae−B) e−t

e−1 − e
+

(
Ae−1 −B

)
et

e−1 − e

Since sinh(t) and sinh(1− t) are linearly independent combinations of et and e−t,
we could write

y(t) = d1 sinh(t) + d2 sinh(1− t).

The algebra makes it much easier to see that

y(t) =
B

sinh(1)
sinh(t) +

A

sinh(1)
sinh(1− t).
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Harmonic Oscillator 1

Example (Harmonic Oscillator): Consider the BVP:

y ′′ + y = 0, y(0) = A, y(1) = B,

which has the general solution

y(t) = c1 cos(t) + c2 sin(t).

The boundary conditions are easily solved to give

y(t) = A cos(t) +
B −A cos(1)

sin(1)
sin(t).

This again gives a unique solution, but the denominator of sin(1) suggests
potential problems at certain t values.
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Harmonic Oscillator 2

Example (Harmonic Oscillator): Now consider the BVP:

y ′′ + y = 0, y(0) = A, y(π) = B,

which again has the general solution

y(t) = c1 cos(t) + c2 sin(t).

The condition y(0) = A implies c1 = A. However, y(π) = B gives

y(π) = A cos(π) + c2 sin(π) = −A = B.

This only has a solution if B = −A. Furthermore, if B = −A, the arbitrary
constant c2 remains undetermined, so takes any value.

If B 6= −A, then no solution exists.

If B = −A, then infinity many solutions exist and satisfy

y(t) = A cos(t) + c2 sin(t), where c2 is arbitrary.
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General Case

Theorem (Boundary Value Problem)

Consider the second order linear BVP

y ′′ + py ′ + qy = 0, y(a) = A, y(b) = B,

where p, q, a 6= b, A, and B are constants. Exactly one of the
following conditions hold:

There is a unique solution to the BVP.

There is no solution to the BVP.

There are infinity many solutions to the BVP.

Boundary value problems have many practical applications and form
a base for many problems in partial differential equations.
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Boundary Layers 1

Boundary Layers: Consider the BVP:

εy ′′ + (1 + ε)y ′ + y = 0, 0 < x < 1, 0 < ε� 1 (1)

y(0) = 0, y(1) = 1.

Begin by solving this equation, and examining its behavior as ε varies.

The characteristic equation satisfies:

ελ2 + (1 + ε)λ+ 1 = (λ+ 1)(ελ+ 1) = 0,

which gives λ1 = −1 and λ2 = − 1
ε

.

The general solution of (1) is

y(x) = c1e
−x + c2e

−x/ε.

the boundary conditions give:

y(0) = c1 + c2 = 0 or c2 = −c1, and y(1) = c1
(
e−1 − e−1/ε

)
= 1.

The unique solution to the BVP (1) is

y(x) =
e−x − e−x/ε

e−1 − e−1/ε
.
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Boundary Layers 2

Below are graphs of solutions for several values of ε to the BVP. The graph shows
early rapid rise followed by slow decay (common in drug kinetic problems).
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Boundary Layers 3

Perturbation Method: Attempt to naively solve the BVP

εy ′′ + (1 + ε)y ′ + y = 0, 0 < x < 1, 0 < ε� 1

y(0) = 0, y(1) = 1,

with our regular perturbation method.

Assume a solution

y(x) = y0(x) + εy1(x) + ε2y2(x) + . . .

The differential equation becomes:

ε(y′′0 + εy′′1 + ε2y′′2 + . . . ) + (y′0 + εy′1 + ε2y′2 + . . . )

+ε(y′0 + εy′1 + ε2y′2 + . . . ) + (y0 + εy1 + ε2y2 + . . . ) = 0.

Equating coefficients of like powers of ε gives the sequences of problems:

y′0 + y0 = 0,

y′1 + y1 = −y′′0 − y′0, . . .
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Boundary Layers 4

Perturbation Method: From before the leading order problem is

y′0 + y0 = 0, y0(0) = 0, y0(1) = 1,

which is readily seen to have a problem as it is a first order ODE with two
conditions.

