Math 337 Solutions Review Exam 1
1. a. This is a linear differential equation,so it can be written

% + (0.2t — 2)y =0, with wu(t) = eJ (0:2t=2)dt _ 0172

where p(t) is the integrating factor. It follows:

d 2_ 2_
= (eo.lt 2ty) —0 or 0122ty 1) =

It follows that y(t) = Ce2t=%1* The initial condition y(0) = 10 = C. Hence, the solution is

y(t) = 10 e2t-0.1%

b. This is a time varying differential equation. It can be written

y(t):/(Q—j)dt:2t—4ln(t)+0.

The initial condition y(1) = 5 = 2+C, which implies C' = 3. Hence, the solutionis y(t) = 2¢ — 4 In(t) + 3.

c. This is a separable differential equation. It can be written
/2ydyz/3t2dt or YA (t) =13 + C.
It follows that y(t) = £+/t3 + C. The initial condition y(0) = 4 = +/C, which implies C = 16.

Hence, the solution is
y(t) = V3 + 16.

d. This is the logistic growth differential equation, which can be written

dy y dy 2
— =002y (1—- = — —0.02y = —0.
7t 0.02y < 40> or 7 0.02y 0.0005y~,
which is a Bernoulli’s equation. Make the substitution © = y' =2 =y~ 1, so CC%‘ = —y_Q%. Multiply
the equation above by —y—2, and
d d
—y_Qdii +0.02y~! = 0.0005 or ditl + 0.02u = 0.0005,

which is a linear equation with integrating factor u(t) = ¢%%%. Thus,

d
7 (eo‘oztu) = 0.0005¢%-02 or 0%y (t) = 0.025¢%0% 4 C.
Hence, with the initial condition

1
—— =u(t) =0.025 4+ Ce 0% or 0.1=0.025+C, so C =0.075.

y(t)



It follows that
1 40

t) = _ ‘
y() 0.025 + 0.075¢=0-02t 1 4 3¢—0.02¢

e. Rewrite the equation as
dy

=0.
dt

3y — 6t + (3t + 4y)

Since 8M87(yt’y) =3= %, this equation is exact. Integrating we see

/(Sy — 6t)dt = 3ty — 3t> + h(y) and /(St + 4y)dy = 3ty + 2y° + k(2).
It is clear that the potential function is
B(t,y) = 3ty — 3t2 + 2% = C.
With the initial condition y(0) = 4, the solution becomes

B(t,y) = 3ty — 3t 4 2% = 32.

f. This linear DE equation can be rewritten

2 1
% - %’ — A2sin(4t),  so  p(t)=e J 2= -
Thus,
t
7 <t2> = 4sin(4t) or yt(2) = —cos(4t) + C

It follows that
y(t) = Ct* — t>cos(4t), so 2=C —cos(4) or C =2+ cos(4).

Hence, the solution is
y(t) = (2 + cos(4))t? — t* cos(4t).

g. This is a linear and separable differential equation. We solve this time using separable techniques.

The equation can be written
/dy B / 2tdt
y ) 241

The right integral uses the substitution u = t? 4 1, so du = 2t dt. Hence,
du 9
Inly(t)| = /7 —Infu|+C =In(+1)+C
u
y(t) _ 6111(1‘/2+1)+C _ A(t2 + 1)7
where A = e“. The initial condition y(0) = 3 = A, which implies A = 3. Hence, the solution is

y(t) = 3(t% + 1).



h. This is a separable differential equation. It can be written
/eydy = /etdt or ey =et +C.

