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Definitions 1

Consider the 2nd order linear differential equation:

P (x)y ′′ +Q(x)y ′ +R(x)y = F (x). (1)

Definition (Ordinary and Singular Points)

x0 is an ordinary point of Eqn. (1) if P (x0) 6= 0 and Q(x)/P (x), R(x)/P (x), and
F (x)/P (x) are analytic at x0.

x0 is a singular point of Eqn. (1) if x0 is not an ordinary point.

The previous ODEs solved by power series methods have centered around
x0 = 0, when this is an ordinary point.

In an interval about a singular point, the solutions of Eqn. (1) can exhibit
behavior different from power series solutions for Eqn. (1) near an ordinary
point.

If x0 = 0, then these solutions may behave like ln(x) or x−n near x0.
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Definitions 2

We concentrate on the homogeneous 2nd order linear differential equation to
better understand behavior of the solution near a singular point:

P (x)y ′′ +Q(x)y ′ +R(x)y = 0. (2)

Definition (Regular and Irregular Singular Points)

If x0 is a singular point of Eqn. (2), then x0 is a regular singular point provided
the functions:

(x− x0)
Q(x)

P (x)
and (x− x0)2

R(x)

P (x)

are analytic at x0.

A singular point that is not regular is said to be an irregular singular point.

If Eqn. (2) has a regular singular point at x0, then it is possible that no power
series solution exists of the form:

y(x) =

∞∑
n=0

an(x− x0)n.
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Bessel’s Equation

Example: Consider Bessel’s equation of order ν:

x2y ′′ + xy ′ + (x2 − ν2)y = 0,

where P (x) = x2, Q(x) = x, and R(x) = x2 − ν2.

It is clear that x = 0 is a singular point.

We see that

lim
x→0

x
Q(x)

P (x)
= 1 and lim

x→0
x2
R(x)

P (x)
= lim
x→0

(x2 − ν2) = −ν2,

which are both finite, so analytic.

It follows that x0 = 0 is a regular singular point.

Any other value of x0 for Bessel’s equation gives an ordinary
point.
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Legendre’s Equation 1

Example: Consider Legendre’s equation:

(1− x2)y ′′ − 2xy ′ + α(α+ 1)y = 0,

where P (x) = (1− x2), Q(x) = −2x, and R(x) = α(α+ 1).

It is clear that x = ±1 are singular points.

We see that

lim
x→1

(x− 1)
Q(x)

P (x)
= lim
x→1

(x− 1)
−2x

(1− x2)
= lim
x→1

2x

1 + x
= 1, and

lim
x→1

(x− 1)2
R(x)

P (x)
= lim
x→1

(x− 1)2
α(α+ 1)

(1− x2)
= lim
x→1

(x− 1)
−α(α+ 1)

1 + x
= 0,

which are both finite, so analytic.

It follows that x0 = 1 is a regular singular point, and a similar argument shows
that x0 = −1 is a regular singular point.
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Legendre’s Equation 2

Any other value of x0 for Legendre’s equation gives an ordinary point, so x0 = 0
is an ordinary point, and we seek power series solutions:

y(x) =

∞∑
n=0

anx
n, y ′(x) =

∞∑
n=1

nanx
n−1, and y ′′(x) =

∞∑
n=2

n(n− 1)anx
n−2

These are inserted into the Legendre Equation to give:

(1− x2)

∞∑
n=2

n(n− 1)anx
n−2 − 2x

∞∑
n=1

nanx
n−1 + α(α+ 1)

∞∑
n=0

anx
n = 0

The first two sums could start their index at n = 0 without changing anything, so
this expression is easily changed by multiplying by x or x2 and shifting the index
to:

∞∑
n=0

(n+2)(n+1)an+2x
n−

∞∑
n=0

n(n−1)anx
n−2

∞∑
n=0

nanx
n+α(α+1)

∞∑
n=0

anx
n = 0.
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Legendre’s Equation 3

Collecting coefficients gives:

∞∑
n=0

[
(n+ 2)(n+ 1)an+2 −

(
n(n− 1) + 2n− α(α+ 1)

)
an
]
xn = 0

or
∞∑
n=0

[
(n+ 2)(n+ 1)an+2 −

(
n(n+ 1)− α(α+ 1)

)
an
]
xn = 0.