The general solution is:
y0(x) = ce−x.

If y0(0) = 0, then the solution satisfies c = 0 or y(x) ≡ 0, which cannot work.

If y0(1) = 1, then the solution becomes

y(x) = e1−x,

which fails at x = 0.

It follows that at the first step of the regular perturbation method the method
fails.
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Boundary Layers 5

Boundary Layers: Recall the unique solution to the BVP (1) is

y(x) =
e−x − e−x/ε

e−1 − e−1/ε
.

For small ε the graph showed y(x) rapidly increasing in a small interval near the
origin, which is called a boundary layer.

In the interval outside this region the solution slowly decayed, and this region is
called the outer layer.

This suggests the need for two spatial scales.

With the solution for this problem, we examine each term in the ODE.

y ′(x) =
1

e−1 − e−1/ε

(
−e−x + 1

ε
e−x/ε

)
,

y ′′(x) =
1

e−1 − e−1/ε

(
e−x − 1

ε2
e−x/ε

)
.
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Boundary Layers 6

Boundary Layers: Near the origin, say x = ε, we evaluate both y ′ and y ′′, then
it is an easy calculation to see that

y ′(ε) = O
(
ε−1

)
and y ′′(ε) = O

(
ε−2

)
.

It follows that these terms in the original ODE are not small for x small, so
requires a rescaling.

For larger x, εy ′′(x) = O (ε) and similar for εy ′(x), so these terms may be
ignored, so the original regular perturbation method should provide a very good
outer approximation,

y0(x) = e1−x.

For ε small, e−1 − e−1/ε ≈ e−1, so expect an inner approximation given by:

yi(x) = e− e1−x/ε,

based on the known solution.

Here we knew the exact solution, so were able to obtain the inner
approximation. We need to develop a scaling technique to find this boundary
layer approximation.
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The graph below shows the exact solution of the original ODE with overlays for
the outer approximation and inner approximation.
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Inner and Outer Approximations 1

Inner and Outer Approximations: We return to the BVP:

εy ′′ + (1 + ε)y ′ + y = 0, 0 < x < 1, 0 < ε� 1

y(0) = 0, y(1) = 1.

We showed that the original regular perturbation method provided a very good
outer approximation,

y0(x) = e1−x,

by setting ε = 0 and selecting only the boundary condition, y(1) = 1.

There are significant changes in the boundary layer, which suggests making a
length scale on the order of a function of ε, δ(ε).

Consider the change of variables:

ξ =
x

δ(ε)
and Y (ξ) = y(δ(ε)ξ).

With the chain rule the ODE becomes:

ε

δ(ε)2
Y ′′(ξ) +

(1 + ε)

δ(ε)
Y ′(ξ) + Y (ξ) = 0,

where prime is differentiation with respect to ξ.
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Inner and Outer Approximations 2

Inner and Outer Approximations: The ODE

ε

δ(ε)2
Y ′′(ξ) +

(1 + ε)

δ(ε)
Y ′(ξ) + Y (ξ) = 0,

has the coefficients ε
δ(ε)2

, 1
δ(ε)

, ε
δ(ε)

, and 1.

We know the first coefficient must be significant. The possibilities are:

1 The terms ε/δ(ε)2 and 1/δ(ε) have the same order, while ε/δ(ε) and 1 are
comparatively small.

2 The terms ε/δ(ε)2 and 1 have the same order, while 1/δ(ε) and ε/δ(ε) are
comparatively small.

3 The terms ε/δ(ε)2 and ε/δ(ε) have the same order, while 1/δ(ε) and 1 are
comparatively small.

Only Case (1) is possible.

For Case (2) if ε/δ(ε)2 ∼ 1, then δ(ε) = O
(√
ε
)

and 1/δ(ε) is not small compared
to 1.