It follows that y(t) = In(e’ + C). The initial condition y(0) = 6 = In(1 + C), which implies
C = e% — 1. Hence, the solution is

y(t) = In(e! + €% — 1).

i. Rewrite this equation:
dy

= 0.
dt

ye' — 2+ (' — 2y)

OM (t,y) t _ ON(ty)
ot

Since D, —€¢ = , this equation is exact. Integrating we see

/(yet —2)dt = ye' — 2t + h(y) and /(et — 2y)dy = ye' —y* + k(t).
It is clear that the potential function is
— et 2 _
o(t,y) =ye —2t -y =C.
With the initial condition y(0) = 6, the solution becomes

o(t,y) = y(t)e' — 2t —y*(t) = 6 — 36 = —30.

j. The DE
dy 3t
i ty=y'e
is a Bernoulli’s equation, where we make the substitution v = y'™3 = y~2, so CC%L = —2y‘3%.
Multiplying the above equation by —2y~3, we obtain the linear DE in u(t)
d d
—2y*3d—zt/ —2y % = 2! or d—Q: —2u = —2¢.

This has the integrating factor u(t) = e=%, so

d

pn “2u(t) =27t + C.

®

(ef2tu(t)) = 2! or

It follows that

= u(t) = 2¢" + Ce*, S0 1=2+C or C=-1

Thus,



2. a. The solution to the white lead problem is P(t) = 10e~ %t where t = 0 represents 1970. From
the data at 1975, we have 8.5 = 10e™°F or ¢ = 10/8.5 = 1.17647. Thus, k = 0.032504 yr~'. To
find the half-life, we compute 5 = 10e™*!, so t = In(2)/k = 21.33 yr is the half-life of lead-210.

b. The differential equation can be written P’ = —k(P — r/k), so we make the substitution
z(t) = P(t) — r/k. This leaves the initial value problem

~

=—kz, 2(0)=P(0)—r/k=10-r/k,

IS

which has the solution z(t) = (P(0) — r/k)e™* = P(t) — r/k. Thus, the solution is

P(t) = (10 - ]’;) et 4 % = 2.3086e ¥ + 7.6914,

where k£ = 0.032504. In the limit,

lim P(t) = 7.6914 disintegrations per minute of 2!°Pb.

t—o00

3. a. The differential equation describing the temperature of the tea satisfies
H'=—k(H —21), H(0)=285and H(5) = 81.
Make the substitution z(t) = H(t) — 21, which gives the differential equation
2= —kz, 2(0)= H(0)—21 = 64.
The solution becomes z(t) = 64e~* = H(t) — 21 or
H(t) = 64e ™ + 21.

To find k, we solve H(5) = 81 = 64e~°* + 21 or €°* = 64/60 = 1.0667. Thus, k = 0.012908 min~".
The water was at boiling point when 64e=* 4+ 21 = 100 or e=* = 79/64. It follows that ¢ =
—1In(79/64)/k = —16.3 min. This means that the talk went 16.3 min over its scheduled ending.

b. To obtain a temperature of at least 93°C, then we need to find the time that satisfies H(t) =
93 = 64e* + 21, so e7* = 72/64 = 1.125. Solving for ¢ gives t = —In(72/64)/k = —9.125 min. It
follows that you must arrive at the hot water within 16.3 — 9.1 = 7.2 min of the scheduled end of
the talks.

4. a. Substituting the parameters into the differential equation gives

, 1
¢’ = 55(22000 = 2000¢) = —0.002(c — 11).
We make the substitution z(t) = ¢(t) — 11, which gives the initial value problem 2’ = —0.002z with
2(0) = ¢(0) — 11 = —11. The solution of this differential equation is z(t) = —11e70992 = ¢(¢) — 11,
SO
c(t) = 11 — 1179002,



b. Solve the equation c(t) = 11 — 11e7%092t = 5 50 0992t = 11/6 or t = 500In(11/6) =
303.1 days. The limiting concentration

lim ¢(t) = 11.
t—o0
The graph is below.
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Problem 4

5. The differential equation is separable, so write
/T*%d:r _ k/dt or  2TH(t) = kt+C.

It follows that

() = (kt—;C)Q.

. ‘- . . kt 2 : 4k 2
The initial condition 7'(0) = 1 implies C' = 2, so T'(t) = (7 + 1) . Since T'(4) = (7 + 1) = 25,

2k +1 =5 or k =2. Thus, the solution for the spread of the disease in this orchard is
T(t) = (t+1)2

When ¢ = 10, T(10) = 121.

