
Math 337 Solutions Review Exam 1

1. a. This is a linear differential equation,so it can be written

dy

dt
+ (0.2t− 2)y = 0, with µ(t) = e

∫
(0.2t−2)dt = e0.1t

2−2t,

where µ(t) is the integrating factor. It follows:

d

dt

(
e0.1t

2−2ty
)

= 0 or e0.1t
2−2ty(t) = C

It follows that y(t) = Ce2 t−0.1 t
2
. The initial condition y(0) = 10 = C. Hence, the solution is

y(t) = 10 e2 t−0.1 t
2
.

b. This is a time varying differential equation. It can be written

y(t) =

∫ (
2− 4

t

)
dt = 2 t− 4 ln(t) + C.

The initial condition y(1) = 5 = 2+C, which implies C = 3. Hence, the solution is y(t) = 2 t− 4 ln(t) + 3.

c. This is a separable differential equation. It can be written∫
2y dy =

∫
3t2 dt or y2(t) = t3 + C.

It follows that y(t) = ±
√
t3 + C. The initial condition y(0) = 4 =

√
C, which implies C = 16.

Hence, the solution is
y(t) =

√
t3 + 16.

d. This is the logistic growth differential equation, which can be written

dy

dt
= 0.02y

(
1− y

40

)
or

dy

dt
− 0.02y = −0.0005y2,

which is a Bernoulli’s equation. Make the substitution u = y1−2 = y−1, so du
dt = −y−2 dydt . Multiply

the equation above by −y−2, and

−y−2dy
dt

+ 0.02y−1 = 0.0005 or
du

dt
+ 0.02u = 0.0005,

which is a linear equation with integrating factor µ(t) = e0.02t. Thus,

d

dt

(
e0.02tu

)
= 0.0005e0.02t or e0.02tu(t) = 0.025e0.02t + C.

Hence, with the initial condition

1

y(t)
= u(t) = 0.025 + Ce−0.02t or 0.1 = 0.025 + C, so C = 0.075.



It follows that

y(t) =
1

0.025 + 0.075e−0.02t
=

40

1 + 3e−0.02t
.

e. Rewrite the equation as

3y − 6t+ (3t+ 4y)
dy

dt
= 0.

Since ∂M(t,y)
∂y = 3 = ∂N(t,y)

∂t , this equation is exact. Integrating we see∫
(3y − 6t)dt = 3ty − 3t2 + h(y) and

∫
(3t+ 4y)dy = 3ty + 2y2 + k(t).

It is clear that the potential function is

φ(t, y) = 3ty − 3t2 + 2y2 = C.

With the initial condition y(0) = 4, the solution becomes

φ(t, y) = 3ty − 3t2 + 2y2 = 32.

f. This linear DE equation can be rewritten

dy

dt
− 2y

t
= 4t2 sin(4t), so µ(t) = e−

∫
2dt/t =

1

t2
.

Thus,
d

dt

(
y

t2

)
= 4 sin(4t) or

y(t)

t2
= − cos(4t) + C.

It follows that

y(t) = Ct2 − t2 cos(4t), so 2 = C − cos(4) or C = 2 + cos(4).

Hence, the solution is
y(t) = (2 + cos(4))t2 − t2 cos(4t).

g. This is a linear and separable differential equation. We solve this time using separable techniques.
The equation can be written ∫

dy

y
=

∫
2 t dt

t2 + 1
.

The right integral uses the substitution u = t2 + 1, so du = 2 t dt. Hence,

ln |y(t)| =

∫
du

u
= ln |u|+ C = ln(t2 + 1) + C

y(t) = eln(t
2+1)+C = A(t2 + 1),

where A = eC . The initial condition y(0) = 3 = A, which implies A = 3. Hence, the solution is

y(t) = 3(t2 + 1).



h. This is a separable differential equation. It can be written∫
eydy =

∫
etdt or ey = et + C.

It follows that y(t) = ln(et + C). The initial condition y(0) = 6 = ln(1 + C), which implies
C = e6 − 1. Hence, the solution is

y(t) = ln(et + e6 − 1).

i. Rewrite this equation:

yet − 2 + (et − 2y)
dy

dt
= 0.

Since ∂M(t,y)
∂y = et = ∂N(t,y)

∂t , this equation is exact. Integrating we see∫
(yet − 2)dt = yet − 2t+ h(y) and

∫
(et − 2y)dy = yet − y2 + k(t).