For Case (3) if ε/δ(ε)2 ∼ ε/δ(ε), then δ(ε) = O (1) and leads to the outer
approximation.
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Inner and Outer Approximations 3

Inner and Outer Approximations: For Case (1) if ε/δ(ε)2 ∼ 1/δ(ε), then
δ(ε) = O (ε), so take

δ(ε) = ε.

This leads to the scaled ODE

Y ′′ + Y ′ + εY ′ + εY = 0,

which is amenable to regular perturbation.

The leading-order approximation (ε = 0) gives:

Y ′′ + Y ′ = 0, Y (0) = 0.

The solution to this initial value problem is

Y (x) = c0
(

1− e−ξ
)
,

which is the inner approximation for x = O (ε).
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Matching 1

Matching Approximations: The BVP:

εy ′′ + (1 + ε)y ′ + y = 0, 0 < x < 1, 0 < ε� 1

y(0) = 0, y(1) = 1,

gave the inner approximation, yi and outer approximation, y0:

y0(x) = e1−x, x = O (1) ,

yi(x) = c0
(

1− e−x/ε
)
, x = O (ε) ,

for the appropriate range of x.

There is still an arbitrary constant, c0.

The goal is to construct a single composite expansion in ε that is uniformly valid
for x ∈ [0, 1], as ε→ 0.

The width of the boundary layer varies according to the scaling factor δ(ε), so it
is reasonable to have the inner and outer expansions agree to some order in an
overlap domain.
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Matching 2

Matching Approximations: The inner approximation, yi, is valid for
x = O (ε), while the outer approximation, y0, is valid for x = O (1).

This suggests an overlap region, which is characterized by x = O
(√
ε
)
.
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Matching 3

Matching Approximations: The overlap region suggests creating an
intermediate variable, which is O

(√
ε
)
, say

η =
x
√
ε
.

The inner approximation, yi, in terms of the intermediate variable, should agree
with the outer approximation, y0, in the limit as ε→ 0 or for fixed η

lim
ε→0+

y0(
√
εη) = lim

ε→0+
yi(
√
εη).

For this example

lim
ε→0+

y0(
√
εη) = lim

ε→0+
e1−
√
εη = e,

and
lim
ε→0+

yi(
√
εη) = lim

ε→0+
c0
(

1− e−η/
√
ε
)

= c0.

Thus, matching requires that c0 = e, and the inner approximation becomes:

yi(x) = e
(

1− e−x/ε
)
.
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Matching 4

Matching Approximations: Because our approximations only use leading order
terms, the introduction of an intermediate variable is not necessary.

The matching condition simply requires:

lim
x→0+

y0(x) = lim
ξ→∞

Yi(ξ) = e,

which is stating that the outer approximation, as the outer variable moves into
the inner region, must equal the inner approximation, as the inner variable
moves to the outer region.

Higher order approximations require more complex matching schemes.

Uniform Approximations: To obtain a uniformly valid approximation for
x ∈ [0, 1], examine the sum of the inner and outer approximations:

y0(x) + yi(x) = e1−x + e− e1−x/ε,

=

{
e1−x + e, x = O (1) ,

2e− e1−x/ε, x = O (ε) .

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Singular Perturbations —
(29/55)

Singular Algebraic Equation
Differential Equations

Boundary Layers

BVP Examples
General Singular Perturbation
IVP Example

Matching 5

Matching Approximations: From the composite expansion the common limit
(e) is subtracted to obtain a uniform approximation, which follows the inner
approximation for x = O (ε), the outer approximation for x = O (1), and
matches uniformly for x = O

(√
ε
)
:

yu(x) = y0(x) + yi(x)− e = e1−x − e1−x/ε.
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BVP Example 2 1

BVP Example 2: Consider the BVP:

εy ′′ + y ′ = 2x, 0 < x < 1, 0 < ε� 1 (2)

y(0) = 1, y(1) = 1.

Begin by solving this equation.

The characteristic equation satisfies ελ2 + λ = λ(ελ+ 1) = 0, so the
homogeneous solution of (2) is

yh(x) = c1 + c2e
−x/ε.