6. The differential equation with the information in the problem is given by:

dH
—r = —k(H-25),  H(0)=35,

where t = 0 is 7 AM. We make the change of variables z(t) = H(t) — 25, so z(0) = 10. The problem
now becomes

d
ch = —kz,  2(0) =10,
which has the solution
2(t) =10e™™ or H(t)=25+10e ™.



From the information at 9 AM, we see

10
10 In (55
H(2)=335=25+10c" or =2 or k= (28 ) = 0.081259.
It follows that
H(t) =25+ 1070081259,
The time of death is found by solving
_ B 14 In(1.4)
H t — 39 — 25 10 0.081259t4 0.081259t4 I b= —— " _41407
(ta) e o e 10 % "7 70081259

It follows that the time of death is 4 hours and 8.4 min before the body is found, which gives the
time of death around 2:52 AM.

b. This differential equation is separable, so we can write:

/(H—25)—2/3dH — —k:b/dt = —kyt+C,
3(H —25)Y3 = —kyt+C,
_ 3
H(t) = 25+(C 3kbt> .

The initial temperature of the body gives:
C 3
35 =25 + (3) or  C =3(10)"? ~ 6.4633.
From the temperature at t = 2,

3
335=25+ (107~ 2k,)"  or 853 =103 2,

SO
ky = 1.5 (101/3 _ 81/3) ~ 0.17041.

It follows that the time of death satisfies:
3 t
39 =25+ (101/3 - %dk:b) or 103 _ 141/3 — gdklr

Thus,

ty = ]i (101/3 — 141/3) ~ —4.5016  or 4 hr 30.1 min,

which is approximately 2:29.9 AM. These models differ about 22 min in their predictions for the
time of death.

7. a. The solution of the Malthusian growth model is B(t) = 1000e%%¢. The population doubles
when the bacteria reaches 2000, so 1000¢e%%1¢ = 2000 or %0 = 2. Thus, 0.01¢ = In(2) or
t =1001n(2) ~ 69.3 min for the population to double.

b. The model with time-varying growth is a linear and separable differential equation, so

dB dB
% = 001(1 — €_t) B or /§ =0.01 /(1 — e_t)dt



In|B(t)| = 0.01(t + e ")+ C or B(t) = Ael01t+e™)

where A = e¢“. With the initial condition, B(0) = 1000 = Ae®% or A = 1000201, Thus, the
solution to this time-varying growth model is

B(t) = 1000 201 (t+e ™" =1)

c. The Malthusian growth model gives B(5) = 1051 and B(60) = 1822, while the modified growth
model gives B(5) = 1041 and B(60) = 1804.

8. a. The solution to the Malthusian growth model is given by P(t) = 100e%2¢. This population
doubles when 100 e%2? = 200 or ¢"2! = 2, so t = 5In(2) ~ 3.466 yrs.

b. This model, including the modification for habitat encroachment, is a linear and separable
differential equation. It can be written

P
/7 _ /(0.2 _0.020)dt  or  In|P|=02¢—0.01¢+C.

It follows that P(t) = ¢0-2t-0018%4+C — 4026001 where A = ¢, The initial condition P(0) =
100 = A, which implies A = 100. Hence, the solution satisfies

P(t) = 100 >2170018,

c. We examine the differential equation in Part b and see that % = 0 when 0.2 — 0.02t = 0,
which implies that ¢ = 10. Thus, the maximum of population is P(10) = 100e ~ 271.8. If we
solve P(t) = 100e%2t=001%* — 100, then this is equivalent to e®2t=001¢* — 1 or 0.2¢ — 0.01¢2 =
—0.01¢(t — 20) = 0. Thus, either ¢ = 20 (or 0), so the population returns to 100 after 20 years.
The graph of the population can be seen below.
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Problem 8 Problem 9

9. a. This population of cells in a declining medium satisfies a separable differential equation, which
can be written

/ P?3dp = / 0.3 *%dt  or  3PY3(t)=-30e 001 43C.

