## Homework 3 - Fundamental Solutions Due Fri. 10/4

Work all problems in WeBWorK and attach any written parts to this assignment.

1. a. Use the matrix definition of $e^{A t}$ to find a fundamental matrix solution of $\dot{\mathbf{y}}=A \mathbf{y}$, where

$$
A=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
0 & 0 & -2
\end{array}\right)
$$

b. Use the matrix definition of $e^{A t}$ to find a fundamental matrix solution of $\dot{\mathbf{y}}=A \mathbf{y}$, where $A$ is the $n \times n$ matrix:

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 0 & 1 \\
0 & \ldots & \ldots & 0 & 0
\end{array}\right)
$$

2. Use the matrix definition of $e^{A}$ to show that if $P$ is a nonsingular $n \times n$ matrix,

$$
P^{-1} e^{A} P=e^{P^{-1} A P} .
$$

3. Show that if $A B=B A$ (commute), then

$$
e^{A+B}=e^{A} e^{B}=e^{B} e^{A}
$$

Since $A$ and $B$ commute, you can make use of the binomial theorem which says

$$
(A+B)^{m}=\sum_{l=0}^{m}\binom{m}{l} A^{l} B^{m-l}, \quad\binom{m}{l}=\frac{m!}{l!(m-l)!}
$$

You will also need to use a change of order for the double sum that will come up. This means using the identity

$$
\sum_{j=0}^{\infty} \sum_{l=0}^{j} a_{j l}=\sum_{l=0}^{\infty} \sum_{j=l}^{\infty} a_{j l} .
$$

4. Find an example of two matrices such that

$$
e^{A+B} \neq e^{A} e^{B} .
$$

Hint: You can do this with $2 \times 2$ matrices.
5. Consider

$$
J=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right)=A+B, \quad \text { and } \quad A=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & \beta \\
-\beta & 0
\end{array}\right) .
$$

a. Show that $A$ and $B$ commute, so $e^{A+B}=e^{A} e^{B}$.
b. Use the definition of $e^{B t}$ to prove that

$$
e^{B t}=\left(\begin{array}{cc}
\cos (\beta t) & \sin (\beta t) \\
-\sin (\beta t) & \cos (\beta t)
\end{array}\right) .
$$

c. From these results, give the real Jordan canonical form, $e^{J t}$.
6. (Proof of Abel's formula for $2 \times 2$ case)
a. Let

$$
B(t)=\left(\begin{array}{ll}
b_{11}(t) & b_{12}(t) \\
b_{21}(t) & b_{22}(t)
\end{array}\right)
$$

with $b_{i j}(t)$ differentiable. Compute $\frac{d}{d t}(\operatorname{det} B(t))$ by first expanding $\operatorname{det} B(t)$ and then differentiating. Next show that

$$
\frac{d}{d t}(\operatorname{det} B(t))=\operatorname{det}\left(\begin{array}{ll}
b_{11}^{\prime}(t) & b_{12}^{\prime}(t) \\
b_{21}(t) & b_{22}(t)
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
b_{11}(t) & b_{12}(t) \\
b_{21}^{\prime}(t) & b_{22}^{\prime}(t)
\end{array}\right) .
$$

b. Let

$$
\mathbf{\Phi}(t)=\left(\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right)
$$

be a fundamental solution for $x^{\prime}=A(t) x$, where

$$
A(t)=\left(\begin{array}{ll}
a_{11}(t) & a_{12}(t) \\
a_{21}(t) & a_{22}(t)
\end{array}\right)
$$

Show that

$$
\begin{aligned}
\frac{d}{d t}(\operatorname{det} \boldsymbol{\Phi}(t)) & =\operatorname{det}\left(\begin{array}{cc}
\sum_{k=1}^{2} a_{1 k} x_{k 1}(t) & \sum_{k=1}^{2} a_{1 k} x_{k 2}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}
x_{11}(t) & x_{12}(t) \\
\sum_{k=1}^{2} a_{2 k} x_{k 1}(t) & \sum_{k=1}^{2} a_{2 k} x_{k 2}(t)
\end{array}\right) \\
& =\sum_{i=1}^{2} a_{i i} \operatorname{det} \boldsymbol{\Phi}(t)
\end{aligned}
$$

c. Let $z(t)=\operatorname{det} \boldsymbol{\Phi}(t)$ where $\boldsymbol{\Phi}(t)$ is the fundamental solution to $x^{\prime}=A(t) x$ as above. Use Part b to conclude that

$$
z(t)=z(0) e^{\int_{0}^{t}(\operatorname{tr} A(s)) d s}
$$

thus establishing this special case of Abel's formula.
7. Consider the linear system of ODEs given by

$$
\dot{\mathbf{x}}=A \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

For each of the following matrices $A$, find a transition matrix $P$ that transforms $A$ into the real Jordan canonical form, $J$. Write both $P$ and $J$. Furthermore, give a fundamental solution, $\boldsymbol{\Psi}(t)=e^{J t}$. Use this solution to write the unique solution, $\mathbf{x}(t)$, to the initial value problem above.

$$
A=\left(\begin{array}{ccc}
4 & 6 & -15 \\
1 & 3 & -5 \\
1 & 2 & -4
\end{array}\right) \quad \mathbf{x}_{0}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & -6 & -7 & -4
\end{array}\right) \quad \mathbf{x}_{0}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right)
$$

8. a. For real paramaters $a, b$, and $c$, describe the regions in $(a, b, c)$ space where the matrix

$$
A=\left(\begin{array}{cccc}
a & 0 & 0 & a \\
0 & a & b & 0 \\
0 & c & a & 0 \\
a & 0 & 0 & a
\end{array}\right)
$$

has real, complex, and repeated eigenvalues. Hint: Breaking $A$ up into four $2 \times 2$ sub-matrices, or blocks, makes your life significantly easier. So use

$$
A=\left(\begin{array}{ll}
a I_{2} & A_{12} \\
A_{21} & a I_{2}
\end{array}\right), I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A_{12}=\left(\begin{array}{ll}
0 & a \\
b & 0
\end{array}\right), A_{21}=\left(\begin{array}{ll}
0 & c \\
a & 0
\end{array}\right)
$$

b. Let $a=b=c=2$. Transform $A$ into the real Jordan canonical form, $J$, writing both $P$ and $J$. Then give a fundamental solution, $\boldsymbol{\Psi}(t)=e^{J t}$, solving the system of ODEs

$$
\dot{\Psi}=J \Psi
$$

9. Find $\|A\|_{1},\|A\|_{2}$, and $\|A\|_{\infty}$ for

$$
A=\left(\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right), \quad A=\left(\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right)
$$

Hint: The $\|A\|_{2}$ can be found taking $\mathbf{x}=[\cos (\theta), \sin (\theta)]^{T}$ and finding the $\max \|A \mathbf{x}\|_{2}$ over $\theta$ (a Calculus problem).
10. If $A$ is an invertible matrix, show that

$$
\|A\|\left\|A^{-1}\right\| \geq 1
$$

