Math 537 －Ordinary Differential Equations
 Lecture Notes－Method of Averaging

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Fall 2019
SDSO

```
Background 
table Manifold Theorem
```

Poincaré Maps Poincaré Maps

| | Introduction
 Method of Averaging |
| :--- | :--- | | Background |
| :--- |
| Stable Manifold Theorem |
| Poincaré Maps |

Introduction
Method of Averaging is a useful tool in dynamical systems， where time－scales in a differential equation are separated between a fast oscillation and slower behavior．
－The fast oscillations are averaged out to allow the determination of the qualitative behavior of averaged dynamical system．
－The averaging method dates from perturbation problems that arose in celestial mechanics．
－This method dates back to 1788 ，when Lagrange formulated the gravitational three－body problem as a perturbation of the two－body problem．
－The validity of this method waited until Fatou（1928）proved some of the asymptotic results．
－Significant results，including Krylov－Bogoliubov，followed in the 1930s，making averaging methods important classical tools for analyzing nonlinear oscillations．

Example－Seasonal Logistic Growth：Consider the logistic growth model with some seasonal variation：

$$
\dot{x}=\varepsilon\left(x\left(1-\frac{x}{M}\right)+\sin (\omega t)\right), \quad x \in \mathbb{R}, \quad 0<\varepsilon \ll 1 .
$$

It follows that the averaged equation satisfies：

$$
\dot{y}=\varepsilon y\left(1-\frac{y}{M}\right), \quad y \in \mathbb{R}
$$

The solution $x(t)$ shows
complicated dynamics
However，when the oscillations are removed，the solution $y(t)$ reduces to a simple case of a stable equilibrium at $y_{e}=M$ and an unstable equilibrium at $y_{e}=0$ ．

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉

```
Introduction
Background
Stable Manifold Theorem
Method of Averaging
Poincaré Maps
```

Background－Linear Theory
Linear Systems：For the linear system：

$$
\dot{x}=A x, \quad x \in \mathbb{R}^{n}
$$

the matrix has n eigenvalues，which allowed finding n（generalized）eigenvectors． The eigenspaces of A are invariant subspaces for the flow，$\phi_{t}\left(x_{0}\right)=e^{A t} x_{0}$ ．

Motivated by the Jordan canonical form，we divide the subspaces spanned by the eigenvectors into three classes：
（1）The stable subspace，$E^{s}=\operatorname{span}\left\{v^{1}, \ldots, v^{n_{s}}\right\}$ ，
（2）The unstable subspace，$E^{u}=\operatorname{span}\left\{u^{1}, \ldots, u^{n_{u}}\right\}$ ，
（3）The center subspace，$E^{c}=\operatorname{span}\left\{w^{1}, \ldots, w^{n_{c}}\right\}$ ，
where $v^{1}, \ldots, v^{n_{s}}$ are the n_{s}（generalized）eigenvectors whose eigenvalues have negative real parts，$u^{1}, \ldots, u^{n_{u}}$ are the n_{u}（generalized）eigenvectors whose eigenvalues have positve real parts，and $w^{1}, \ldots, w^{n_{c}}$ are the n_{c}（generalized） eigenvectors whose eigenvalues have zero real parts．

Clearly，$n_{s}+n_{u}+n_{c}=n$ ，and the names reflect the behavior of the flows on the particular subspaces with those on E^{s} exponentially decaying，E^{u} exponentially growing，and E^{c} doing neither．

Linear Systems：Earlier we studied the linear system：

$$
\dot{x}=A x, \quad x \in \mathbb{R}^{n}
$$

and showed we could make a transformation $x=P y$ ，so that $P^{-1} A P=J$ was in Jordan canonical form．

Specifically，this decoupled the system in y based on the eigenvalues of A ，and we observed the different behaviors from the fundamental solution set，$y(t)=e^{J t}$ ， which transformed back to the fundamental solution set of the original system：

$$
\Phi(t)=e^{A t}, \quad \text { which gave unique solutions } \quad \phi_{t}\left(x_{0}\right)=x\left(x_{0}, t\right)=e^{A t} x_{0}
$$

This fundamental solution generates a flow：$e^{A t} x_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ ，which gives all the solutions to $\dot{x}=A x$ ．
Specifically，the linear subspaces spanned by the eigenvectors of A are invariant under the flow，$\phi_{t}\left(x_{0}\right)=e^{A t} x_{0}$ ．

The Jordan canonical form helps visualize the distinct behaviors of the $\boldsymbol{O D E}$ ， $\dot{y}=J y$ in a＂nice＂orthogonal set．