The previous expression gives the recurrence relation:

an+2 =
n(n+ 1)− α(α+ 1)

(n+ 2)(n+ 1)
an for n = 0, 1, ..

Properties of power series give a0 and a1 as arbitrary with y(0) = a0 and
y ′(0) = a1.
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Legendre’s Equation 4

The recurrence relation shows that all the even coefficients, a2n, depend only
on a0, while all odd coefficients, a2n+1, depend only on a1, so all solutions have
the form:

y(x) = a0y1(x) + a1y2(x),

where y1(x) has only even powers of x and y2(x) has only odd powers of x.

From the recurrence relation it is clear that any integer value of α = 0, 1, 2, . . .
results in coefficients aα+2 = aα+4 = · · · = aα+2k = 0 for k = 1, 2, . . .

This results in one solution being an α-degree polynomial, which is valid for all x.

The other solution remains an infinite series.

If α is not an integer, then both linearly independent solutions are infinite
series.

The polynomial solution converges for all x, while the infinite series solution
converges for |x| < 1 using the ratio test.
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Cauchy-Euler Equation 1

Cauchy-Euler Equation (Also, Euler Equation): Consider the differential
equation:

L[y] = t2y ′′ + αty ′ + βy = 0,

where α and β are constants.

Assume t > 0 and attempt a solution of the form

y(t) = tr.

Note that tr may not be defined for t < 0.

The result is

L[tr] = t2(r(r − 1)tr−2) + αt(rtr−1) + βtr

= tr[r(r − 1) + αr + β] = 0.

Thus, obtain quadratic equation

F (r) = r(r − 1) + αr + β = 0.
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Cauchy-Euler Equation 2

Cauchy-Euler Equation: The quadratic equation

F (r) = r(r − 1) + αr + β = 0

has roots

r1, r2 =
−(α− 1)±

√
(α− 1)2 − 4β

2
.

This is very similar to our constant coefficient homogeneous DE.

Real, Distinct Roots: If F (r) = 0 has real roots, r1 and r2, with
r1 6= r2, then the general solution of

L[y] = t2y ′′ + αy ′ + βy = 0,

is
y(t) = c1t

r1 + c2t
r2 , t > 0.
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Example: Consider the equation

2t2y ′′ + 3ty ′ − y = 0.

By substituting y(t) = tr, we have

tr[2r(r − 1) + 3r − 1] = tr(2r2 + r − 1) = tr(2r − 1)(r + 1) = 0.

This has the real roots r1 = −1 and r2 = 1
2 , giving the general

solution
y(t) = c1t

−1 + c2
√
t, t > 0.
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Cauchy-Euler Equation 4

Equal Roots: If F (r) = (r − r1)2 = 0 has r1 as a double root, there is one
solution, y1(t) = tr1 .

Need a second linearly independent solution.

Note that not only F (r1) = 0, but F ′(r1) = 0, so consider

∂

∂r
L[tr] =

∂

∂r
[trF (r)] =

∂

∂r
[tr(r − r1)2]

= (r − r1)2tr ln(t) + 2(r − r1)tr.

Also,
∂

∂r
L[tr] = L

[
∂

∂r
(tr)

]
= L[tr ln(t)].

Evaluating these at r = r1 gives

L[tr1 ln(t)] = 0.
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Cauchy-Euler Equation 5

Equal Roots: For F (r) = (r − r1)2 = 0, where r1 is a double root,
then the differential equation

L[y] = t2y ′′ + αy ′ + βy = 0,

was shown to satisfy

L[tr1 ] = 0 and L[tr1 ln(t)] = 0.

It follows that the general solution is

y(t) = (c1 + c2 ln(t))tr1 .
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Example: Consider the equation

t2y ′′ + 5ty ′ + 4y = 0.

By substituting y(t) = tr, we have

tr[r(r − 1) + 5r + 4] = tr(r2 + 4r + 4) = tr(r + 2)2 = 0.

This only has the real root r1 = −2, which gives general solution

y(t) = (c1 + c2 ln(t))t−2, t > 0.
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Cauchy-Euler Equation 7

Complex Roots: Assume F (r) = 0 has r = µ± iν as complex roots,
the solutions are still y(t) = tr.

However,

tr = e(µ+iν) ln(t) = tµ[cos(ν ln(t)) + i sin(ν ln(t))].

