1. a. This is a linear differential equation,so it can be written

$$
\frac{d y}{d t}+(0.2 t-2) y=0, \quad \text { with } \quad \mu(t)=e^{\int(0.2 t-2) d t}=e^{0.1 t^{2}-2 t}
$$

where $\mu(t)$ is the integrating factor. It follows:

$$
\frac{d}{d t}\left(e^{0.1 t^{2}-2 t} y\right)=0 \quad \text { or } \quad e^{0.1 t^{2}-2 t} y(t)=C
$$

It follows that $y(t)=C e^{2 t-0.1 t^{2}}$. The initial condition $y(0)=10=C$. Hence, the solution is

$$
y(t)=10 e^{2 t-0.1 t^{2}}
$$

b. This is a time varying differential equation. It can be written

$$
y(t)=\int\left(2-\frac{4}{t}\right) d t=2 t-4 \ln (t)+C
$$

The initial condition $y(1)=5=2+C$, which implies $C=3$. Hence, the solution is $y(t)=2 t-4 \ln (t)+3$.
c. This is a separable differential equation. It can be written

$$
\int 2 y d y=\int 3 t^{2} d t \quad \text { or } \quad y^{2}(t)=t^{3}+C
$$

It follows that $y(t)= \pm \sqrt{t^{3}+C}$. The initial condition $y(0)=4=\sqrt{C}$, which implies $C=16$. Hence, the solution is

$$
y(t)=\sqrt{t^{3}+16} .
$$

d. This is the logistic growth differential equation, which can be written

$$
\frac{d y}{d t}=0.02 y\left(1-\frac{y}{40}\right) \quad \text { or } \quad \frac{d y}{d t}-0.02 y=-0.0005 y^{2}
$$

which is a Bernoulli's equation. Make the substitution $u=y^{1-2}=y^{-1}$, so $\frac{d u}{d t}=-y^{-2} \frac{d y}{d t}$. Multiply the equation above by $-y^{-2}$, and

$$
-y^{-2} \frac{d y}{d t}+0.02 y^{-1}=0.0005 \quad \text { or } \quad \frac{d u}{d t}+0.02 u=0.0005
$$

which is a linear equation with integrating factor $\mu(t)=e^{0.02 t}$. Thus,

$$
\frac{d}{d t}\left(e^{0.02 t} u\right)=0.0005 e^{0.02 t} \quad \text { or } \quad e^{0.02 t} u(t)=0.025 e^{0.02 t}+C .
$$

Hence, with the initial condition

$$
\frac{1}{y(t)}=u(t)=0.025+C e^{-0.02 t} \quad \text { or } \quad 0.1=0.025+C, \quad \text { so } \quad C=0.075
$$

It follows that

$$
y(t)=\frac{1}{0.025+0.075 e^{-0.02 t}}=\frac{40}{1+3 e^{-0.02 t}} .
$$

e. Rewrite the equation as

$$
3 y-6 t+(3 t+4 y) \frac{d y}{d t}=0
$$

Since $\frac{\partial M(t, y)}{\partial y}=3=\frac{\partial N(t, y)}{\partial t}$, this equation is exact. Integrating we see

$$
\int(3 y-6 t) d t=3 t y-3 t^{2}+h(y) \quad \text { and } \quad \int(3 t+4 y) d y=3 t y+2 y^{2}+k(t)
$$

It is clear that the potential function is

$$
\phi(t, y)=3 t y-3 t^{2}+2 y^{2}=C .
$$

With the initial condition $y(0)=4$, the solution becomes

$$
\phi(t, y)=3 t y-3 t^{2}+2 y^{2}=32
$$

f. This linear DE equation can be rewritten

$$
\frac{d y}{d t}-\frac{2 y}{t}=4 t^{2} \sin (4 t), \quad \text { so } \quad \mu(t)=e^{-\int 2 d t / t}=\frac{1}{t^{2}} .
$$

Thus,

$$
\frac{d}{d t}\left(\frac{y}{t^{2}}\right)=4 \sin (4 t) \quad \text { or } \quad \frac{y(t)}{t^{2}}=-\cos (4 t)+C
$$

It follows that

$$
y(t)=C t^{2}-t^{2} \cos (4 t), \quad \text { so } \quad 2=C-\cos (4) \quad \text { or } \quad C=2+\cos (4) .
$$