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉（6／39）

| Introduction |
| :---: | :--- |
| Method of Averaging | | Background |
| :--- |
| Stable Manifold Theorem |
| Poincaré Maps |$^{\text {Background－Nonlinear Theory }} \quad$| 1 |
| :--- |

Nonlinear Systems：We extend these stability ideas from the linear system to the nonlinear autonomous problem

$$
\begin{equation*}
\dot{x}=f(x), \quad x \in \mathbb{R}^{n}, \quad x(0)=x_{0} \tag{1}
\end{equation*}
$$

The nonlinear system has existence－uniqueness is some small neighborhood of $t=0$ near x_{0} provided adequate smoothness of f ．

Equilibria：As always，one starts with the fixed points or equilibria of（1）by solving $f\left(x_{e}\right)=0$ ，which may be nontrivial．

Linearization：Assume that x_{e} is a fixed point of（1），then to characterize the behavior of solutions to（1），we examine the linearization at x_{e} and create the linear system：

$$
\dot{\xi}=D f\left(x_{e}\right) \xi, \quad \xi \in \mathbb{R}^{n}
$$

where $D f=\left[\partial f_{i} / \partial x_{j}\right]$ is the Jacobian matrix of the first partial derivatives of $f=\left[f_{1}\left(x_{1}, \ldots, x_{n}\right), f_{2}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right]^{T}$ and $x=x_{e}+\xi$ with $\xi \ll 1$ ．

The linearized flow map near x_{e} is given by：

$$
D \phi_{t}\left(x_{e}\right) \xi=e^{t D f\left(x_{e}\right)} \xi
$$

Ideally，we would like to decompose our space of flows at least locally（near a fixed point）into the behaviors similar to the ones observed for the linear system， which was decomposed into the stable subspace，E^{s} ，the unstable subspace，E^{u} ， and the center subspace，E^{c} ．
We expect the nonlinearity to curve our subspaces，but below gives the decomposition of the flows desired．

Background
Stable Manifold Theorem Poincaré Maps

Theorem（Hartman－Grobman）

If $D f\left(x_{e}\right)$ has no zero or purely imaginary eigenvalues，then there is a homeomorphism，h ，defined on some neighborhood，U ，of $x_{e} \in \mathbb{R}^{n}$ locally taking orbits of the nonlinear flow，ϕ_{t} of（1）to those of the linear flow，$e^{t D f\left(x_{e}\right)} \xi$ ．The homeomorphism preserves the sense of the orbits and can be chosen to preserve parametrization by time．

Definition（Hyperbolic Fixed Point）

When $D f\left(x_{e}\right)$ has no eigenvalues with zero real part，x_{e} is called a hyperbolic or nondegenerate fixed point．

The behavior of solutions of（1）near a hyperbolic fixed point is determined（locally）by the linearization．

Background－Example

Example：Phase plots for the $O D E$

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)-\varepsilon\binom{0}{x_{1}^{2} x_{2}} .
$$

$\varepsilon=0.2$

$\varepsilon=0$

$\varepsilon=-0.2$

The Stable Manifold Theorem shows that $W_{\text {loc }}^{s}\left(x_{e}\right)$ and $W_{\text {loc }}^{u}\left(x_{e}\right)$ are tangent to the eigenspaces, E^{s} and E^{u}.

Theorem (Stable Manifold Theorem)

Suppose that $\dot{x}=f(x)$ has a hyperbolic fixed point, x_{e}. Then there exist local stable and unstable manifolds, $W_{\text {loc }}^{s}\left(x_{e}\right)$ and $W_{\text {loc }}^{u}\left(x_{e}\right)$, of the same dimensions, n_{s} and n_{u}, as those of the eigenspaces, E^{s} and E^{u}, of the linearized system and tangent to E^{s} and E^{u} at $x_{e} . W_{\text {loc }}^{s}\left(x_{e}\right)$ and $W_{\text {loc }}^{u}\left(x_{e}\right)$ are as smooth as the

Stable Manifold Theorem

Stable Manifold Theorem: Below we make a number of comments about the nonlinear $O D E$ with respect to this theorem

- This theorem avoids discussion about a center manifold being tangent to E^{c}, confining the results to hyperbolic fixed points
- Interest in a center manifold often relates to studies in bifurcation theory.
- The local invariant manifolds have global analogues.
- The global stable manifold, W^{s}, follows points in $W_{l o c}^{s}\left(x_{e}\right)$ flow backwards in time:

$$
W^{s}\left(x_{e}\right)=\bigcup_{t \leq 0} \phi_{t}\left(W_{l o c}^{s}\left(x_{e}\right)\right)
$$

- The global unstable manifold, W^{u}, follows points in $W_{l o c}^{u}\left(x_{e}\right)$ flow forward in time:

$$
W^{u}\left(x_{e}\right)=\bigcup_{t \geq 0} \phi_{t}\left(W_{l o c}^{u}\left(x_{e}\right)\right)
$$

- Existence and uniqueness ensures that two stable (unstable) manifolds of distinct fixed points, $x_{1 e}, x_{2 e}$, cannot intersect
- Intersections of stable and unstable manifolds of distinct fixed points or the same fixed point can occur.