It is clear that the potential function is

φ(t, y) = yet − 2t− y2 = C.

With the initial condition y(0) = 6, the solution becomes

φ(t, y) = y(t)et − 2t− y2(t) = 6− 36 = −30.

j. The DE
dy

dt
+ y = y3et

is a Bernoulli’s equation, where we make the substitution u = y1−3 = y−2, so du
dt = −2y−3 dydt .

Multiplying the above equation by −2y−3, we obtain the linear DE in u(t)

−2y−3
dy

dt
− 2y−2 = −2et or

du

dt
− 2u = −2et.

This has the integrating factor µ(t) = e−2t, so

d

dt

(
e−2tu(t)

)
= −2e−t or e−2tu(t) = 2e−t + C.

It follows that

1

y2(t)
= u(t) = 2et + Ce2t, so 1 = 2 + C or C = −1.

Thus,

y(t) =
1√

2et − e2t
.



2. a. The solution to the white lead problem is P (t) = 10e−kt, where t = 0 represents 1970. From
the data at 1975, we have 8.5 = 10e−5k or e5k = 10/8.5 = 1.17647. Thus, k = 0.032504 yr−1. To
find the half-life, we compute 5 = 10e−kt, so t = ln(2)/k = 21.33 yr is the half-life of lead-210.

b. The differential equation can be written P ′ = −k(P − r/k), so we make the substitution
z(t) = P (t)− r/k. This leaves the initial value problem

z ′ = −kz, z(0) = P (0)− r/k = 10− r/k,

which has the solution z(t) = (P (0)− r/k)e−kt = P (t)− r/k. Thus, the solution is

P (t) =

(
10− r

k

)
e−kt +

r

k
= 2.3086e−kt + 7.6914,

where k = 0.032504. In the limit,

lim
t→∞

P (t) = 7.6914 disintegrations per minute of 210Pb.

3. a. The differential equation describing the temperature of the tea satisfies

H ′ = −k(H − 21), H(0) = 85 and H(5) = 81.

Make the substitution z(t) = H(t)− 21, which gives the differential equation

z ′ = −kz, z(0) = H(0)− 21 = 64.

The solution becomes z(t) = 64e−kt = H(t)− 21 or

H(t) = 64e−kt + 21.

To find k, we solve H(5) = 81 = 64e−5k + 21 or e5k = 64/60 = 1.0667. Thus, k = 0.012908 min−1.
The water was at boiling point when 64e−kt + 21 = 100 or e−kt = 79/64. It follows that t =
− ln(79/64)/k = −16.3 min. This means that the talk went 16.3 min over its scheduled ending.

b. To obtain a temperature of at least 93◦C, then we need to find the time that satisfies H(t) =
93 = 64e−kt + 21, so e−kt = 72/64 = 1.125. Solving for t gives t = − ln(72/64)/k = −9.125 min. It
follows that you must arrive at the hot water within 16.3 − 9.1 = 7.2 min of the scheduled end of
the talks.

4. a. Substituting the parameters into the differential equation gives

c ′ =
1

106
(22000− 2000c) = −0.002(c− 11).

We make the substitution z(t) = c(t)−11, which gives the initial value problem z ′ = −0.002z with
z(0) = c(0)− 11 = −11. The solution of this differential equation is z(t) = −11e−0.002t = c(t)− 11,
so

c(t) = 11− 11e−0.002t.



b. Solve the equation c(t) = 11 − 11e−0.002t = 5, so e0.002t = 11/6 or t = 500 ln(11/6) =
303.1 days. The limiting concentration

lim
t→∞

c(t) = 11.

The graph is below.
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Problem 4

5. The differential equation is separable, so write∫
T−

1
2dT = k

∫
dt or 2T

1
2 (t) = kt+ C.

It follows that

T (t) =

(
kt+ C

2

)2

.

The initial condition T (0) = 1 implies C = 2, so T (t) =
(
kt
2 + 1

)2
. Since T (4) =

(
4 k
2 + 1

)2
= 25,

2 k + 1 = 5 or k = 2. Thus, the solution for the spread of the disease in this orchard is

T (t) = (t+ 1)2.

When t = 10, T (10) = 121.

6. The differential equation with the information in the problem is given by:

dH

dt
= −k(H − 25), H(0) = 35,

where t = 0 is 7 AM. We make the change of variables z(t) = H(t)−25, so z(0) = 10. The problem
now becomes

dz

dt
= −kz, z(0) = 10,

which has the solution
z(t) = 10 e−kt or H(t) = 25 + 10 e−kt.



