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Introduction

Method of Averaging is a useful tool in dynamical systems,
where time-scales in a differential equation are separated between
a fast oscillation and slower behavior.

The fast oscillations are averaged out to allow the determination
of the qualitative behavior of averaged dynamical system.

The averaging method dates from perturbation problems that
arose in celestial mechanics.

This method dates back to 1788, when Lagrange formulated the
gravitational three-body problem as a perturbation of the
two-body problem.

The validity of this method waited until Fatou (1928) proved
some of the asymptotic results.

Significant results, including Krylov-Bogoliubov, followed in the
1930s, making averaging methods important classical tools
for analyzing nonlinear oscillations.
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Introduction

The Method of Averaging is applicable to systems of the form:

ẋ = εf(x, t, ε), x ∈ U ⊆ Rn, ε� 1,

where f : Rn × R× R+ → Rn is Cr, r ≥ 1 bounded on bounded sets, and of
period T > 0 in t, and U is bounded and open. The associated autonomous
averaged system is defined as

ẏ =
ε

T

∫ T

0
f(y, t, 0)dt ≡ εf̄(y).

The averaging method approximates the original system in x by the averaged
system in y, which is presumably easier to study.

Qualitative analysis giving the dynamics of the averaged system provides
information about the properties of the dynamics for the original system.
The solution y provides approximate values for x over finite time that is
inversely proportional to the slow time scale, 1/ε.
The asymptotic behavior of the original system is captured by the
dynamical equation for y
This allows the qualitative methods for autonomous dynamical systems
to analyze the equilibria and more complex structures, such as slow manifold
and invariant manifolds, as well as their stability in the phase space of the
averaged system.

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Method of Averaging —
(4/39)

http://jmahaffy.sdsu.edu


Introduction
Method of Averaging

Background
Stable Manifold Theorem
Poincaré Maps

Seasonal Logistic Growth

Example - Seasonal Logistic Growth: Consider the logistic growth model
with some seasonal variation:

ẋ = ε
(
x
(

1−
x

M

)
+ sin(ωt)

)
, x ∈ R, 0 < ε� 1.

It follows that the averaged equation satisfies:

ẏ = εy
(

1−
y

M

)
, y ∈ R.
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The solution x(t) shows
complicated dynamics.

However, when the oscillations
are removed, the solution y(t)
reduces to a simple case of a
stable equilibrium at ye = M and
an unstable equilibrium at ye = 0.
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Background - Linear Theory 1

Linear Systems: Earlier we studied the linear system:

ẋ = Ax, x ∈ Rn,

and showed we could make a transformation x = Py, so that P−1AP = J was in
Jordan canonical form.

Specifically, this decoupled the system in y based on the eigenvalues of A, and we
observed the different behaviors from the fundamental solution set, y(t) = eJt,
which transformed back to the fundamental solution set of the original system:

Φ(t) = eAt, which gave unique solutions φt(x0) = x(x0, t) = eAtx0.

This fundamental solution generates a flow: eAtx0 : Rn → Rn, which gives all
the solutions to ẋ = Ax.

Specifically, the linear subspaces spanned by the eigenvectors of A are invariant
under the flow, φt(x0) = eAtx0.

The Jordan canonical form helps visualize the distinct behaviors of the ODE,
ẏ = Jy in a “nice” orthogonal set.
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Background - Linear Theory 2

Linear Systems: For the linear system:

ẋ = Ax, x ∈ Rn,

the matrix has n eigenvalues, which allowed finding n (generalized) eigenvectors.

The eigenspaces of A are invariant subspaces for the flow, φt(x0) = eAtx0.

Motivated by the Jordan canonical form, we divide the subspaces spanned by
the eigenvectors into three classes:

1 The stable subspace, Es = span{v1, . . . , vns},
2 The unstable subspace, Eu = span{u1, . . . , unu},
3 The center subspace, Ec = span{w1, . . . , wnc},

where v1, . . . , vns are the ns (generalized) eigenvectors whose eigenvalues have
negative real parts, u1, . . . , unu are the nu (generalized) eigenvectors whose
eigenvalues have positve real parts, and w1, . . . , wnc are the nc (generalized)
eigenvectors whose eigenvalues have zero real parts.

Clearly, ns + nu + nc = n, and the names reflect the behavior of the flows on the
particular subspaces with those on Es exponentially decaying, Eu exponentially
growing, and Ec doing neither.
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Background - Nonlinear Theory 1

Nonlinear Systems: We extend these stability ideas from the linear system to
the nonlinear autonomous problem

ẋ = f(x), x ∈ Rn, x(0) = x0. (1)

The nonlinear system has existence-uniqueness is some small neighborhood of
t = 0 near x0 provided adequate smoothness of f .

Equilibria: As always, one starts with the fixed points or equilibria of (1) by
solving f(xe) = 0, which may be nontrivial.