Define the local stable and unstable manifolds of the fixed point, $x_{e}, W_{l o c}^{s}\left(x_{e}\right)$, $W_{l o c}^{u}\left(x_{e}\right)$, as follows:

- $W_{l o c}^{s}\left(x_{e}\right)=\left\{x \in U \mid \phi_{t}(x) \rightarrow x_{e}\right.$ as $t \rightarrow \infty$, and $\phi_{t}(x) \in U$ for all $\left.t \geq 0\right\}$,
- $W_{\text {loc }}^{u}\left(x_{e}\right)=\left\{x \in U \mid \phi_{t}(x) \rightarrow x_{e}\right.$ as $t \rightarrow-\infty$, and $\phi_{t}(x) \in U$ for all $\left.t \leq 0\right\}$ where $U \subset \mathbb{R}^{n}$ is a neighborhood of the fixed point, x_{e}

These invariant manifolds, $W_{l o c}^{s}\left(x_{e}\right)$ and $W_{l o c}^{u}\left(x_{e}\right)$, provide nonlinear analogues of the flat stable and unstable eigenspaces, E^{s} and E^{u} of the linear problem.

```
Method Introduction
Stable Manifold Theorem
Introduction
Stable Manifold Theorem
``` Poincaré Maps
Manifolds: For linear systems we obtained invariant subspaces spanning \(\mathbb{R}^{n}\) for stable, unstable, and center behavior.

For the nonlinear \(\boldsymbol{O D E}\) the behavior can only be defined locally, so we define the local stable and unstable manifolds.

\section*{Definition (Local Stable and Unstable Manifold)}

function, \(f\).
\(\qquad\)

Poincaré maps can be interpreted as discrete dynamical systems（Math 538）．

\section*{Definition（Poincaré Map）}

Let \(\gamma\) be a periodic orbit of some flow \(\phi_{t}\left(x_{0}\right) \in \mathbb{R}^{n}\) arising from some \(\boldsymbol{O D E}\) ．Let \(\Sigma \subset \mathbb{R}^{n}\) be a local differentiable section of dimension \(n-1\) ，where the flow \(\phi_{t}\) is everywhere transverse to \(\Sigma\) ，called a Poincaré section through \(x_{0}\)（implying that if \(n_{v}\) is the normal to \(\Sigma\) at a point \(x\) ，then \(n_{v} \cdot \phi_{t} \neq 0\) ）．

Given an open and connected neighborhood \(U \subset \Sigma\) of \(x_{0}\) ，a function
\[
P: U \rightarrow \Sigma
\]
is called a Poincaré map for the orbit \(\gamma\) on the Poincaré section \(\Sigma\) through the point \(x_{0}\) if：
－\(P\left(x_{0}\right)=x_{0}\)
－\(P(U)\) is a neighborhood of \(x_{0}\) and \(P: U \rightarrow P(U)\) is a diffeomorphism．
－For every point \(x\) in \(U\) ，the positive semi－orbit of \(x\) intersects \(\Sigma\) for the first time at \(P(x)\)
```

Background

```
Poincaré Maps

Poincaré Maps

Poincaré maps have the property that the periodic orbit \(\gamma\) of the continuous dynamical system，\(O D E\) ，is stable if and only if the fixed point \(x_{0}\) of the discrete dynamical system is stable．
Let the Poincaré map，\(P: U \rightarrow \Sigma\) ，be defined as above and create a discrete dynamical system，
\[
P(n, x) \equiv P^{n}(x) \quad \text { with } \quad P: \mathbb{Z}^{n} \times U \rightarrow U
\]
where
\[
P^{0} \equiv \operatorname{id}_{U}, \quad P^{n+1} \equiv P \circ P^{n}, \quad P^{-n-1} \equiv P^{-1} \circ P^{-n}
\]
and \(x_{0}\) is a fixed point．
Stability of this discrete map is found by linearizing，\(P\) ，at \(x_{0}\) ，and determining the eigenvalues of \(D P\left(x_{0}\right)\) ．
If these eigenvalues are all inside the unit circle，then \(x_{0}\) is stable，which in turn gives the periodic orbit of the \(\boldsymbol{O D E}\) as being stable．
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉} & \multicolumn{2}{|l|}{（17／39）} \\
\hline & \begin{tabular}{l}
Introduction \\
Method of Averaging
\end{tabular} & \[
\begin{aligned}
& \text { Background } \\
& \text { Stable Manifold Theorem } \\
& \text { Poincaré Maps }
\end{aligned}
\] & \\
\hline Poincaré Maps & & & 4 \\
\hline
\end{tabular}