The particular solution is easily seen to satisfy:

yp(x) = x2 − 2εx.

With the boundary conditions the unique solution becomes

y(x) =
(2ε− 1)e−

x
ε + e−

1
ε − 2ε

e−
1
ε − 1

+ x2 − 2εx.
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BVP Example 2 2

The Regular Perturbation Method allows obtaining the outer solution for
x = O (1). This is accomplished by letting ε = 0 in (2) and taking only the outer
boundary condition, so

y ′ = 2x, with y(1) = 1.

This is easily solved giving the outer solution:

yo(x) = x2.

The next step is to find the appropriate scaling for the inner solution by letting

ξ =
x

δ(ε)
, and taking Y (ξ) = y(x).

The original BVP, εy ′′ + y ′ = 2x, becomes

ε

δ2
Y ′′ +

1

δ
Y ′ = 2δξ.

If ε/δ(ε)2 ∼ 2δ(ε), then δ(ε) = O
(
ε1/3

)
and the term with Y ′ is O

(
ε−1/3

)
, which

is large or dominant.
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BVP Example 2 3

It follows that ε/δ(ε)2 ∼ 1/δ(ε), so δ(ε) = O (ε) and we take δ(ε) = ε.

The scaled BVP becomes:
Y ′′ + Y ′ = 2ε2ξ.

This has a first order approximation (Y ′′ + Y ′ = 0):

Yi(ξ) = c1 + c2e
−ξ, with Yi(0) = 1,

so
Yi(ξ) = (1− c2) + c2e

−ξ or yi(x) = (1− c2) + c2e
− x
ε ,

which gives the inner approximation.

For the matching condition, we introduce an overlap region, O
(√
ε
)

by letting
x =
√
εη. The matching condition becomes:

lim
ε→0+

yo(
√
εη) = lim

ε→0+
yi(
√
εη),

or

lim
ε→0+

εη2 = 0 = lim
ε→0+

(1− c2) + c2e
− η√

ε = 1− c2.
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BVP Example 2 4

The matching condition gave c2 = 1, so the inner approximation and outer
approximation are:

yi(x) = e−
x
ε and yo(x) = x2.

Since the common limit in the overlap region is zero, the uniform composite
approximation satisfies:

yu(x) = x2 + e−
x
ε .
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Singular Perturbation 1

Singular Perturbation: Below are some indicators that the regular
perturbation method will fail.

1 When a small parameter multiplies the highest derivative in the
problem.

2 When a small parameter in a problem is set to zero results in a
fundamentally different problem.

3 When problems occur on infinite domains, like when secular
terms arise.

4 When singular points are present in the interval of interest.

5 When the equations that model physical processes have multiple
time or spatial scales.
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Singular Perturbation 2

Singular Perturbation: Our examples all had their boundary layer at x = 0.

Boundary layers can occur at any point, including the right end point or
an interior point, and multiple boundary layers can occur.

Boundary layers can occur in initial value problems.

Assume the boundary layer at x = 0, then if incorrect the procedure will
break down when trying to match inner and outer solutions.

For a boundary layer at the right end the inner variable is scaled

ξ =
x0 − x
δ(ε)

.

This case gives

dy

dx
= −

1

δ(ε)

dY

dξ
and

d2y

dx2
=

1

δ(ε)2

d2Y

dξ2
.

The matching condition is

lim
ξ→∞

Yi(ξ) = lim
x→x0

y0(x).

Our examples had a scaling of δ(ε) = ε, but this is not the rule in general.

Refinements for higher order approximations are needed, and often
problems need significant modifications. (Research ongoing.)
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General Singular Perturbation 1

General Singular Perturbation: Linear equations with variable coefficients
can be completely characterized.