As before, we obtain the two linearly independent solutions by taking
the real and imaginary parts, so the general solution is

y(t) = tµ[c1 cos(ν ln(t)) + c2 sin(ν ln(t))].
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Cauchy-Euler Equation 8

Example: Consider the equation

t2y ′′ + ty ′ + y = 0.

By substituting y(t) = tr, we have

tr[r(r − 1) + r + 1] = tr(r2 + 1) = 0.

This has the complex roots r = ±i (µ = 0 and ν = 1), which gives the
general solution

y(t) = c1 cos(ln(t)) + c2 sin(ln(t)), t > 0.
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Regular Singular Problem 1

Regular Singular Point: Consider the equation

P (x)y ′′ +Q(x)y ′ +R(x)y = 0,

and without loss of generality assume that it has a regular singular
point at x0 = 0.

This implies that xQ(x)/P (x) = p(x) and x2R(x)/P (x) = q(x) are
analytic at x = 0, so

p(x) =

∞∑
n=0

pnx
n and q(x) =

∞∑
n=0

qnx
n,

are convergent series for some interval |x| < ρ with ρ > 0.

This gives the equation:

L[y] = x2y ′′ + xp(x)y ′ + q(x)y = 0.
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Regular Singular Problem 2

Regular Singular Problem: Since the p(x) and q(x) are analytic
at x = 0, the second order linear equation can be written:

L[y] = x2y ′′ + x

( ∞∑
n=0

pnx
n

)
y ′ +

( ∞∑
n=0

qnx
n

)
y = 0. (3)

Note that if pn = qn = 0 for n = 1, 2, . . . with

p0 = lim
x→0

xQ(x)

P (x)
and q0 = lim

x→0

x2R(x)

P (x)
,

then the second order linear equation becomes the
Cauchy-Euler equation:

x2y ′′ + xp0y
′ + q0y = 0.
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Method of Frobenius 1

Method of Frobenius: Since the regular singular problem starts with the
zeroth order terms in the coefficients being similar to the Cauchy-Euler
equation, this suggests looking for solutions with terms of xr.

As with the Cauchy-Euler equation, we consider x > 0 with the case x < 0
handled by a change of variables x = −ξ with ξ > 0.

The Method of Frobenius seeks solutions of the form:

y(x) = xr(a0 + a1x+ · · ·+ anx
n + . . . ) = xr

∞∑
n=0

anx
n =

∞∑
n=0

anx
r+n.

1 What values of r give a solution to (3) in the above form?

2 What is the recurrence relation for the an?

3 What is the radius of convergence for the above series?
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Method of Frobenius 2

For the regular singular problem

x2y ′′ + x

( ∞∑
n=0

pnx
n

)
y ′ +

( ∞∑
n=0

qnx
n

)
y = 0,

we seek a solutions of the form: y(x) =

∞∑
n=0

anx
r+n, so

y ′ =

∞∑
n=0

an(r + n)xr+n−1 and y ′′ =

∞∑
n=0

an(r + n)(r + n− 1)xr+n−2.

Thus,

∞∑
n=0

an(r + n)(r + n− 1)xr+n +

( ∞∑
n=0

pnx
n

) ∞∑
n=0

an(r + n)xr+n

+

( ∞∑
n=0

qnx
n

) ∞∑
n=0

anx
r+n = 0.
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Method of Frobenius 3

Indicial Equation: In the previous equation, we examine the lowest
power of x, so n = 0.

This gives
a0x

r
(
r(r − 1) + p0r + q0

)
= 0.

For a0 6= 0, we obtain the indicial equation, which came from
solving the Cauchy-Euler equation:

F (r) = r(r − 1) + p0r + q0 = 0,

which is a quadratic equation.

The form of the solution of the Cauchy-Euler equation depended
on the values of r for the indicial equation, which in turn affects
the factor xr multiplying our power series solution.
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Distinct Roots, r1 − r2 6= N 1

The Method of Frobenius breaks into 3 cases, depending on the
roots of the indicial equation.

Case 1. Distinct roots not differing by an integer, r1− r2 6= N .

For this case, a basis for the solution of the regular singular
problem satisfies:

y1(x) = xr1(a0 + a1x+ · · ·+ anx
n + . . . ) = xr1

∞∑
n=0

anx
n

and

y2(x) = xr2(b0 + b1x+ · · ·+ bnx
n + . . . ) = xr2

∞∑
n=0

bnx
n

with these solutions converging for at least |x| < ρ, where ρ is the
radius of convergence for p(x) and q(x).
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Example: Consider the regular singular problem given by

4xy ′′ + 2y ′ + y = 0,

where x = 0 is a regular singular point.