Forced Linear Oscillator：Consider the ODE given by：
\[
\ddot{x}+2 \beta \dot{x}+x=\gamma \cos (\omega t), \quad 0 \leq \beta<1
\]
which can be readily transformed into the ODE system with \(x=x_{1}\) and \(\dot{x}_{1}=x_{2}\) ：
\[
\begin{aligned}
\binom{\dot{x}_{1}}{\dot{x}_{2}} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & -2 \beta
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\gamma \cos (\omega t)} \\
\dot{\theta} & =1
\end{aligned}
\]

This system has a forcing function with period \(T=2 \pi / \omega\) ．
One can use techniques from Math 337 （method of undetermined coefficients） to solve this problem
\[
x(t)=e^{-\beta t}\left(c_{1} \cos \left(\omega_{d} t\right)+c_{2} \sin \left(\omega_{d} t\right)\right)+A \cos (\omega t)+B \sin (\omega t)
\]
where \(\omega_{d}=\sqrt{1-\omega^{2}}\) is the damped natural frequency and
\[
A=\frac{\left(1-\omega^{2}\right) \gamma}{\left(\left(1-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}\right)}, \quad B=\frac{2 \beta \omega \gamma}{\left(\left(1-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}\right)}
\]
\[
\begin{array}{|l|l}
\begin{array}{l}
\text { Introduction } \\
\text { Method of Averaging }
\end{array} & \begin{array}{l}
\text { Background } \\
\text { Stable Manifold } \\
\text { Poincaré Maps }
\end{array} \\
\hline
\end{array}
\]

Forced Linear Oscillator
Forced Linear Oscillator：The stability of the Poincaré map is determined by the eigenvalues of the Jacobian matrix for \(P\left(x_{10}, x_{20}, 0\right)\)
\[
\left(\begin{array}{ll}
\frac{\partial P_{1}}{\partial x_{10}} & \frac{\partial P_{1}}{\partial x_{20}} \\
\frac{\partial P_{2}}{\partial x_{10}} & \frac{\partial P_{2}}{\partial x_{20}}
\end{array}\right)=\left(\begin{array}{cc}
e^{-2 \pi \beta / \omega} & 0 \\
0 & e^{-2 \pi \beta / \omega}
\end{array}\right)
\]
which are both eigenvalues with magnitude less than 1.

Forced Linear Oscillator：The initial conditions determine the \(c_{1}\) and \(c_{2}\) ，so if \(x(0)=x_{1}(0)=x_{10}\) and \(\dot{x}(0)=x_{2}(0)=x_{20}\) ，then \(c_{1}=x_{10}-A\) and \(c_{2}=\left(x_{20}+\beta\left(x_{10}-A\right)-\omega B\right) / \omega_{d}\) ．
Since \(\phi_{t}\left(x_{10}, x_{20}, 0\right)\) is given with
\[
\begin{aligned}
x_{1}(t)= & e^{-\beta t}\left(c_{1} \cos \left(\omega_{d} t\right)+c_{2} \sin \left(\omega_{d} t\right)\right)+A \cos (\omega t)+B \sin (\omega t), \\
x_{2}(t)= & e^{-\beta t}\left(-\beta\left(c_{1} \cos \left(\omega_{d} t\right)+c_{2} \sin \left(\omega_{d} t\right)\right)+\omega_{d}\left(-c_{1} \sin \left(\omega_{d} t\right)+c_{2} \cos \left(\omega_{d} t\right)\right)\right) \\
& -\omega(A \sin (\omega t)-B \cos (\omega t)),
\end{aligned}
\]
we can compute the Poincaré map explicitly as \(\Pi\left[\phi_{2 \pi / \omega}\left(x_{10}, x_{2} 0,0\right)\right]\) ．
This simplifies more in the case of resonance when \(\omega=\omega_{d}=\sqrt{1-\beta^{2}}\) ，and the Poincaré map becomes
\[
P\left(x_{10}, x_{20}, 0\right)=\binom{\left(x_{10}-A\right) e^{-2 \pi \beta / \omega}+A}{\left(x_{20}-\omega B\right) e^{-2 \pi \beta / \omega}+\omega B}
\]