Theorem (Singular Perturbation)

Consider the boundary value problem

εy ′′ + p(x)y ′ + q(x)y = 0, 0 < x < 1, 0 < ε� 1,

y(0) = a, y(1) = b,

where p and q are continuous functions with p(x) > 0 for x ∈ [0, 1]. Then there
exists a boundary layer at x = 0 with inner and outer approximations given by

yi(x) = C1 + (a− C1)e−p(0)x/ε,

yo(x) = b exp

(∫ 1

x

q(s)

p(s)
ds

)
,

where

C1 = b exp

(∫ 1

0

q(s)

p(s)
ds

)
.
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General Singular Perturbation 2

Proof: Assume that the boundary value problem of the theorem,

εy ′′ + p(x)y ′ + q(x)y = 0,

has a boundary layer at x = 0.

It follows that the outer approximation satisfies the initial value problem:

p(x)y′o + q(x)yo = 0, yo(1) = b.

Solving this first order linear ODE gives:

yo(x) = b exp

(∫ 1

x

q(s)

p(s)
ds

)
.

This solution is a good approximation for x = O (1).
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General Singular Perturbation 3

The scaled variable in the boundary layer, ξ = x/δ(ε), is introduced, where δ(ε)
is to be determined.

If Y (ξ) = y(δ(ε)ξ), then the ODE becomes:

ε

δ(ε)2
Y ′′ +

p(δ(ε)ξ)

δ(ε)
Y ′ + q(δ(ε)ξ)Y = 0.

The coefficients behave like ε
δ(ε)2

,
p(0
δ(ε)

, and q(0), as ε→ 0+.

The dominant balance is ε
δ(ε)2

∼ p(0
δ(ε)

, so δ(ε) = O (ε).

It suffices to take δ(ε) = ε, so the rescaled ODE becomes:

Y ′′ + p(εξ)Y ′ + εq(εξ)Y = 0,

which to a leading order becomes

Y ′′i + p(0)Y ′i = 0.
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General Singular Perturbation 4

The ODE for the inner approximation is

Y ′′i + p(0)Y ′i = 0,

which has the general solution:

Yi(ξ) = c1 + c2e
−p(0)ξ,

which with the other boundary condition Yi(0) = a gives

yi(x) = c1 + (a− c1)e−p(0)x/ε.

Introduce the intermediate scaling variable η = x/
√
ε, then the matching

condition for fixed η is

lim
ε→0+

yi(
√
εη) = lim

ε→0+
yo(
√
εη),

or equivalently

lim
ε→0+

c1 + (a− c1)e−p(0)η/
√
ε = lim

ε→0+
b exp

(∫ 1

√
εη

q(s)

p(s)
ds

)
.
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General Singular Perturbation 5

This forces

c1 = b exp

(∫ 1

0

q(s)

p(s)
ds

)
.

A uniform composite approximation is given by

yu(x) = yo(x) + yi(x)− c1,

= b exp

(∫ 1

x

q(s)

p(s)
ds

)
+ (a− c1)e−p(0)x/ε.

It can be shown that yu(x)− y(x) = O (ε) as ε→ 0+, uniformly on [0, 1], where
y(x) is the exact solution.

If p(x) < 0 for x ∈ [0, 1], then no match is possible because of the exponential
growth of yi(x) (unless c1 = a). However, with p(x) < 0 a match is possible for
the boundary layer occurring at x = 1.

It follows that a boundary layer occurs at x = 0, if p(x) > 0, and it occurs at
x = 1, if p(x) < 0. If p(x) changes signs for x ∈ [0, 1], then an interior boundary
layer is possible, and these points are called turning point problems.
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Enzyme Kinetics 1

Enzyme Kinetics: Chemical processes are very dependent on concentrations of
the chemical species and can readily be described by differential equations.

The chemical reactions are usually nonlinear problems and often occur on different
time scales, which make these problems a rich source of singular perturbation
problems and other types of analyses.