Hence, the solution is

$$
y(t)=(2+\cos (4)) t^{2}-t^{2} \cos (4 t)
$$

g. This is a linear and separable differential equation. We solve this time using separable techniques. The equation can be written

$$
\int \frac{d y}{y}=\int \frac{2 t d t}{t^{2}+1}
$$

The right integral uses the substitution $u=t^{2}+1$, so $d u=2 t d t$. Hence,

$$
\begin{aligned}
\ln |y(t)| & =\int \frac{d u}{u}=\ln |u|+C=\ln \left(t^{2}+1\right)+C \\
y(t) & =e^{\ln \left(t^{2}+1\right)+C}=A\left(t^{2}+1\right)
\end{aligned}
$$

where $A=e^{C}$. The initial condition $y(0)=3=A$, which implies $A=3$. Hence, the solution is

$$
y(t)=3\left(t^{2}+1\right)
$$

h. This is a separable differential equation. It can be written

$$
\int e^{y} d y=\int e^{t} d t \quad \text { or } \quad e^{y}=e^{t}+C .
$$

It follows that $y(t)=\ln \left(e^{t}+C\right)$. The initial condition $y(0)=6=\ln (1+C)$, which implies $C=e^{6}-1$. Hence, the solution is

$$
y(t)=\ln \left(e^{t}+e^{6}-1\right) .
$$

i. Rewrite this equation:

$$
y e^{t}-2+\left(e^{t}-2 y\right) \frac{d y}{d t}=0 .
$$

Since $\frac{\partial M(t, y)}{\partial y}=e^{t}=\frac{\partial N(t, y)}{\partial t}$, this equation is exact. Integrating we see

$$
\int\left(y e^{t}-2\right) d t=y e^{t}-2 t+h(y) \quad \text { and } \quad \int\left(e^{t}-2 y\right) d y=y e^{t}-y^{2}+k(t) .
$$

It is clear that the potential function is

$$
\phi(t, y)=y e^{t}-2 t-y^{2}=C .
$$

With the initial condition $y(0)=6$, the solution becomes

$$
\phi(t, y)=y(t) e^{t}-2 t-y^{2}(t)=6-36=-30 .
$$

j. The DE

$$
\frac{d y}{d t}+y=y^{3} e^{t}
$$

is a Bernoulli's equation, where we make the substitution $u=y^{1-3}=y^{-2}$, so $\frac{d u}{d t}=-2 y^{-3} \frac{d y}{d t}$. Multiplying the above equation by $-2 y^{-3}$, we obtain the linear DE in $u(t)$

$$
-2 y^{-3} \frac{d y}{d t}-2 y^{-2}=-2 e^{t} \quad \text { or } \quad \frac{d u}{d t}-2 u=-2 e^{t} .
$$

This has the integrating factor $\mu(t)=e^{-2 t}$, so

$$
\frac{d}{d t}\left(e^{-2 t} u(t)\right)=-2 e^{-t} \quad \text { or } \quad e^{-2 t} u(t)=2 e^{-t}+C
$$

It follows that

$$
\frac{1}{y^{2}(t)}=u(t)=2 e^{t}+C e^{2 t}, \quad \text { so } \quad 1=2+C \quad \text { or } \quad C=-1 .
$$

Thus,

$$
y(t)=\frac{1}{\sqrt{2 e^{t}-e^{2 t}}} .
$$

2. a. The solution to the white lead problem is $P(t)=10 e^{-k t}$, where $t=0$ represents 1970 . From the data at 1975, we have $8.5=10 e^{-5 k}$ or $e^{5 k}=10 / 8.5=1.17647$. Thus, $k=0.032504 \mathrm{yr}^{-1}$. To find the half-life, we compute $5=10 e^{-k t}$, so $t=\ln (2) / k=21.33 \mathrm{yr}$ is the half-life of lead-210.
b. The differential equation can be written $P^{\prime}=-k(P-r / k)$, so we make the substitution $z(t)=P(t)-r / k$. This leaves the initial value problem

$$
z^{\prime}=-k z, \quad z(0)=P(0)-r / k=10-r / k,
$$

which has the solution $z(t)=(P(0)-r / k) e^{-k t}=P(t)-r / k$. Thus, the solution is

$$
P(t)=\left(10-\frac{r}{k}\right) e^{-k t}+\frac{r}{k}=2.3086 e^{-k t}+7.6914,
$$

where $k=0.032504$. In the limit,

$$
\lim _{t \rightarrow \infty} P(t)=7.6914 \text { disintegrations per minute of }{ }^{210} \mathrm{~Pb} .
$$