This is readily seen to have a fixed point at \(\left(x_{1}, x_{2}\right)=(A, \omega B)\) （when \(c_{1}=c_{2}=0\) ）．
\begin{tabular}{|l|l}
Method of Averaging
\end{tabular} \begin{tabular}{l}
Lntroduction \\
\begin{tabular}{l}
Lagrange Standard Form \\
Averaging Theorem
\end{tabular} \\
Method of Averaging
\end{tabular}

Method of Averaging：We examine some classical methods for problem in nonlinear oscillations

These techniques build on our studies of perturbation theory and extend to studies of Poincaré maps．
In a linear oscillator problem with weakly nonlinear effects or small perturbations，one expects that solutions of the linear oscillator should be close to the perturbed problem．

In general，this may NOT be the case．However，for finite time one usually finds the solutions close．

The method of averaging is applicable to systems of the form：
\[
\dot{x}=\varepsilon f(x, t), \quad x \in \mathbb{R}^{n}, \quad \varepsilon \ll 1
\]
where \(f\) is \(T\)－periodic in \(t\) ．
The \(T\)－periodic forcing contrasts with the slow evolution of the averaged solutions from the \(\mathcal{O}(\varepsilon)\) vector field．

Consider the \(\boldsymbol{I V P}\) ：
\[
\dot{x}=A(t) x+\varepsilon g(x, t), \quad x(0)=x_{0}
\]
where \(A(t)\) is a continuous \(n \times n\) ，and \(g(x, t)\) is a sufficiently smooth function of \(t\) and \(x\) ．

Assume that \(\Phi(t)\) is the fundamental matrix solution of the unperturbed system \((\varepsilon=0)\) ，and \(y(t)\) satisfies \(y(0)=x_{0}\) and becomes part of comoving coordinates with
\[
x=\Phi(t) y, \quad \text { so } \quad \dot{x}=\dot{\Phi}(t) y+\Phi(t) \dot{y}
\]

Since \(x(t)\) solves the perturbed system above，we have
\[
\dot{\Phi}(t) y+\Phi(t) \dot{y}=A(t) \Phi(t) y+\varepsilon g(\Phi(t) y, t)
\]
or
\[
\Phi(t) \dot{y}=(A(t) \Phi(t)-\dot{\Phi}(t)) y+\varepsilon g(\Phi(t) y, t)
\]
which doesn＇t have the form of（2），so how can averaging be applied？
（2）Does the qualitative behavior of the averaged system（3）reflect the behavior of the original system，（2）？
\begin{tabular}{|c|c}
Introduction & Lagrange Standard Form \\
Method of Averaging
\end{tabular}
Method of Averaging Averaging Theorem

Introduction
Lagrange Standard Form
Averaging Theorem
van der Pol Equation

Since \(\Phi(t)\) is the fundamental matrix solution of the unperturbed system，so \(\dot{\Phi}(t)=A(t) \Phi(t)\) ，it follows that：
\[
\Phi(t) \dot{y}=\varepsilon g(\Phi(t) y, t), \quad \text { equivalently } \quad \dot{y}=\varepsilon \Phi^{-1}(t) g(\Phi(t) y, t)
\]

This equation is said to have the Lagrange standard form and can be written without loss of generality as
\[
\dot{y}=\varepsilon f(y, t)
\]
which is the same form as our weakly nonlinear \(\boldsymbol{O D} \boldsymbol{E}\) given by（2）．
Example of weakly nonlinear forced oscillations：Studies examine：
\[
\ddot{x}+\omega_{0}^{2} x=\varepsilon f(x, \dot{x}, t),
\]
where the linear \(O D E\) with \(\varepsilon=0\) has solutions with
\[
x(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)
\]

This \(2^{\text {nd }}\) order \(O D E\) is transformed into a \(1^{\text {st }}\) order system，then converted to polar coordinates to study the behavior of the periodic solutions．
van der Pol Oscillator has been studied for many years due to the interesting behaviors observed，and its behavior simulates a tunnel diode in electric circuits and has been used for simple models of neurons．

The equation is given by
\[
\ddot{u}-\varepsilon\left(1-u^{2}\right) \dot{u}+u=0
\]
where \(\varepsilon\) is a small parameter．
This equation is readily transformed into the system：
\[
\begin{equation*}
\binom{\dot{u}}{\dot{v}}=\binom{v}{-u+\varepsilon\left(1-u^{2}\right) v} . \tag{4}
\end{equation*}
\]