The enzyme reaction is given by the chemical equation:

S + E
k−1

k1
C

k2−−−−→ P + E,

which says that a molecule of substrate, S, combines with a molecule of enzyme,
E, to form a molecule of complex, C, which can either disassociate or proceed
forward to produce a product, P .
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Enzyme Kinetics 2

Enzyme Kinetics: The enzyme reaction given by:

S + E
k−1

k1
C

k2−−−−→ P + E

can be written as the following system of ODEs:

dS
dτ

= −k1SE + k−1C,

dE
dτ

= −k1SE + (k−1 + k2)C,

dC
dτ

= k1SE − (k−1 + k2)C,

dP
dτ

= k2C,

where E, S, C, and P are concentrations of enzyme, substrate, complex, and
product, respectively.

Enzymatic reactions generally form the complex very rapidly with the formation
of product being the slowest (rate limiting) reaction.

Initially, it is assumed that S(0) = S0, E(0) = E0, C(0) = 0, and P (0) = 0, where
E0 is small relative compared to S0.
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Enzyme Kinetics 3

Enzyme Kinetics: The system of ODEs shows that P is immediately found by
integrating the solution for C.

Since there is no loss of material in this system, there are the conservation laws:

E + C = E0 and S + C + P = S0.

This allows reduction to a system of nonlinear equations:

dS
dτ

= −k1E0S + (k−1 + k1S)C,

dC
dτ

= k1E0S − (k2 + k−1 + k1S)C.

Generally, there is a rapid rise (boundary layer) of the complex, C, followed by a
much slower conversion of the substrate, S, into the product P .

This problem is rescaled and solved as a singular perturbation problem.
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Scaling 1

Enzyme Kinetics: For the system of nonlinear equations:

dS
dτ

= −k1E0S + (k−1 + k1S)C,

dC
dτ

= k1E0S − (k2 + k−1 + k1S)C,

we take

x =
S

S0
, y =

C

E0
, t =

τ

T
,

where T is still an unknown time scale.

The resulting scaled system is:

dx
dt

= −k1E0Tx+ (k−1 + k1S0x)T
E0

S0
y,

dy
dt

= k1S0Tx− (k2 + k−1 + k1S0x)Ty.

There are two obvious time scales, T :

Ts =
1

k1E0
and Tf =

1

k1S0
,

where the subscripts denote the slow and fast time scales, as typically E0 is much
smaller than S0.
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Scaling 2

Scaled System: For the scaled system:

dx
dt

= −k1E0Tx+ (k−1 + k1S0x)T
E0

S0
y,

dy
dt

= k1S0Tx− (k2 + k−1 + k1S0x)Ty,

with the slow time scale, Ts = 1
k1E0

and the defined parameters:

µ =
k−1

k1S0
, λ =

k−1 + k2

k1S0
, ε =

E0

S0
,

we obtain

dx
dt

= −x+ (µ+ x)y,

ε dy
dt

= x− (λ+ x)y.

Usually, k1 and k−1 are relatively large (fast equilibrating dynamics) and are
sometimes used in what is called quasi-steady state analysis for a differential
equation.

This results in µ and λ being O (1) with ε� 1.
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Outer Approximation

Outer Approximation: The scaled system is:

dx
dt

= −x+ (µ+ x)y,

ε dy
dt

= x− (λ+ x)y.

Let x = x0 + εx1 +O
(
ε2
)

and y = y0 + εy1 +O
(
ε2
)
, then the zeroth order

approximation is:

dx0
dt

= −x0 + (µ+ x0)y0,

0 = x0 − (λ+ x0)y0,

where the last equation becomes an algebraic equation, y0 = x0
λ+x0

.

The system reduces to a single first order nonlinear ODE:

dx0
dt

=
(µ− λ)x0

λ+ x0
, x0(0) = 1.

Separation of variables solves the second equation, giving the implicit solution:

x0(t) + λ ln
(
x0(t)

)
= (µ− λ)t+ c0,

where c0 is a constant and x0(0) = c0 = 1.
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Inner Approximation 1

Inner Approximation: Now change the time scale for t = O (ε) by creating the
fast timescale:

t̄ =
t

ε
=

τ

Tf
.