From our definitions before we have p(x) = 1
2 and q(x) = x

4 , which
implies that p0 = 1

2 and q0 = 0.

Since p and q have convergent power series for all x, the solutions will
converge for |x| <∞.

The indicial equation is given by:

r(r − 1) + 1
2r = r

(
r − 1

2

)
= 0,

so r1 = 0 and r2 = 1
2 .
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Example: We multiply our example by x and continue with

4x2y ′′ + 2xy ′ + xy = 0,

trying a solution of the form: y =

∞∑
n=0

anx
n+r.

Differentiating y and entering into the equation gives:

4
∞∑
n=0

an(r + n)(r + n− 1)xr+n + 2
∞∑
n=0

an(r + n)xr+n +
∞∑
n=1

an−1x
r+n = 0,

shifting the last index to match powers of x.

Note that when n = 0, we have

a0
[
4r(r − 1) + 2r

]
= 2a0r(2r − 1) = 0,

which is an alternate way to obtain the indicial equation.
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Example: For n ≥ 1, we match powers of x, so[
4(r + n)(r + n− 1) + 2(r + n)

]
an + an−1 = 0.

From this we obtain the recurrence relation:

an+1 =
−an

(2n+ 2r + 2)(2n+ 2r + 1)
, for n = 0, 1, . . .

First Solution: Let r = r1 = 0, then the recurrence relation becomes:

an+1 =
−an

(2n+ 2)(2n+ 1)
, for n = 0, 1, . . . ,

so
a1 = −

a0

2 · 1
, a2 = −

a1

4 · 3
=
a0

4!
, a3 = −

a2

6 · 5
= −

a0

6!
.

Thus,

an =
(−1)n

(2n)!
a0.
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Example: Thus, the first solution is:

y1(x) = a0

∞∑
n=0

(−1)n

(2n)!
xn.

Second Solution: Let r = r2 = 1
2

, then the recurrence relation becomes:

bn+1 =
−bn

(2n+ 3)(2n+ 2)
, for n = 0, 1, . . . ,

so

b1 = −
b0

3 · 2
, b2 = −

b1

5 · 4
=
b0

5!
, b3 = −

b2

7 · 6
= −

b0

7!
.

Thus,

bn =
(−1)n

(2n+ 1)!
b0.

Thus, the second solution is:

y2(x) = b0

∞∑
n=0

(−1)n

(2n+ 1)!
xn+

1
2 .
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Example: The series we see as solutions to this problem have similarities with
series for cosine and sine.

Specifically, a change of variables gives:

y1(x) = a0

∞∑
n=0

(−1)n

(2n)!
xn = a0

∞∑
n=0

(−1)n

(2n)!
(x

1
2 )2n = a0 cos

(√
x
)
.

Similarly, the second linearly independent solution satisfies:

y2(x) = b0

∞∑
n=0

(−1)n

(2n+ 1)!
xn+

1
2 = b0

∞∑
n=0

(−1)n

(2n+ 1)!
(x

1
2 )2n+1 = b0 sin

(√
x
)
.

Thus, we could write the general solution as

y(x) = a0 cos
(√
x
)

+ b0 sin
(√
x
)
,

which can readily be shown satisfies the ODE in this example:

4x2y ′′ + 2xy ′ + xy = 0.

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Method of Frobenius —
(28/53)



Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Repeated Roots, r1 = r2 = r 1

Case 2. Repeated roots, r1 = r2 = r.

For this case, a basis for the solution of the regular singular
problem satisfies:

y1(x) = xr(a0 + a1x+ · · ·+ anx
n + . . . ) = xr

∞∑
n=0

anx
n

and

y2(x) = y1(x) ln(x)+xr(b1x+· · ·+bnxn+. . . ) = y1(x) ln(x)+xr
∞∑
n=1

bnx
n

with these solutions converging for at least |x| < ρ, where ρ is the
radius of convergence for p(x) and q(x).
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Repeated Roots, r1 = r2 = r 2

The form of the second solution is found in a manner similar to solving the
Cauchy-Euler equation.

The first solution is found as before with:

y1(x) = φ(r, x) = xr
∞∑
n=0

an(r)xn,

where the coefficients an(r) are determined by a recurrence relation with the
values of r found from the indicial equation

F (r) = r(r − 1) + p0r + q0 = 0.