3. a. The differential equation describing the temperature of the tea satisfies

$$
H^{\prime}=-k(H-21), \quad H(0)=85 \text { and } H(5)=81 .
$$

Make the substitution $z(t)=H(t)-21$, which gives the differential equation

$$
z^{\prime}=-k z, \quad z(0)=H(0)-21=64 .
$$

The solution becomes $z(t)=64 e^{-k t}=H(t)-21$ or

$$
H(t)=64 e^{-k t}+21
$$

To find k, we solve $H(5)=81=64 e^{-5 k}+21$ or $e^{5 k}=64 / 60=1.0667$. Thus, $k=0.012908 \mathrm{~min}^{-1}$. The water was at boiling point when $64 e^{-k t}+21=100$ or $e^{-k t}=79 / 64$. It follows that $t=$ $-\ln (79 / 64) / k=-16.3 \mathrm{~min}$. This means that the talk went 16.3 min over its scheduled ending.
b. To obtain a temperature of at least $93^{\circ} \mathrm{C}$, then we need to find the time that satisfies $H(t)=$ $93=64 e^{-k t}+21$, so $e^{-k t}=72 / 64=1.125$. Solving for t gives $t=-\ln (72 / 64) / k=-9.125 \mathrm{~min}$. It follows that you must arrive at the hot water within $16.3-9.1=7.2 \mathrm{~min}$ of the scheduled end of the talks.
4. a. Substituting the parameters into the differential equation gives

$$
c^{\prime}=\frac{1}{10^{6}}(22000-2000 c)=-0.002(c-11) .
$$

We make the substitution $z(t)=c(t)-11$, which gives the initial value problem $z^{\prime}=-0.002 z$ with $z(0)=c(0)-11=-11$. The solution of this differential equation is $z(t)=-11 e^{-0.002 t}=c(t)-11$, so

$$
c(t)=11-11 e^{-0.002 t}
$$

b. Solve the equation $c(t)=11-11 e^{-0.002 t}=5$, so $e^{0.002 t}=11 / 6$ or $t=500 \ln (11 / 6)=$ 303.1 days. The limiting concentration

$$
\lim _{t \rightarrow \infty} c(t)=11
$$

The graph is below.

Problem 4
5. The differential equation is separable, so write

$$
\int T^{-\frac{1}{2}} d T=k \int d t \quad \text { or } \quad 2 T^{\frac{1}{2}}(t)=k t+C
$$

It follows that

$$
T(t)=\left(\frac{k t+C}{2}\right)^{2}
$$

The initial condition $T(0)=1$ implies $C=2$, so $T(t)=\left(\frac{k t}{2}+1\right)^{2}$. Since $T(4)=\left(\frac{4 k}{2}+1\right)^{2}=25$, $2 k+1=5$ or $k=2$. Thus, the solution for the spread of the disease in this orchard is

$$
T(t)=(t+1)^{2} .
$$

When $t=10, T(10)=121$.
6. The differential equation with the information in the problem is given by:

$$
\frac{d H}{d t}=-k(H-25), \quad H(0)=35
$$

where $t=0$ is 7 AM . We make the change of variables $z(t)=H(t)-25$, so $z(0)=10$. The problem now becomes

$$
\frac{d z}{d t}=-k z, \quad z(0)=10
$$

which has the solution

$$
z(t)=10 e^{-k t} \quad \text { or } \quad H(t)=25+10 e^{-k t} .
$$

From the information at 9 AM , we see

$$
H(2)=33.5=25+10 e^{-2 k} \quad \text { or } \quad e^{2 k}=\frac{10}{8.5} \quad \text { or } \quad k=\frac{\ln \left(\frac{10}{8.5}\right)}{2}=0.081259 .
$$