From the information at 9 AM, we see

H(2) = 33.5 = 25 + 10 e−2k or e2k =
10

8.5
or k =

ln
(

10
8.5

)
2

= 0.081259.

It follows that
H(t) = 25 + 10 e−0.081259t.

The time of death is found by solving

H(td) = 39 = 25 + 10 e−0.081259td or e−0.081259td =
14

10
or td = − ln(1.4)

0.081259
= −4.1407.

It follows that the time of death is 4 hours and 8.4 min before the body is found, which gives the
time of death around 2:52 AM.

b. This differential equation is separable, so we can write:∫
(H − 25)−2/3dH = −kb

∫
dt = −kbt+ C,

3(H − 25)1/3 = −kbt+ C,

H(t) = 25 +

(
C − kbt

3

)3

.

The initial temperature of the body gives:

35 = 25 +

(
C

3

)3

or C = 3(10)1/3 ≈ 6.4633.

From the temperature at t = 2,

33.5 = 25 +
(
101/3 − 2

3kb
)3

or 8.51/3 = 101/3 − 2
3kb,

so
kb = 1.5

(
101/3 − 81/3

)
≈ 0.17041.

It follows that the time of death satisfies:

39 = 25 +
(
101/3 − td

3 kb
)3

or 101/3 − 141/3 =
td
3
kb.

Thus,

td =
3

kb

(
101/3 − 141/3

)
≈ −4.5016 or 4 hr 30.1 min,

which is approximately 2:29.9 AM. These models differ about 22 min in their predictions for the
time of death.

7. a. The solution of the Malthusian growth model is B(t) = 1000 e0.01 t. The population doubles
when the bacteria reaches 2000, so 1000 e0.01 t = 2000 or e0.01 t = 2. Thus, 0.01 t = ln(2) or
t = 100 ln(2) ≈ 69.3 min for the population to double.

b. The model with time-varying growth is a linear and separable differential equation, so

dB

dt
= 0.01(1− e−t)B or

∫
dB

B
= 0.01

∫
(1− e−t)dt



ln |B(t)| = 0.01(t+ e−t) + C or B(t) = Ae0.01(t+e−t),

where A = eC . With the initial condition, B(0) = 1000 = Ae0.01 or A = 1000 e−0.01. Thus, the
solution to this time-varying growth model is

B(t) = 1000 e0.01(t+e−t−1).

c. The Malthusian growth model gives B(5) = 1051 and B(60) = 1822, while the modified growth
model gives B(5) = 1041 and B(60) = 1804.

8. a. The solution to the Malthusian growth model is given by P (t) = 100 e0.2 t. This population
doubles when 100 e0.2 t = 200 or e0.2 t = 2, so t = 5 ln(2) ≈ 3.466 yrs.

b. This model, including the modification for habitat encroachment, is a linear and separable
differential equation. It can be written∫

dP

P
=

∫
(0.2− 0.02t)dt or ln |P | = 0.2 t− 0.01 t2 + C.

It follows that P (t) = e0.2 t−0.01 t
2+C = Ae0.2 t−0.01 t

2
, where A = eC . The initial condition P (0) =

100 = A, which implies A = 100. Hence, the solution satisfies

P (t) = 100 e0.2 t−0.01 t
2
.

c. We examine the differential equation in Part b and see that dP
dt = 0 when 0.2 − 0.02t = 0,

which implies that t = 10. Thus, the maximum of population is P (10) = 100 e ≈ 271.8. If we
solve P (t) = 100 e0.2 t−0.01 t

2
= 100, then this is equivalent to e0.2 t−0.01 t

2
= 1 or 0.2 t − 0.01 t2 =

−0.01 t(t − 20) = 0. Thus, either t = 20 (or 0), so the population returns to 100 after 20 years.
The graph of the population can be seen below.
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Problem 8 Problem 9

9. a. This population of cells in a declining medium satisfies a separable differential equation, which
can be written∫

P−2/3dP =

∫
0.3 e−0.01tdt or 3P 1/3(t) = −30 e−0.01t + 3C.