Our regular singular problem was L[y] = x2y ′′ + xp(x)y ′ + q(x)y = 0, which
with our first solution and the power series for p(x) and q(x) gives

L[φ](r, x) = x
r
a0F (r) +

∞∑
n=1

anF (r + n) +

n−1∑
k=0

ak[(r + k)pn−k + qn−k]

 xr+n = 0,

where the second sum comes from multiplying the infinite series and collecting
terms.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Repeated Roots, r1 = r2 = r 3

Assuming F (r + n) 6= 0, the recurrence relation for the coefficients as a function
of r satisfies:

an(r) = −
∑n−1
k=0 ak[(r + k)pn−k + qn−k]

F (r + n)
, n ≥ 1.

Selecting these coefficients reduces our power series solution to:

L[φ](r, x) = xra0F (r),

where F (r) = (r − r1)2 for our repeated root, so L[φ](r1, x) = 0, since our first
solution is:

y1(x) = φ(r1, x) = xr1
∞∑
n=0

an(r1)xn,

Significantly, we have

L
[
∂φ
∂r

]
(r1, x) = a0

∂
∂r

[x
r
(r − r1)

2
]
∣∣∣
r=r1

= a0 [(r − r1)
2
x
r
ln(x) + 2r(r − r1)x

r
]
∣∣∣
r=r1

= 0,

so ∂φ
∂r

(r1, x) is also a solution to our problem.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Repeated Roots, r1 = r2 = r 4

Since ∂φ
∂r

(r1, x) is a solution and our first solution is:

y1(x) = φ(r1, x) = xr1
∞∑
n=0

an(r1)xn,

we obtain the second solution:

y2(x) =
∂φ(r,x)
∂r

∣∣∣
r=r1

=
∂

∂r

[
xr
∞∑
n=0

an(r)xn

]∣∣∣∣∣
r=r1

= (xr1 ln(x))
∞∑
n=0

an(r1)xn + xr1
∞∑
n=1

a′n(r1)xn

= y1(x) ln(x) + xr1
∞∑
n=1

a′n(r1)xn, x > 0,

where

an(r) =

∑n−1
k=0 ak[(r + k)pn−k + qn−k]

F (r + n)
, n ≥ 1.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Bessel’s Equation Order Zero 1

Bessel’s Equation Order Zero satisfies:

x2y ′′ + xy ′ + x2y = 0,

where x = 0 is a regular singular point.

From our definitions before we have p(x) = 1 and q(x) = x2, which
implies that p0 = 1 and q0 = 0.

Since p and q have convergent power series for all x, the solutions will
converge for |x| <∞.

The indicial equation is given by:

r(r − 1) + r = r2 = 0,

so r1 = r2 = 0, repeated root.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Bessel’s Equation Order Zero 2

With Bessel’s equation order zero,

x2y ′′ + xy ′ + x2y = 0,

we try a solution of the form: y =
∞∑
n=0

anx
n+r.

Differentiating y and entering into the equation gives:

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r +

∞∑
n=0

an(n+ r)xn+r +

∞∑
n=2

an−2x
n+r = 0,

shifting the last index to match powers of x.

From the same powers of x, (n+ r)2an + an−2 = 0, which for r = 0 gives the
recurrence relation:

an =
−an−2

n2
, for n = 2, 3, 4, . . . ,

with a0 arbitrary and a1 = 0.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Bessel’s Equation Order Zero 3

The recurrence relation shows that the odd powers of x all vanish.

Letting n = 2m in the recurrence relation gives:

a2m =
−a2m−2

(2m)2
, for n = 1, 2, 3, . . . ,

so

a2 = −
a0

22
, a4 = −

a2

(2 · 2)2
=

a0

24 · 22
, a6 = −

a4

(2 · 3)2
= −

a0

26(3 · 2)2
, . . .

In general, we have

a2m =
(−1)ma0

22m(m!)2
, m = 1, 2, 3, . . .

The first solution becomes:

y1(x) = a0J0(x) = a0

∞∑
m=0

(−1)mx2m

22m(m!)2
.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Bessel’s Equation Order Zero 4

This first solution gives the Bessel function of the first kind of order zero,
J0(x). Below shows some polynomial approximations from the partial sums of the
series solution.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Bessel’s Equation Order Zero 5

Since the Bessel’s equation order zero has only the repeated root r = 0 from
the indicial equation, the second solution has the form:

y2(x) = y1(x) ln(x) + xr
∞∑
n=1

bnx
n = ln(x)J0(x) +

∞∑
n=1

bnx
n.