It follows that

$$
H(t)=25+10 e^{-0.081259 t} .
$$

The time of death is found by solving

$$
H\left(t_{d}\right)=39=25+10 e^{-0.081259 t_{d}} \quad \text { or } \quad e^{-0.081259 t_{d}}=\frac{14}{10} \quad \text { or } \quad t_{d}=-\frac{\ln (1.4)}{0.081259}=-4.1407 .
$$

It follows that the time of death is 4 hours and 8.4 min before the body is found, which gives the time of death around 2:52 AM.
b. This differential equation is separable, so we can write:

$$
\begin{aligned}
\int(H-25)^{-2 / 3} d H & =-k_{b} \int d t=-k_{b} t+C \\
3(H-25)^{1 / 3} & =-k_{b} t+C \\
H(t) & =25+\left(\frac{C-k_{b} t}{3}\right)^{3}
\end{aligned}
$$

The initial temperature of the body gives:

$$
35=25+\left(\frac{C}{3}\right)^{3} \quad \text { or } \quad C=3(10)^{1 / 3} \approx 6.4633
$$

From the temperature at $t=2$,

$$
33.5=25+\left(10^{1 / 3}-\frac{2}{3} k_{b}\right)^{3} \quad \text { or } \quad 8.5^{1 / 3}=10^{1 / 3}-\frac{2}{3} k_{b},
$$

so

$$
k_{b}=1.5\left(10^{1 / 3}-8^{1 / 3}\right) \approx 0.17041 .
$$

It follows that the time of death satisfies:

$$
39=25+\left(10^{1 / 3}-\frac{t_{d}}{3} k_{b}\right)^{3} \quad \text { or } \quad 10^{1 / 3}-14^{1 / 3}=\frac{t_{d}}{3} k_{b} .
$$

Thus,

$$
t_{d}=\frac{3}{k_{b}}\left(10^{1 / 3}-14^{1 / 3}\right) \approx-4.5016 \quad \text { or } \quad 4 \mathrm{hr} 30.1 \mathrm{~min}
$$

which is approximately 2:29.9 AM. These models differ about 22 min in their predictions for the time of death.
7. a. The solution of the Malthusian growth model is $B(t)=1000 e^{0.01 t}$. The population doubles when the bacteria reaches 2000 , so $1000 e^{0.01 t}=2000$ or $e^{0.01 t}=2$. Thus, $0.01 t=\ln (2)$ or $t=100 \ln (2) \approx 69.3 \mathrm{~min}$ for the population to double.
b. The model with time-varying growth is a linear and separable differential equation, so

$$
\frac{d B}{d t}=0.01\left(1-e^{-t}\right) B \quad \text { or } \quad \int \frac{d B}{B}=0.01 \int\left(1-e^{-t}\right) d t
$$

$$
\ln |B(t)|=0.01\left(t+e^{-t}\right)+C \quad \text { or } \quad B(t)=A e^{0.01\left(t+e^{-t}\right)},
$$

where $A=e^{C}$. With the initial condition, $B(0)=1000=A e^{0.01}$ or $A=1000 e^{-0.01}$. Thus, the solution to this time-varying growth model is

$$
B(t)=1000 e^{0.01\left(t+e^{-t}-1\right)}
$$

c. The Malthusian growth model gives $B(5)=1051$ and $B(60)=1822$, while the modified growth model gives $B(5)=1041$ and $B(60)=1804$.
8. a. The solution to the Malthusian growth model is given by $P(t)=100 e^{0.2 t}$. This population doubles when $100 e^{0.2 t}=200$ or $e^{0.2 t}=2$, so $t=5 \ln (2) \approx 3.466$ yrs.
b. This model, including the modification for habitat encroachment, is a linear and separable differential equation. It can be written

$$
\int \frac{d P}{P}=\int(0.2-0.02 t) d t \quad \text { or } \quad \ln |P|=0.2 t-0.01 t^{2}+C .
$$

It follows that $P(t)=e^{0.2 t-0.01 t^{2}+C}=A e^{0.2 t-0.01 t^{2}}$, where $A=e^{C}$. The initial condition $P(0)=$ $100=A$, which implies $A=100$. Hence, the solution satisfies

$$
P(t)=100 e^{0.2 t-0.01 t^{2}}
$$

c. We examine the differential equation in Part b and see that $\frac{d P}{d t}=0$ when $0.2-0.02 t=0$, which implies that $t=10$. Thus, the maximum of population is $P(10)=100 e \approx 271.8$. If we solve $P(t)=100 e^{0.2 t-0.01 t^{2}}=100$, then this is equivalent to $e^{0.2 t-0.01 t^{2}}=1$ or $0.2 t-0.01 t^{2}=$ $-0.01 t(t-20)=0$. Thus, either $t=20$ (or 0), so the population returns to 100 after 20 years. The graph of the population can be seen below.