By letting X(t̄) = x(εt̄) and Y (t̄) = y(εt̄), we obtain the scaled system:

dX
dt̄

= ε
(
−X + (µ+X)Y

)
,

dY
dt̄

= X − (λ+X)Y.

Let X = X0 + εX1 +O
(
ε2
)

and Y = Y0 + εY1 +O
(
ε2
)
, then the zeroth order

approximation is:

dX0
dt

= 0,

dY0
dt̄

= X0 − (λ+X0)Y0,

with the initial conditions, X0(0) = 1 and Y0(0) = 0.

Solving first equation gives X0(t̄) = c0 = 1 from the initial condition.

This leaves the linear initial value problem:

dY0
dt̄

= 1− (λ+ 1)Y0, Y0(0) = 0.
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Inner Approximation 2

Inner Approximation: From the linear initial value problem:

dY0
dt̄

= 1− (λ+ 1)Y0, Y0(0) = 0,

we obtain the general solution:

Y0(t̄) = c1e
−(λ+1)t̄ +

1

λ+ 1
,

which with the initial condition gives:

Y0(t̄) =
1

λ+ 1

(
1− e−(λ+1)t̄

)
.

It follows that the inner approximation satisfies:

xi(t) = 1,

yi(t) =
1

λ+ 1

(
1− e−(λ+1)t/ε

)
.

Just as with the the outer approximation, the inner approximation is readily
solved. These solutions are combined with our matching conditions to obtain a
uniformly converging solution as ε→ 0.
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Matching Condition

Matching Condition: The approximations need to match in the limit as ε→ 0,
so for the substrate, x, we have

lim
t→0

xo(t) = lim
ε→0

xi(t),

but xi(t) ≡ 1 and xo(t) was taken so that xo(0) = 1, which shows that this
condition is always satisfied.

Similarly, the approximations need to match in the limit as ε→ 0, so for the
complex, y, we have

lim
t→0

yo(t) = lim
ε→0

yi(t).

However, yo(t) =
xo(t)

λ+xo(t)
, which clearly converges to 1

λ+1
, while for fixed t > 0,

lim
ε→0

yi(t) = lim
ε→0

1

λ+ 1

(
1− e−(λ+1)t/ε

)
=

1

λ+ 1
.
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Uniform Solution

Uniform Solution: The uniform approximation is the sum of the inner and
outer approximations minus the common limit:

xu(t) = xo(t) + 1− 1 = xo(t),

yu(t) =
xo(t)

λ+ xo(t)
+

1

λ+ 1

(
1− e−(λ+1)t/ε

)
−

1

λ+ 1
,

=
xo(t)

λ+ xo(t)
−

1

λ+ 1
e−(λ+1)t/ε,

where xo(t) satisfies the implicit equation:

x0(t) + λ ln
(
x0(t)

)
= (µ− λ)t+ 1.

Note: That this implicit equation is readily solved for t and is readily solvable for
xo ∈ (0, 1), which gives an easy method to graph the solution.

However, our MatLab program graphing below just integrates the scalar scalar
ODE for xo.
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Graphs for Enzyme Problem 1

Graphs for Enzyme Problem: Letting ε = 0.01 the graphs below show that
the singular perturbation method gives very good approximations to the “exact”
solution for long term behavior.
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Graphs for Enzyme Problem 2

Graphs for Enzyme Problem: Letting ε = 0.01 the graphs also show that the
singular perturbation method gives reasonable approximations to the “exact”
solution for early kinetics, failing a bit for the very rapid decline of the substrate
initially.
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Graphs for Enzyme Problem 3

Graphs for Enzyme Problem: Letting ε = 0.1 the graphs below show that the
singular perturbation method gives good approximations to the “exact” solution
for long term behavior, but these approximations separate more with the larger ε.
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Graphs for Enzyme Problem 4

Graphs for Enzyme Problem: Letting ε = 0.1 the graphs also show that the
singular perturbation method gives reasonable approximations to the “exact”
solution for early kinetics, but failing worse for these approximations separate
with the larger ε.
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