One technique to solve for this second solution is to substitute into Bessel’s
equation and solve for the coefficients, bn.

Alternately, we use our results in deriving this form of the second solution, where
we found that the coefficients satisfied:

bn = a′n(r), where an(r) = −
an−2(r)

(n+ r)2
,

evaluated at r = 0 based on the recurrence relation for coefficients of the first
solution.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Bessel’s Equation Order Zero 6

From the formula deriving the recurrence relation, we find (r + 1)2a1(r) = 0, so
not only a1(0) = 0, but a′1(0) = 0.

It follows from the recurrence relation that

a′3(0) = a′5(0) = · · · = a′2k+1(0) = · · · = 0.

The recurrence relation gives:

a2m(r) = −
a2m−2(r)

(2m+ r)2
, m = 1, 2, 3, . . .

Hence,

a2(r) = −
a0

(2 + r)2
,

a4(r) = −
a2(r)

(4 + r)2
=

a0

(4 + r)2(2 + r)2
,

a6(r) = −
a4(r)

(6 + r)2
=

a0

(6 + r)2(4 + r)2(2 + r)2
,

a2m(r) =
(−1)ma0

(2m+ r)2(2m− 2 + r)2 · · · (4 + r)2(2 + r)2
, m = 1, 2, 3, . . .
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Bessel’s Equation Order Zero 7

Note that if
f(x) = (x− α1)β1 (x− α2)β2 · · · (x− αn)βn .

then

f ′(x) = β1(x− α1)β1−1
[
(x− α2)β2 · · · (x− αn)βn

]
+β2(x− α2)β2−1

[
(x− α1)β1 · · · (x− αn)βn

]
+ · · · ,

Hence, for x 6= α1, α2, . . .

f ′(x)

f(x)
=

β1

x− α1
+

β2

x− α2
+ · · ·+

βn

x− αn
.

Thus,
a′2m(r)

a2m(r)
= −2

(
1

2m+ r
+

1

2m− 2 + r
+ · · ·+

1

2 + r

)
,

or with r = 0

a′2m(0) = −2

(
1

2m
+

1

2(m− 1)
+ · · ·+

1

2

)
a2m(0).
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Bessel’s Equation Order Zero 8

Define

Hm =
1

m
+

1

m− 1
+ · · ·+

1

2
+ 1,

then using this with the recurrence relation

a′2m(0) = −Hm
(−1)ma0

22m(m!)2
, m = 1, 2, 3, . . .

It follows that the second solution of Bessel’s equation order zero (with a0 = 1)
satisfies:

y2(x) = J0(x) ln(x) +
∞∑
m=1

(−1)m+1Hm

22m(m!)2
x2m, x > 0.

Usually the second solution is taken to be the Bessel function of the second
kind of order zero, which is defined as

Y0(x) = 2
π

[
y2(x) + (γ − ln(2))J0(x)

]
,

where γ is the Euler-Máscheroni constant

γ = lim
n→∞

(Hn − ln(n)) ≈ 0.5772.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Bessel’s Equation Order Zero 9

The standard solutions for Bessel’s equation are the Bessel function of the
first kind of order zero, J0(x) and Bessel function of the second kind of
order zero, Y0(x).
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Roots Differing by an Integer, r1 − r2 = N 1

Case 3. Roots Differing by an Integer, r1 − r2 = N , where N is
a positive integer.

As before, one solution of the regular singular problem satisfies:

y1(x) = |x|r1
∞∑
n=0

anx
n.

The second linearly independent solution has the form:

y2(x) = k y1(x) ln |x|+ |x|r2
∞∑
n=0

bnx
n

with these solutions converging for at least |x| < ρ, where ρ is the
radius of convergence for p(x) and q(x).

This case divides into two subcases, depending on whether or not the
logarithmic term appears, as k may be zero.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Roots Differing by an Integer, r1 − r2 = N 2

Case 3. Roots Differing by an Integer, r1 − r2 = N , where N is
a positive integer.