It follows that P 1/3(t) = −10 e−0.01t +C, so P (t) =
(
C − 10 e−0.01t

)3
. The initial condition P (0) =

1000 = (C − 10)3, which implies C = 20. The solution is given by

P (t) =
(
20− 10e−0.01 t

)3
.



b. This population doubles when P (t) =
(
20− 10e−0.01 t

)3
= 2000, so 20 − 10e−0.01 t = 10 3

√
2 or

e−0.01 t = 2− 3
√

2. It follows that t = 100 ln
(

1
2− 3√2

)
≈ 30.1 hr. For large t, limt→∞ e

−0.01 t = 0, so

limt→∞ P (t) = 203 = 8000. Thus, there is a horizontal asymptote at P = 8000, so the population
tends towards this value. The graph of the population can be seen above.

10. a. The change in amount of phosphate, P (t), is found by adding the amount entering and
subtracting the amount leaving.

dP

dt
= 200 · 10− 200 · c(t),

where c(t) is the concentration in the lake with c(t) = P (t)/10, 000. By dividing the equation by
the volume, the concentration equation is given by

dc

dt
= 0.2− 0.02c = −0.02(c− 10), c(0) = 0.

With the substitution z(t) = c(t)− 10, the equation above reduces to the problem

dz

dt
= −0.02z, z(0) = −10,

which has the solution z(t) = −10 e−0.02 t. Thus, the concentration is given by

c(t) = 10− 10 e−0.02 t.

b. The differential equation describing the growth of the algae is given by

dA

dt
= 0.5(1− e−0.02 t)A2/3.

By separating variables, we see∫
A−2/3dA = 0.5

∫
(1− e−0.02 t)dt

3A1/3(t) = 0.5(t+ 50 e−0.02 t) + C

A(t) =

(
0.5(t+ 50 e−0.02 t) + C

3

)3

From the initial condition A(0) = 1000, we have 1000 =
(
25+C

3

)3
. It follows that C = 5, so

A(t) =

(
t+ 50 e−0.02 t + 10

6

)3

.

11. a. Write the differential equation dw
dt = −0.2(w − 80), then z(t) = w(t)− 80. It follows that

dz

dt
= −0.2z, z(0) = −80,

with the solution z(t) = −80e−0.2t = w(t)− 80. Thus,

w(t) = 80
(
1− e−0.2t

)
.



For a 40 kg alligator, w(t) = 40 = 80
(
1− e−0.2t

)
or 40 = 80e−0.2t, so e0.2t = 2 or 0.2t = ln(2).

Thus, t = 5 ln(2) ≈ 3.47 years.

b. The pesticide accumulation is given by

dP

dt
= 600

(
80
(
1− e−0.2t

))
, P (0) = 0.

The solution is given by

P (t) = 48, 000

∫ (
1− e−0.2t

)
dt = 48, 000

(
t+ 5e−0.2t

)
+ C.

The initial condition gives P (0) = 0 = 240, 000 + C, so C = −240, 000. Hence,

P (t) = 48, 000
(
t+ 5e−0.2t

)
− 240, 000.

The amount of pesticide in the alligator at age 5 is P (5) = 48, 000
(
5 + 5e−1

)
− 240, 000 =

240, 000e−1 ≈ 88291 µg.

c. The pesticide concentration for a 5 year old alligator is

c(5) =
P (5)

1000w(5)
=

88, 291

80, 000 (1− e−1)
≈ 1.75 ppm.

12. a. The differential equation can be written:

dc

dt
= −0.004(c− 15),

so we make the substitution z(t) = c(t) − 15. Since c(0) = 0, it follows that z(0) = −15. The
solution of the substituted equation is given by:

z(t) = −15e−0.004t = c(t)− 15

c(t) = 15− 15e−0.004t.

The limiting concentration satisfies:

lim
t→∞

c(t) = 15 mg/m3.

b. We begin by separating variables, which gives:∫
dc

c− 15
= −0.001

∫
(4− cos(0.0172t)) dt

ln(c(t)− 15) = −0.001

(
4t− sin(0.0172t)

0.0172

)
+ C

c(t) = 15 +Ae−0.001
(
4t− sin(0.0172t)

0.0172

)
It is easy to see that the initial condition c(0) = 0 implies that A = −15. Thus, the solution to this
problem is given by:

c(t) = 15− 15 e−0.001(4t−58.14 sin(0.0172t))



13. a. We separate variables, so∫
M−3/4dM = −k

∫
dt or 4M1/4 = −kt+ 4C

M(t) =

(
C − k

4
t

)4

From the initial condition, M(0) = 16 = C4, it follows that C = 2. From the information that
M(10) = 1 = (2− 10k/4)4, we have k = 0.4, so

M(t) = (2− 0.1t)4.