For \(\varepsilon=0\) ，the solution satisfies：
\[
u(t)=r \cos (\theta), \quad v(t)=-r \sin (\theta)
\]
where \(\theta=t+\phi\) and the constants \(r\) and \(\phi\) are arbitrary representing the amplitude and phase of the system．
van der Pol Oscillator：If the periodic solution of（4）is a continuous function of \(\varepsilon\) ，then the orbit of this solution should be close to one of the solutions for \(\varepsilon=0\) ，where \(r\) is a constant and \(\theta\) varies in \([0,2 \pi]\) ．

We need to find what values of \(r\) can generate periodic orbits when \(\varepsilon \neq 0\) ．
Let \(r(t)\) and \(\theta(t)\) be new coordinates（think polar），then with \(u=r \cos (\theta)\) and \(v=-r \sin (\theta)\) ，we have
\[
\begin{aligned}
\dot{u} & =\dot{r} \cos (\theta)-r \sin (\theta) \dot{\theta} \\
\dot{v} & =-\dot{r} \sin (\theta)-r \cos (\theta) \dot{\theta}
\end{aligned}
\]

It is not hard to see that this gives
\[
\begin{aligned}
\dot{r} & =\dot{u} \cos (\theta)-\dot{v} \sin (\theta) \\
r \dot{\theta} & =-\dot{u} \sin (\theta)-\dot{v} \cos (\theta)
\end{aligned}
\]

However，we know \(\dot{u}\) and \(\dot{v}\) from（4），so we can insert them into the equation above．
van der Pol Oscillator：With the substitutions and a little algebra we obtain the new system in the transformed coordinates：
\[
\begin{align*}
\dot{\theta} & =1+\varepsilon\left(1-r^{2} \cos ^{2}(\theta)\right) \sin (\theta) \cos (\theta) \tag{5}\\
\dot{r} & =\varepsilon\left(1-r^{2} \cos ^{2}(\theta)\right) r \sin ^{2}(\theta)
\end{align*}
\]

For \(\varepsilon\) chosen such that \(1+\varepsilon\left(1-r^{2} \cos ^{2}(\theta)\right) \sin (\theta) \cos (\theta)>0\) and \(r\) in a bounded set，then the orbits are described by the solutions of the scalar equation：
\[
\begin{equation*}
\frac{d r}{d \theta}=\varepsilon g(r, \theta, \varepsilon) \tag{6}
\end{equation*}
\]
where
\[
g(r, \theta, \varepsilon)=\frac{\left(1-r^{2} \cos ^{2}(\theta)\right) r \sin ^{2}(\theta)}{1+\varepsilon\left(1-r^{2} \cos ^{2}(\theta)\right) \sin (\theta) \cos (\theta)}
\]

This reduces finding periodic solutions of van der Pol＇s equation to finding periodic solutions of the scalar equation（6）of period \(2 \pi\) ．

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉（29／39）

Lagrange Standard Form Averaging Theorem
van der Pol Equation
van der Pol Oscillator：We seek to find periodic solutions \(r^{*}(\theta, \varepsilon)\) of（6）of period \(2 \pi\) in \(\theta\) ．

In fact，if \(r^{*}(\theta, \varepsilon)\) is such a \(2 \pi\)－periodic solution and \(\theta^{*}(t, \varepsilon), \theta^{*}(0, \varepsilon)=0\) solves the equation：
\[
\dot{\theta}=1+\varepsilon\left(1-\left[r^{*}(\theta, \varepsilon)\right]^{2} \cos ^{2}(\theta)\right) \sin (\theta) \cos (\theta)
\]
then
\[
u(t)=r^{*}\left(\theta^{*}(t, \varepsilon), \varepsilon\right) \cos \left(\theta^{*}(t, \varepsilon)\right), \quad v(t)=-r^{*}\left(\theta^{*}(t, \varepsilon), \varepsilon\right) \sin \left(\theta^{*}(t, \varepsilon)\right)
\]
is a solution of van der Pol＇s equation．
Let \(T\) be the unique solution of \(\theta^{*}(T, \varepsilon)=2 \pi\) ．Then uniqueness of the \(\dot{\theta}\) equation implies \(\theta^{*}(t+T, \varepsilon)=\theta^{*}(t, \varepsilon)+2 \pi\) for all \(t\) ．

Thus，\(u(t+T)=u(t), v(t+T)=v(t)\) giving a \(T\)－periodic solution to van der Pol＇s equation．
We see that solving（6），
\[
\frac{d r}{d \theta}=\varepsilon g(r, \theta, \varepsilon)
\]
fits into our studies of perturbation problems．