It follows that PY/3(t) = —10e=001 4 €, so P(t) = (C — 10e~%91)* The initial condition P(0) =
1000 = (C' — 10)3, which implies C' = 20. The solution is given by

P(t) = (20— 106—0-0“)3.



b. This population doubles when P(t) = (20 — 106*0'01'5)3 = 2000, so 20 — 10e7 %91 = 10/2 or
e 001t — 9 _ /9. Tt follows that ¢ = 100 In ( f) —0.01¢

limy P( ) = 20% = 8000. Thus, there is a horizontal asymptote at P = 8000, so the population
tends towards this value. The graph of the population can be seen above.

~ 30.1 hr. For large ¢, lim;— o =0, so

10. a. The change in amount of phosphate, P(t), is found by adding the amount entering and
subtracting the amount leaving.

dpP
— =200-10 — 200 - c(t
S elt).
where ¢(t) is the concentration in the lake with ¢(t) = P(¢)/10,000. By dividing the equation by

the volume, the concentration equation is given by

d
d{ = 0.2 -0.02c = —0.02(c — 10),  ¢(0) =0.
With the substitution z(t) = ¢(t) — 10, the equation above reduces to the problem
d
d—i — 002z,  2(0) = —10,
which has the solution z(t) = —10e7%02¢. Thus, the concentration is given by

c(t) =10 — 1070027,

b. The differential equation describing the growth of the algae is given by

dA
T —05(1 = —0.02¢ A2/3.
o (1—e7)
By separating variables, we see
/A—2/3dA _— 5/ 002ty
3AV3(t) = 0.5(t+50e %92 4 C
3
0.5(t + 5070928 1 ¢
AW = ( (t+50e

3
From the initial condition A(0) = 1000, we have 1000 = (%) . It follows that C' =5, so

—0.02¢ 3
A(t):<t+506 +10>

6

11. a. Write the differential equation % d—w = —0.2(w — 80), then z(t) = w(t) — 80. It follows that

d
£ =02z,  2(0) = —80,

with the solution z(t) = —80e~%?" = w(t) — 80. Thus,

w(t) =80 (1 - 02).



For a 40 kg alligator, w(t) = 40 = 80 (1 — e %2!) or 40 = 80e %%, s0 %% = 2 or 0.2t = In(2).
Thus, ¢t = 51n(2) ~ 3.47 years.

b. The pesticide accumulation is given by

% — 600 (80 (1 - 6_0'2t)) . P(0)=0.

The solution is given by
P(t) = 48,000 / (1 - e—0~2t) dt = 48,000 (t + 5e—°~2t) e
The initial condition gives P(0) = 0 = 240,000 + C, so C' = —240, 000. Hence,
P(t) = 48,000 (t + 5e—0~2t) — 240, 000.

The amount of pesticide in the alligator at age 5 is P(5) = 48,000 (5 + 5e~!) — 240,000 =
240,000e! ~ 88291 ug.
c. The pesticide concentration for a 5 year old alligator is

P 88,291
~ 1000w(5) 80,000 (1 —e~1)

c(5) ~ 1.75 ppm.

12. a. The differential equation can be written:

dc
— = —0.004(¢c — 15
dt (C )7

so we make the substitution z(t) = c¢(t) — 15. Since ¢(0) = 0, it follows that z(0) = —15. The
solution of the substituted equation is given by:

2(t) = —15e700% — ¢(¢) — 15
c(t) = 15— 15e 0004

The limiting concentration satisfies:

lim ¢(t) = 15 mg/m®.

t—o00

b. We begin by separating variables, which gives:

dc
= —0.001 [ (4 - 0172
/6—15 0.00 /( cos(0.0172t)) dt
in(0.0172t
In(e(t) —15) = —0.001 (4t _ %) o
c(t) = 15+Ae_0'001(4t—%)

It is easy to see that the initial condition ¢(0) = 0 implies that A = —15. Thus, the solution to this

problem is given by:
c(t) = 15 — 15 o —0-001(4t—58.145in(0.0172¢))



13. a. We separate variables, so
/M*3/4dM = —k/dt or 4MY* = —kt +4C

k 4
M(t) = (c _ t>
4
From the initial condition, M (0) = 16 = C*, it follows that C' = 2. From the information that
M(10) = 1 = (2 — 10k/4)*, we have k = 0.4, so
M(t) = (2 —0.1t)%
The fruit vanishes in 20 days.

b. We separate variables again to find:

/ M=3/4AM = —0.8 / e 00%dt or AM'V* = %6*00% +4C

M(t) = (106_0'02t + 0)4 .