9. a. This population of cells in a declining medium satisfies a separable differential equation, which can be written

$$
\int P^{-2 / 3} d P=\int 0.3 e^{-0.01 t} d t \quad \text { or } \quad 3 P^{1 / 3}(t)=-30 e^{-0.01 t}+3 C
$$

It follows that $P^{1 / 3}(t)=-10 e^{-0.01 t}+C$, so $P(t)=\left(C-10 e^{-0.01 t}\right)^{3}$. The initial condition $P(0)=$ $1000=(C-10)^{3}$, which implies $C=20$. The solution is given by

$$
P(t)=\left(20-10 e^{-0.01 t}\right)^{3} .
$$

b. This population doubles when $P(t)=\left(20-10 e^{-0.01 t}\right)^{3}=2000$, so $20-10 e^{-0.01 t}=10 \sqrt[3]{2}$ or $e^{-0.01 t}=2-\sqrt[3]{2}$. It follows that $t=100 \ln \left(\frac{1}{2-\sqrt[3]{2}}\right) \approx 30.1 \mathrm{hr}$. For large $t, \lim _{t \rightarrow \infty} e^{-0.01 t}=0$, so $\lim _{t \rightarrow \infty} P(t)=20^{3}=8000$. Thus, there is a horizontal asymptote at $P=8000$, so the population tends towards this value. The graph of the population can be seen above.
10. a. The change in amount of phosphate, $P(t)$, is found by adding the amount entering and subtracting the amount leaving.

$$
\frac{d P}{d t}=200 \cdot 10-200 \cdot c(t)
$$

where $c(t)$ is the concentration in the lake with $c(t)=P(t) / 10,000$. By dividing the equation by the volume, the concentration equation is given by

$$
\frac{d c}{d t}=0.2-0.02 c=-0.02(c-10), \quad c(0)=0 .
$$

With the substitution $z(t)=c(t)-10$, the equation above reduces to the problem

$$
\frac{d z}{d t}=-0.02 z, \quad z(0)=-10
$$

which has the solution $z(t)=-10 e^{-0.02 t}$. Thus, the concentration is given by

$$
c(t)=10-10 e^{-0.02 t} .
$$

b. The differential equation describing the growth of the algae is given by

$$
\frac{d A}{d t}=0.5\left(1-e^{-0.02 t}\right) A^{2 / 3}
$$

By separating variables, we see

$$
\begin{aligned}
\int A^{-2 / 3} d A & =0.5 \int\left(1-e^{-0.02 t}\right) d t \\
3 A^{1 / 3}(t) & =0.5\left(t+50 e^{-0.02 t}\right)+C \\
A(t) & =\left(\frac{0.5\left(t+50 e^{-0.02 t}\right)+C}{3}\right)^{3}
\end{aligned}
$$

From the initial condition $A(0)=1000$, we have $1000=\left(\frac{25+C}{3}\right)^{3}$. It follows that $C=5$, so

$$
A(t)=\left(\frac{t+50 e^{-0.02 t}+10}{6}\right)^{3}
$$

11. a. Write the differential equation $\frac{d w}{d t}=-0.2(w-80)$, then $z(t)=w(t)-80$. It follows that

$$
\frac{d z}{d t}=-0.2 z, \quad z(0)=-80
$$

with the solution $z(t)=-80 e^{-0.2 t}=w(t)-80$. Thus,

$$
w(t)=80\left(1-e^{-0.2 t}\right)
$$

For a 40 kg alligator, $w(t)=40=80\left(1-e^{-0.2 t}\right)$ or $40=80 e^{-0.2 t}$, so $e^{0.2 t}=2$ or $0.2 t=\ln (2)$. Thus, $t=5 \ln (2) \approx 3.47$ years.
b. The pesticide accumulation is given by

$$
\frac{d P}{d t}=600\left(80\left(1-e^{-0.2 t}\right)\right), \quad P(0)=0
$$

The solution is given by

$$
P(t)=48,000 \int\left(1-e^{-0.2 t}\right) d t=48,000\left(t+5 e^{-0.2 t}\right)+C .
$$