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉（30／39）
\(\left.\)\begin{tabular}{l|l}
Method of Averaging
\end{tabular}\(\quad\)\begin{tabular}{l}
Lagrange Standard Form \\
Averaging Theorem
\end{tabular} \right\rvert\,

The method of averaging is applicable to systems of the form：
\[
\dot{x}=\varepsilon f(x, t, \varepsilon), \quad x \in U \subset \mathbb{R}^{n}, \quad \varepsilon \ll 1
\]

\section*{Theorem（The Averaging Theorem）}

There exists a \(C^{r}\) change of coordinates \(x=y+\varepsilon w(y, t, \varepsilon)\) under which（2） becomes
\[
\dot{y}=\varepsilon \bar{f}(y)+\varepsilon^{2} f_{1}(y, t, \varepsilon)
\]
where \(f_{1}\) is of period \(T\) in \(t\) ．Moreover，
（1）If \(x(t)\) and \(y(t)\) are solutions of（2）and（3）based at \(x_{0}, y_{0}\) ，respectively，at \(t=0\) ，and \(\left|x_{0}-y_{0}\right|=\mathcal{O}(\varepsilon)\) ，then \(|x(t)-y(t)|=\mathcal{O}(\varepsilon)\) on a time scale \(t \sim \frac{1}{\varepsilon}\) ．
（2）If \(p_{0}\) is a hyperbolic fixed point of（3）then there exists \(\varepsilon_{0}>0\) such that，for all \(0<\varepsilon \leq \varepsilon_{0}\) ，（2）possesses a unique hyperbolic periodic orbit \(\gamma_{\varepsilon}(t)=p_{0}+\mathcal{O}(\varepsilon)\) of the same stability type as \(p_{0}\) ．
（3）If \(x^{s}(t) \in W^{s}\left(\gamma_{\varepsilon}\right)\) is a solution of（2）lying in the stable manifold of the hyperbolic periodic orbit \(\gamma_{\varepsilon}=p_{0}+\mathcal{O}(\varepsilon), y^{s}(t) \in W^{s}\left(p_{0}\right)\) is a solution of（3） lying in the stable manifold of the hyperbolic fixed point \(p_{0}\) and \(\left|x^{s}(0)-y^{s}(0)\right|=\mathcal{O}(\varepsilon)\) ，then \(\left|x^{s}(t)-y^{s}(t)\right|=\mathcal{O}(\varepsilon)\) for \(t[0, \infty)\) ．Similar results apply to solutions lying in the unstable manifolds on the time interval \(t \in(-\infty, 0]\) ．
van der Pol Oscillator：The equations above are solved to give the generalized system in amplitude and phase：
\[
\begin{aligned}
\dot{r} & =\varepsilon-F(r \cos (t+\theta),-r \sin (t+\theta), t) \sin (t+\theta) \\
\dot{\theta} & =-\frac{\varepsilon}{r} F(r \cos (t+\theta),-r \sin (t+\theta), t) \cos (t+\theta)
\end{aligned}
\]

For \(\varepsilon\) small and \(\theta\) constant，this system would satisfy our Method of Averaging Theorem．However，\(\theta(t)\) is slow varying，so the above system is not quite \(2 \pi\)－periodic．
Introduce an approximation，using a near－identity transformation：
\[
r(t)=\bar{r}+\varepsilon w_{1}(\bar{r}, \bar{\theta}, \varepsilon)+\mathcal{O}\left(\varepsilon^{2}\right), \quad \theta(t)=\bar{\theta}+\varepsilon w_{2}(\bar{r}, \bar{\theta}, \varepsilon)+\mathcal{O}\left(\varepsilon^{2}\right)
\]
where \(w_{1}\) and \(w_{2}\) are generating functions such that \(\bar{r}\) and \(\bar{\theta}\) are as simple as possible．
This gives the approximations：
\[
\begin{aligned}
\frac{d \bar{r}}{d t} & =\varepsilon\left(-\frac{\partial w_{1}}{\partial t}-\sin (t+\bar{\theta}) F(\bar{r} \cos (t+\bar{\theta}),-\bar{r} \sin (t+\bar{\theta}), t)\right)+\mathcal{O}\left(\varepsilon^{2}\right) \\
\frac{d \bar{\theta}}{d t} & =\varepsilon\left(-\frac{\partial w_{2}}{\partial t}-\frac{\cos (t+\bar{\theta})}{\bar{r}} F(\bar{r} \cos (t+\bar{\theta}),-\bar{r} \sin (t+\bar{\theta}), t)\right)+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
\]