From the initial condition, M (0) = 16 = (10 + C)*, it follows that C' = —8, so
4
M(t) = (10e700% —8) "

Solving 10e7%92* = 8 which is when the fruit vanishes, we find ¢t = 501In(5/4). Thus, the fruit
vanishes in 11.157 days.

14. a. The general solution to the Malthusian growth problem with the initial condition P(0) = 60
is
P(t) =60e™.

We are given that 2 weeks later P(2) = 80 = 60 e”", so it follows that r = $In (%) = 0.14384. This

gives the solution:
P(t) = 60 0143841,

It is easy to see that the population doubles when 120 = 6014384t 50 0.14384t; = In(2) or the

doubling time is

ty = M) _ 4 819 weeks.
T

b. We begin by separating variables, so the general solution satisfies:
dP bt? 2
/? = /(a —bt)dt or In(P(t)) =at— el +C or P(t)= eCett="%
Since the initial value is P(0) = 60, it follows that e¢ = 60. Thus,

2
P(t) = 6017,



We now use the data at t = 2 and 4 weeks. It follows from the solution above that

80 = 60e2%720
90 = 60e*280

We rearrange the terms and take logarithms of both sides to get

4
2a—2b = In| -
a 5 (3)

3
4a—8b = In(=].
a—38 n(2>

We solve these equations simultaneously to obtain

2b=1n (4) W (3) ,
3 2 2
so b= 0.042475. But a = b+ 11n(4/3) or a = 0.1863. It follows that the solution is

P(t) = 60 60.186315—0.021237752‘

The population reaches a maximum when the derivative is zero, which occurs when t,,4, = % =
4.3865, so the maximum population is P(tmq) = 90.286.

15. The differential equation, % = —0.05R+0.2¢7%01 with R(0) = 10 is linear and can be written

dR

o 005k = 0.2e7001  with  p(t) = %%

It follows that it can be written

d
o (60'05tR(t)> = (0.2¢0-04 or 60'05tR(t) =0.2 / 0% gt = 5004 4 O
Thus,

R(t) = 5e7001t 4 =005t or R(0)=10 =5+ C.
The solution is R(t) = 5¢—0-05t | 5,—0.01¢

16. (Allee effect) Consider the DE given by the model:

— =P (9-001(P - 70)°) = A(P).
The equilibria of this population model satisfy P (9 —0.01(P — 70)?) = 0. Thus, P. = 0, 40, and
100. From the phase portrait below, it is easy to see that the equilibria P, = 0 and 100 are stable,
while P, = 40 is unstable. The carrying capacity for this population is P, = 100, and the critical
threshold number of animals required to avoid extinction is P, = 40.
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17. a. The solution follows the logistic growth solution seen in 1. d. The solution is

10, 000
Pt =55 + 150e—0-4t"

b. This is a standard logistic growth model, so the equilibria are F, = 0 and 200 (thousand).
Below is a sketch of the function with the phase portrait. The equilibrium F, = 0 is unstable, while
the carrying capacity, F, = 200 (thousand), is a stable equilibrium.
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Problem 18. b Problem 18. ¢

c. With harvesting, the right hand side of the differential equation is written

F
04F<1—mm>—15:—00@F2+04F—15:—ommuW—me—1my

It follows that the equilibria are Fr, = 50 and 150 (thousand). Above is a sketch of the function
with the phase portrait. The equilibrium F, = 50 (thousand) is the critical number of fish needed



to avoid extinction and this equilibrium is unstable. The carrying capacity, F, = 150 (thousand),
is a stable equilibrium.