The fruit vanishes in 20 days.

b. We separate variables again to find:∫
M−3/4dM = −0.8

∫
e−0.02tdt or 4M1/4 =

0.8

0.02
e−0.02t + 4C

M(t) =
(
10e−0.02t + C

)4
.

From the initial condition, M(0) = 16 = (10 + C)4, it follows that C = −8, so

M(t) =
(
10e−0.02t − 8

)4
.

Solving 10e−0.02t = 8, which is when the fruit vanishes, we find t = 50 ln(5/4). Thus, the fruit
vanishes in 11.157 days.

14. a. The general solution to the Malthusian growth problem with the initial condition P (0) = 60
is

P (t) = 60 ert.

We are given that 2 weeks later P (2) = 80 = 60 e2r, so it follows that r = 1
2 ln

(
4
3

)
= 0.14384. This

gives the solution:
P (t) = 60 e0.14384 t.

It is easy to see that the population doubles when 120 = 60 e0.14384 t, so 0.14384 td = ln(2) or the
doubling time is

td =
ln(2)

r
= 4.819 weeks.

b. We begin by separating variables, so the general solution satisfies:∫
dP

P
=

∫
(a− b t) dt or ln(P (t)) = a t− bt2

2
+ C or P (t) = eCea t−

bt2

2 .

Since the initial value is P (0) = 60, it follows that eC = 60. Thus,

P (t) = 60 ea t−
bt2

2 .



We now use the data at t = 2 and 4 weeks. It follows from the solution above that

80 = 60 e2 a−2 b

90 = 60 e4 a−8 b.

We rearrange the terms and take logarithms of both sides to get

2 a− 2 b = ln

(
4

3

)
4 a− 8 b = ln

(
3

2

)
.

We solve these equations simultaneously to obtain

2 b = ln

(
4

3

)
− 1

2
ln

(
3

2

)
,

so b = 0.042475. But a = b+ 1
2 ln(4/3) or a = 0.1863. It follows that the solution is

P (t) = 60 e0.1863 t−0.021237 t
2
.

The population reaches a maximum when the derivative is zero, which occurs when tmax = a
b =

4.3865, so the maximum population is P (tmax) = 90.286.

15. The differential equation, dR
dt = −0.05R+0.2e−0.01t with R(0) = 10 is linear and can be written

dR

dt
+ 0.05R = 0.2e−0.01t with µ(t) = e0.05t.

It follows that it can be written

d

dt

(
e0.05tR(t)

)
= 0.2e0.04t or e0.05tR(t) = 0.2

∫
e0.04tdt = 5e0.04t + C.

Thus,
R(t) = 5e−0.01t + Ce−0.05t, or R(0) = 10 = 5 + C.

The solution is R(t) = 5e−0.05t + 5e−0.01t.

16. (Allee effect) Consider the DE given by the model:

dP

dt
= P

(
9− 0.01(P − 70)2

)
= A(P ).

The equilibria of this population model satisfy P
(
9− 0.01(P − 70)2

)
= 0. Thus, Pe = 0, 40, and

100. From the phase portrait below, it is easy to see that the equilibria Pe = 0 and 100 are stable,
while Pe = 40 is unstable. The carrying capacity for this population is Pe = 100, and the critical
threshold number of animals required to avoid extinction is Pe = 40.
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17. a. The solution follows the logistic growth solution seen in 1. d. The solution is

F (t) =
10, 000

50 + 150e−0.4t
.

b. This is a standard logistic growth model, so the equilibria are Fe = 0 and 200 (thousand).
Below is a sketch of the function with the phase portrait. The equilibrium Fe = 0 is unstable, while
the carrying capacity, Fe = 200 (thousand), is a stable equilibrium.
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Problem 18. b Problem 18. c

c. With harvesting, the right hand side of the differential equation is written

0.4F

(
1− F

200

)
− 15 = −0.002F 2 + 0.4F − 15 = −0.002(F − 50)(F − 150).

It follows that the equilibria are Fe = 50 and 150 (thousand). Above is a sketch of the function
with the phase portrait. The equilibrium Fe = 50 (thousand) is the critical number of fish needed



to avoid extinction and this equilibrium is unstable. The carrying capacity, Fe = 150 (thousand),
is a stable equilibrium.