This case is more complicated with the coefficients in the second
solution satisfying:

bn(r2) = d
dr [(r − r2)an(r)

∣∣
r=r2

, n = 0, 1, 2, . . .

with a0 = r − r2 and

k = lim
r→r2

(r − r2)aN (r).

In practice the best way to determine if k = 0 is to compute an(r2)
and see if one finds aN (r2).

If this is possible, then the second solution is readily found without
the logarithmic term; otherwise, the logarithmic term must be
included.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Example: Roots, r1 − r2 = N 1

Example: Consider the ODE:

x2y ′′ + 3xy ′ + 4x4y = 0,

where x = 0 is a regular singular point.

We try a solution of the form: y1(x) =

∞∑
n=0

anx
n+r.

Differentiating y and entering into the equation gives:

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r + 3

∞∑
n=0

an(n+ r)xn+r + 4

∞∑
n=4

an−4x
n+r = 0,

shifting the last index to match powers of x.

Examining this equation with n = 0 gives the indicial equation:

F (r) = r(r − 1) + 3r = r(r + 2) = 0,

which has the roots r1 = 0 and r2 = −2 (r1 − r2 = 2).
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Example: Roots, r1 − r2 = N 2

Example: The series above could be rearranged in the following form:

∞∑
n=0

an(n+ r)(n+ r + 2)xn+r = −4
∞∑
n=4

an−4x
n+r.

With r1 = 0, we obtain the recurrence relations:

a1(r1 +1)(r1 +3) = 3a1 = 0, a2(r1 +2)(r1 +4) = 8a2 = 0, a3(r1 +3)(r1 +5) = 15a3 = 0,

a1 = a2 = a3 = 0, and

an(r) = −
4

(n+ r)(n+ r + 2)
an−4(r) or an = −

4

n(n+ 2)
an−4.

It follows that

a4 = −
4

6 · 4
a0 = −

a0

3 · 2
, a8 = −

4

10 · 8
a4 =

a0

5!
, a12 = −

4

14 · 12
a8 = −

a0

7!
,

and a1 = a5 = ... = a4n+1 = 0, a2 = a6 = ... = a4n+2 = 0, and
a3 = a7 = ... = a4n+3 = 0.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Example: Roots, r1 − r2 = N 3

Example: The results above are combined to give the 1st solution:

y1(x) = a0

∞∑
m=0

(−1)m

(2m+ 1)!
x4m.

To find the 2nd solution we need to know if the logarithmic term needs to be
included.

This term is unnecessary if

lim
r→r2

aN (r) exists.

For this example, r2 = −2 and N = 2, so we examine

lim
r→−2

a2(r) =
0

(r + 2)(r + 4)
= 0,

which implies the second series may be computed directly with no logarithmic
term.

Thus, we try a solution of the form:

y2(x) =
∞∑
n=0

bnx
n+r2 ,

with r2 = −2.Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Method of Frobenius —
(46/53)

Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Example: Roots, r1 − r2 = N 4

Example: Following the same process as finding y1(x), we have:

∞∑
n=0

bn(n+ r2)(n+ r2 + 2)xn+r2 = −4

∞∑
n=4

bn−4x
n+r2 .

With r2 = −2, we obtain the recurrence relations:

b1(r2 + 1)(r2 + 3) = −b1 = 0, b2(r2 + 2)(r2 + 4) = 0b2 = 0, b3(r2 + 3)(r2 + 5) = 3b3 = 0,

b1 = b3 = 0 (b2 is arbitrary and generates y1, so take b2 = 0), and

bn(r) = −
4

(n+ r)(n+ r + 2)
bn−4(r) or bn = −

4

n(n− 2)
bn−4.

It follows that

b4 = −
4

4 · 2
b0 = −

b0

2 · 1
, b8 = −

4

8 · 6
b4 =

b0

4!
, b12 = −

4

12 · 10
b8 = −

b0

6!
,

and b1 = b5 = ... = b4n+1 = 0, b2 = b6 = ... = b4n+2 = 0, and
b3 = b7 = ... = b4n+3 = 0.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Example: Roots, r1 − r2 = N 5

Example: These results are combined to give the 2nd solution:

y2(x) = b0x
−2

∞∑
m=0

(−1)m

(2m)!
x4m.

It follows that our general solution for this example is:

y(x) = a0

∞∑
m=0

(−1)m

(2m+ 1)!
x4m + b0x

−2
∞∑
m=0

(−1)m

(2m)!
x4m.