The initial condition gives $P(0)=0=240,000+C$, so $C=-240,000$. Hence,

$$
P(t)=48,000\left(t+5 e^{-0.2 t}\right)-240,000
$$

The amount of pesticide in the alligator at age 5 is $P(5)=48,000\left(5+5 e^{-1}\right)-240,000=$ $240,000 e^{-1} \approx 88291 \mu \mathrm{~g}$.
c. The pesticide concentration for a 5 year old alligator is

$$
c(5)=\frac{P(5)}{1000 w(5)}=\frac{88,291}{80,000\left(1-e^{-1}\right)} \approx 1.75 \mathrm{ppm} .
$$

12. a. The differential equation can be written:

$$
\frac{d c}{d t}=-0.004(c-15),
$$

so we make the substitution $z(t)=c(t)-15$. Since $c(0)=0$, it follows that $z(0)=-15$. The solution of the substituted equation is given by:

$$
\begin{aligned}
& z(t)=-15 e^{-0.004 t}=c(t)-15 \\
& c(t)=15-15 e^{-0.004 t} .
\end{aligned}
$$

The limiting concentration satisfies:

$$
\lim _{t \rightarrow \infty} c(t)=15 \mathrm{mg} / \mathrm{m}^{3}
$$

b. We begin by separating variables, which gives:

$$
\begin{aligned}
\int \frac{d c}{c-15} & =-0.001 \int(4-\cos (0.0172 t)) d t \\
\ln (c(t)-15) & =-0.001\left(4 t-\frac{\sin (0.0172 t)}{0.0172}\right)+C \\
c(t) & =15+A e^{-0.001\left(4 t-\frac{\sin (0.0172 t)}{0.0172}\right)}
\end{aligned}
$$

It is easy to see that the initial condition $c(0)=0$ implies that $A=-15$. Thus, the solution to this problem is given by:

$$
c(t)=15-15 e^{-0.001(4 t-58.14 \sin (0.0172 t))}
$$

13. a. We separate variables, so

$$
\begin{gathered}
\int M^{-3 / 4} d M=-k \int d t \text { or } 4 M^{1 / 4}=-k t+4 C \\
M(t)=\left(C-\frac{k}{4} t\right)^{4}
\end{gathered}
$$

From the initial condition, $M(0)=16=C^{4}$, it follows that $C=2$. From the information that $M(10)=1=(2-10 k / 4)^{4}$, we have $k=0.4$, so

$$
M(t)=(2-0.1 t)^{4}
$$

The fruit vanishes in 20 days.
b. We separate variables again to find:

$$
\begin{gathered}
\int M^{-3 / 4} d M=-0.8 \int e^{-0.02 t} d t \text { or } 4 M^{1 / 4}=\frac{0.8}{0.02} e^{-0.02 t}+4 C \\
M(t)=\left(10 e^{-0.02 t}+C\right)^{4} .
\end{gathered}
$$

From the initial condition, $M(0)=16=(10+C)^{4}$, it follows that $C=-8$, so

$$
M(t)=\left(10 e^{-0.02 t}-8\right)^{4}
$$

Solving $10 e^{-0.02 t}=8$, which is when the fruit vanishes, we find $t=50 \ln (5 / 4)$. Thus, the fruit vanishes in 11.157 days.
14. a. The general solution to the Malthusian growth problem with the initial condition $P(0)=60$ is

$$
P(t)=60 e^{r t} .
$$

We are given that 2 weeks later $P(2)=80=60 e^{2 r}$, so it follows that $r=\frac{1}{2} \ln \left(\frac{4}{3}\right)=0.14384$. This gives the solution:

$$
P(t)=60 e^{0.14384 t} .
$$

It is easy to see that the population doubles when $120=60 e^{0.14384 t}$, so $0.14384 t_{d}=\ln (2)$ or the doubling time is

$$
t_{d}=\frac{\ln (2)}{r}=4.819 \text { weeks. }
$$

b. We begin by separating variables, so the general solution satisfies:

$$
\int \frac{d P}{P}=\int(a-b t) d t \quad \text { or } \quad \ln (P(t))=a t-\frac{b t^{2}}{2}+C \quad \text { or } \quad P(t)=e^{C} e^{a t-\frac{b t^{2}}{2}} .
$$