Introduction
Method of Averaging
Aagrange Standard Form
Averaging Theorem
van der Pol－revisited
van der Pol Oscillator：To avoid having secular terms we choose \(w_{1}\) and \(w_{2}\) to eliminate all \(\mathcal{O}(\varepsilon)\) terms except for their average value．

The averaged equations become：
\[
\begin{aligned}
\frac{d \bar{r}}{d t} & =-\varepsilon \frac{1}{T} \int_{0}^{T} \sin (t+\bar{\theta}) F(\bar{r} \cos (t+\bar{\theta}),-\bar{r} \sin (t+\bar{\theta}), t) d t+\mathcal{O}\left(\varepsilon^{2}\right) \\
\frac{d \bar{\theta}}{d t} & =-\varepsilon \frac{1}{T} \int_{0}^{T} \frac{\cos (t+\bar{\theta})}{\bar{r}} F(\bar{r} \cos (t+\bar{\theta}),-\bar{r} \sin (t+\bar{\theta}), t) d t+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
\]

For the autonomous \(O D E\) ，the averaging period is \(T=2 \pi\) and these equations reduce to the form：
\[
\begin{aligned}
\frac{d \bar{r}}{d t} & =-\varepsilon \frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (t) F(\bar{r} \cos (t),-\bar{r} \sin (t)) d t+\mathcal{O}\left(\varepsilon^{2}\right) \\
\frac{d \bar{\theta}}{d t} & =-\varepsilon \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\cos (t)}{\bar{r}} F(\bar{r} \cos (t),-\bar{r} \sin (t)) d t+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
\]
where we see that the slow amplitude variation ODE is decoupled．

\section*{Introduction}

Lagrange Standard Form
Averaging Theorem

\section*{van der Pol－revisited}

Many derivations of the van der Pol oscillator omit the near－identity transformation．

Knowing this transformation allows greater accuracy in transforming back to the original variables \(r\) and \(\theta\) ，and secondly，one can obtain higher order approximations by simply extending our approximations above to \(\mathcal{O}\left(\varepsilon^{3}\right)\) ．
van der Pol Oscillator：Now consider
\[
F(u, \dot{u}, t)=\left(1-u^{2}\right) \dot{u}
\]
then the averaged equation becomes：
\[
\begin{aligned}
\frac{d \bar{r}}{d t} & =\varepsilon \frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{r} \sin ^{2}(t)\left(1-\bar{r}^{2} \cos ^{2}(t)\right) d t+\mathcal{O}\left(\varepsilon^{2}\right) \\
\frac{d \bar{\theta}}{d t} & =\varepsilon \frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (t) \sin (t)\left(1-\bar{r}^{2} \cos ^{2}(t)\right) d t+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
\]
where we see that the slow amplitude variation ODE is decoupled．

van der Pol－revisited
van der Pol Oscillator：The averaged equation for \(\bar{r}\) can be solved exactly by separation of variables and gives the result：
\[
\bar{r}(t)=\frac{2 e^{\varepsilon t / 2}}{\sqrt{e^{\varepsilon t}-1+\frac{4}{\bar{r}(0)^{2}}}}
\]

Below are graphs for the van der Pol oscillator for small \(\varepsilon\) ．

Below are graphs for the van der Pol oscillator for large \(\varepsilon\) ．These show why this is often called a relaxation oscillator．

The nonlinear \(O D E\) in \(\bar{r}\) can be analyzed qualitatively．
It has two negative equilibria， \(\bar{r}_{e}=0,2\) ．
The equilibrium at \(\bar{r}_{e}=0\) has a positive eigenvalue，so it results in an unstable node with solutions spiraling away from the origin．

The equilibrium at \(\bar{r}_{e}=2\) has a negative eigenvalue，so it results in an stable node，which corresponds to a stable almost \(2 \pi\)－periodic orbit of radius 2

The \(O D E\) for \(\bar{\theta}\) shows that up to \(\mathcal{O}\left(\varepsilon^{2}\right)\) the phase shift remains constant．
\[
\begin{aligned}
\frac{d \bar{r}}{d t} & =\varepsilon \frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{r} \sin ^{2}(t)\left(1-\bar{r}^{2} \cos ^{2}(t)\right) d t=\varepsilon \frac{\bar{r}}{8}\left(4-\bar{r}^{2}\right) \\
\frac{d \bar{\theta}}{d t} & =\varepsilon \frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (t) \sin (t)\left(1-\bar{r}^{2} \cos ^{2}(t)\right) d t=0
\end{aligned}
\]

電

Method of Averaging \(\begin{array}{r}\text { Introduction }\end{array}\)
Lagrange Standard Form
Averaging Theorem
Averaging Theorem

van der Pol－revisited```