This could be rewritten:

y(x) = a0x
−2

∞∑
m=0

(−1)m

(2m+ 1)!
(x2)2m+1 + b0x

−2
∞∑
m=0

(−1)m

(2m)!
(x2)2m,

= x−2
(
a0 sin(x2) + b0 cos(x2)

)
.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Example 2: Roots, r1 − r2 = N 1

Example 2: Consider the ODE:

x2y ′′ − xy = 0,

where x = 0 is a regular singular point.

Try a solution of the form: y1(x) =

∞∑
n=0

anx
n+r.

Differentiating y and entering into the equation gives:

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r −
∞∑
n=1

an−1x
n+r = 0,

shifting the last index to match powers of x.

Examining this equation with n = 0 gives the indicial equation:

F (r) = r(r − 1) = 0,

which has the roots r1 = 1 and r2 = 0 (r1 − r2 = 1).
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Example 2: Roots, r1 − r2 = N 2

Example 2: The series above is rearranged in the following form:

∞∑
n=0

an(n+ r)(n+ r − 1)xn+r =

∞∑
n=1

an−1x
n+r.

With r1 = 1, we obtain the recurrence relation:

an(r) =
1

(n+ r)(n+ r − 1)
an−1(r) or an =

1

n(n+ 1)
an−1, n = 1, 2, 3, . . .

It follows that

a1 =
1

1 · 2
a0, a2 =

1

2 · 3
a1 =

a0

2!3!
, a3 =

1

3 · 4
a2 =

a0

3!4!
,

so
an =

a0

n!(n+ 1)!
, n = 1, 2, 3, . . .
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Example 2: Roots, r1 − r2 = N 3

Example 2: The results above are combined to give the 1st solution:

y1(x) = a0

∞∑
n=0

1

n!(n+ 1)!
xn+1.

To find the 2nd solution we need to know if the logarithmic term needs to be
included.

This term is necessary if

lim
r→r2

aN (r) fails to exist.

For this example, r2 = 0 and N = 1, so we examine

lim
r→0

a1(r) =
a0(r)

(r + 1)r
.

Since a0 is arbitrary (non-zero), this limit is undefined, so a second series solution
requires the logarithmic term.

For r2 = 0, we try a solution of the form:

y2(x) = k y1(x) ln(x) +

∞∑
n=0

bnx
n+r2 ,
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Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Example 2: Roots, r1 − r2 = N 4

Example 2: Insert y2(x) = k y1(x) ln(x) +

∞∑
n=0

bnx
n into the ODE, so

x2

[
ky′′1 ln(x) + 2ky′1

1
x
− ky1 1

x2
+
∞∑
n=2

n(n− 1)bnx
n−2

]

−kxy1 ln(x)−
∞∑
n=0

bnx
n+1 = 0.

Because y1(x) is a solution of the ODE, k ln(x)[x2y′′1 − xy1] = 0, which reduces
this expression to

2kxy′1 − ky1 +

∞∑
n=2

n(n− 1)bnx
n −

∞∑
n=0

bnx
n+1 = 0.

Using the series solution for y1(x) with a0 = 1 and shifting indices, we obtain

∞∑
n=0

(
2k

(n!)2
− k
n!(n+1)!

)
xn+1 +

∞∑
n=1

bn+1(n+ 1)nxn+1 −
∞∑
n=0

bnx
n+1 = 0.
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Definitions
Cauchy-Euler Equation

Method of Frobenius

Distinct Roots, r1 − r2 6= N
Repeated Roots, r1 = r2 = r
Roots Differing by an Integer, r1 − r2 = N

Example 2: Roots, r1 − r2 = N 5

Example 2: From the series above our recurrence relation gives:

k − b0 = 0, or k = b0

and
2k

(n!)2
− k
n!(n+1)!

+ n(n+ 1)bn+1 − bn = 0, n = 1, 2, 3, . . .

Equivalently,

bn+1 = 1
n(n+1)

[
bn − (2n+1)k

n!(n+1)!

]
, n = 1, 2, 3, . . .

For convenience we take a0 = 1 and b0 = k = 1.

The constant b1 is still arbitrary (as it would generate y1(x) again), so we select
b1 = 0 and find a particular 2nd solution using the recurrence relation:

y2(x) = y1(x) ln(x) + 1− 3
4
x2 − 7

36
x3 − 35

1728
x4 − . . .
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