Since the initial value is $P(0)=60$, it follows that $e^{C}=60$. Thus,

$$
P(t)=60 e^{a t-\frac{b t^{2}}{2}} .
$$

We now use the data at $t=2$ and 4 weeks. It follows from the solution above that

$$
\begin{aligned}
& 80=60 e^{2 a-2 b} \\
& 90=60 e^{4 a-8 b}
\end{aligned}
$$

We rearrange the terms and take logarithms of both sides to get

$$
\begin{aligned}
& 2 a-2 b=\ln \left(\frac{4}{3}\right) \\
& 4 a-8 b=\ln \left(\frac{3}{2}\right)
\end{aligned}
$$

We solve these equations simultaneously to obtain

$$
2 b=\ln \left(\frac{4}{3}\right)-\frac{1}{2} \ln \left(\frac{3}{2}\right),
$$

so $b=0.042475$. But $a=b+\frac{1}{2} \ln (4 / 3)$ or $a=0.1863$. It follows that the solution is

$$
P(t)=60 e^{0.1863 t-0.021237 t^{2}}
$$

The population reaches a maximum when the derivative is zero, which occurs when $t_{\max }=\frac{a}{b}=$ 4.3865 , so the maximum population is $P\left(t_{\max }\right)=90.286$.
15. The differential equation, $\frac{d R}{d t}=-0.05 R+0.2 e^{-0.01 t}$ with $R(0)=10$ is linear and can be written

$$
\frac{d R}{d t}+0.05 R=0.2 e^{-0.01 t} \quad \text { with } \quad \mu(t)=e^{0.05 t}
$$

It follows that it can be written

$$
\frac{d}{d t}\left(e^{0.05 t} R(t)\right)=0.2 e^{0.04 t} \quad \text { or } \quad e^{0.05 t} R(t)=0.2 \int e^{0.04 t} d t=5 e^{0.04 t}+C .
$$

Thus,

$$
R(t)=5 e^{-0.01 t}+C e^{-0.05 t}, \quad \text { or } \quad R(0)=10=5+C .
$$

The solution is $R(t)=5 e^{-0.05 t}+5 e^{-0.01 t}$.
16. (Allee effect) Consider the DE given by the model:

$$
\frac{d P}{d t}=P\left(9-0.01(P-70)^{2}\right)=A(P)
$$

The equilibria of this population model satisfy $P\left(9-0.01(P-70)^{2}\right)=0$. Thus, $P_{e}=0$, 40, and 100. From the phase portrait below, it is easy to see that the equilibria $P_{e}=0$ and 100 are stable, while $P_{e}=40$ is unstable. The carrying capacity for this population is $P_{e}=100$, and the critical threshold number of animals required to avoid extinction is $P_{e}=40$.

17. a. The solution follows the logistic growth solution seen in 1. d. The solution is

$$
F(t)=\frac{10,000}{50+150 e^{-0.4 t}}
$$

b. This is a standard logistic growth model, so the equilibria are $F_{e}=0$ and 200 (thousand). Below is a sketch of the function with the phase portrait. The equilibrium $F_{e}=0$ is unstable, while the carrying capacity, $F_{e}=200$ (thousand), is a stable equilibrium.

c. With harvesting, the right hand side of the differential equation is written

$$
0.4 F\left(1-\frac{F}{200}\right)-15=-0.002 F^{2}+0.4 F-15=-0.002(F-50)(F-150)
$$

It follows that the equilibria are $F_{e}=50$ and 150 (thousand). Above is a sketch of the function with the phase portrait. The equilibrium $F_{e}=50$ (thousand) is the critical number of fish needed
to avoid extinction and this equilibrium is unstable. The carrying capacity, $F_{e}=150$ (thousand), is a stable equilibrium.

