Homework 5 - Regular Perturbations Due Mon. 11/25

1. Consider the algebraic equation

$$
x^{2}+\varepsilon x-1=0, \quad 0<\varepsilon \ll 1
$$

Determine the first three terms in a regular perturbation series solution

$$
x=x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\ldots
$$

for each root. Compare your answers to the exact roots.
2. Find a two term regular perturbation expansion for the solution of the boundary value problem (BVP):

$$
\begin{aligned}
y^{\prime \prime}-\varepsilon y=0, & \\
y(0)=t<1, & \\
y(1)=1 . &
\end{aligned}
$$

Compare this expansion to the exact solution of this BVP. Show that the two term approximate solution satisfies the BVP up to an $o(\varepsilon)$ term. How well does it satisfy the boundary conditions and does the approximation uniformly approach the solution on the interval $t \in(0,1)$?

Definition 1. Let $f(t, \varepsilon)$ and $g(t, \varepsilon)$ be defined for all $t \in I$ and all ε in a (punctured) neighborhood of $\varepsilon=0$. We write

$$
f(t, \varepsilon)=o(g(t, \varepsilon)), \quad \text { as } \quad \varepsilon \rightarrow 0,
$$

if

$$
\lim _{\varepsilon \rightarrow 0}\left|\frac{f(t, \varepsilon)}{g(t, \varepsilon)}\right|=0
$$

pointwise on I. If this limit is uniform on I, we write $f(t, \varepsilon)=o(g(t, \varepsilon))$ as $\varepsilon \rightarrow 0$ uniformly on I.
3. Consider the initial value problem (IVP):

$$
\begin{aligned}
\ddot{y}+(1+\varepsilon) y & =0, & & t>0, \quad 0<\varepsilon \ll 1, \\
y(0)=1, & & \dot{y}(0)=0 . &
\end{aligned}
$$

Find the exact solution. Find a two term perturbation approximation and show that the correction term is a secular term. Compare the exact solution to the perturbation approximation for large t. Create a graph of the exact solution and the approximate solution for $t \in[0,50]$ for $\varepsilon=0.05$ and describe similarities and differences.
4. Consider the BVP:

$$
y^{\prime \prime}+\varepsilon^{2} y=0, \quad 0<x<1, \quad y(0)=a, \quad y(1)=0
$$

a. Find the regular perturbation solution to this problem up to and including terms of $\mathcal{O}\left(\varepsilon^{2}\right)$.
b. Obtain the exact solution for this BVP $(\varepsilon \neq n \pi$ for $n=1,2, \ldots)$ and compare the Taylor series of this solution up to and including terms of $\mathcal{O}\left(\varepsilon^{2}\right)$. Why do we have the condition $\varepsilon \neq n \pi$?
c. Create graphs for the exact and approximate solutions with $a=2$ for $\varepsilon=0.5$ and $\varepsilon=1$. What can you say about the differences between secular terms in a BVP as compared to an IVP with respect to convergence of the solution?
5. Consider the IVP:

$$
u^{\prime \prime}-u=\varepsilon t u, \quad t>0, \quad u(0)=1, \quad u^{\prime}(0)=-1, \quad 0<\varepsilon \ll 1 .
$$

a. Find a two term regular perturbation approximation, $u_{a}(t)$.
b. Use a regular power series method to solve this problem. Give your recurrence relation and show the coefficients up to and including t^{6}.
c. Let $\varepsilon=0.04$ and use a numerical differential equation solver (like MatLab's ODE23) to find an accurate numerical solution for $t \in[0,8]$. Create a graph comparing the perturbation approximation of Part a, the series solution of Part b, and the numerical solution (restricting the range to $u \leq 10$). Briefly describe what you observe and how these various methods compare.
6. Consider the IVP:

$$
y^{\prime \prime}+y=\varepsilon y\left(y^{\prime}\right)^{2}, \quad y(0)=1, \quad y^{\prime}(0)=0, \quad 0<\varepsilon \ll 1 .
$$

a. Find a two term regular perturbation approximation, $y_{a}(t)$.
b. Let $\varepsilon=0.1$ and use a numerical differential equation solver (like MatLab's ODE23) to find an accurate numerical solution for $t \in[0,50]$. Create a graph comparing the perturbation approximation of Part a and the numerical solution. Briefly describe what you observe and how these solutions compare.
7. Consider the IVP:

$$
u^{\prime}+u=\frac{1}{1+\varepsilon u}, \quad u(0)=0, \quad 0<\varepsilon \ll 1
$$

a. Find a two term regular perturbation approximation, $u_{a}(t)$.
b. Let $\varepsilon=0.2$ and use a numerical differential equation solver (like MatLab's ODE23) to find an accurate numerical solution for $t \in[0,10]$. Create a graph comparing the perturbation approximation of Part a and the numerical solution. Briefly describe what you observe and how these solutions compare.
c. Start with $\varepsilon=0.2$ and halve ε twice. Compare the approximate solution at $t=10, u_{a}(10)$ with the accurate numerical solution, $u(10)$ for these $\mathbf{3}$ values of ε. Use this information to show that your perturbation approximation is $\mathcal{O}\left(\varepsilon^{2}\right)$.