Linearization: Assume that xe is a fixed point of (1), then to characterize the
behavior of solutions to (1), we examine the linearization at xe and create the
linear system:

ξ̇ = Df(xe)ξ, ξ ∈ Rn,

where Df = [∂fi/∂xj ] is the Jacobian matrix of the first partial derivatives of
f = [f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fn(x1, . . . , xn)]T and x = xe + ξ with
ξ � 1.

The linearized flow map near xe is given by:

Dφt(xe)ξ = etDf(xe)ξ.
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Background - Nonlinear Theory 2

Ideally, we would like to decompose our space of flows at least locally (near a fixed
point) into the behaviors similar to the ones observed for the linear system,
which was decomposed into the stable subspace, Es, the unstable subspace, Eu,
and the center subspace, Ec.

We expect the nonlinearity to curve our subspaces, but below gives the
decomposition of the flows desired.
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Background - Important Theorems

Theorem (Hartman-Grobman)

If Df(xe) has no zero or purely imaginary eigenvalues, then there is a
homeomorphism, h, defined on some neighborhood, U , of xe ∈ Rn

locally taking orbits of the nonlinear flow, φt of (1) to those of the
linear flow, etDf(xe)ξ. The homeomorphism preserves the sense of
the orbits and can be chosen to preserve parametrization by time.

Definition (Hyperbolic Fixed Point)

When Df(xe) has no eigenvalues with zero real part, xe is called a
hyperbolic or nondegenerate fixed point.

The behavior of solutions of (1) near a hyperbolic fixed point is
determined (locally) by the linearization.
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Background - Example

Example: Consider the ODE given by:

ẍ+ εx2ẋ+ x = 0,

which is easily rewritten as(
ẋ1

ẋ2

)
=

(
0 1
−1 0

)
− ε

(
0

x2
1x2

)
.

This system has an equilibrium, (x1e, x2e) = (0, 0).

The linearized system has eigenvalues, λ = ±i, which have zero real part.

This results in a center for ε = 0.

However, if ε > 0, then the system results in a nonhyperbolic or weak attracting
sink.

If ε < 0, then the system results in a nonhyperbolic or weak attracting source.
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Example: Phase plots for the ODE(
ẋ1

ẋ2

)
=

(
0 1
−1 0

)
− ε

(
0

x2
1x2

)
.

ε = 0.2 ε = 0 ε = −0.2
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Background - Manifolds

Manifolds: For linear systems we obtained invariant subspaces spanning Rn
for stable, unstable, and center behavior.

For the nonlinear ODE the behavior can only be defined locally, so we define the
local stable and unstable manifolds.

Definition (Local Stable and Unstable Manifold)

Define the local stable and unstable manifolds of the fixed point, xe, W s
loc(xe),

Wu
loc(xe), as follows:

W s
loc(xe) = {x ∈ U |φt(x)→ xe as t→∞, and φt(x) ∈ U for all t ≥ 0},

Wu
loc(xe) = {x ∈ U |φt(x)→ xe as t→ −∞, and φt(x) ∈ U for all t ≤ 0},

where U ⊂ Rn is a neighborhood of the fixed point, xe.

These invariant manifolds, W s
loc(xe) and Wu

loc(xe), provide nonlinear analogues
of the flat stable and unstable eigenspaces, Es and Eu of the linear problem.
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Stable Manifold Theorem

The Stable Manifold Theorem shows that W s
loc(xe) and Wu

loc(xe) are tangent to
the eigenspaces, Es and Eu.

Theorem (Stable Manifold Theorem)

Suppose that ẋ = f(x) has a hyperbolic fixed point, xe. Then there exist local
stable and unstable manifolds, W s

loc(xe) and Wu
loc(xe), of the same dimensions,

ns and nu, as those of the eigenspaces, Es and Eu, of the linearized system and
tangent to Es and Eu at xe. W s

loc(xe) and Wu
loc(xe) are as smooth as the

function, f .
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Stable Manifold Theorem

Stable Manifold Theorem: Below we make a number of comments about the
nonlinear ODE with respect to this theorem.

This theorem avoids discussion about a center manifold being tangent to
Ec, confining the results to hyperbolic fixed points.
Interest in a center manifold often relates to studies in bifurcation theory.

The local invariant manifolds have global analogues.
The global stable manifold, W s, follows points in W s

loc(xe) flow
backwards in time:

W s(xe) =
⋃
t≤0

φt(W
s
loc(xe)).

The global unstable manifold, Wu, follows points in Wu
loc(xe) flow

forward in time:
Wu(xe) =

⋃
t≥0

φt(W
u
loc(xe)).

Existence and uniqueness ensures that two stable (unstable) manifolds of
distinct fixed points, x1e, x2e, cannot intersect.
Intersections of stable and unstable manifolds of distinct fixed points or the
same fixed point can occur.
These intersections are often the source of complex dynamics, such as chaos.
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Poincaré Maps 1

Poincaré Maps: A first recurrence map or Poincaré map is the intersection of
a periodic orbit for the flow, φt, of an ODE in Rn with a particular
lower-dimensional subspace, called the Poincaré section, transversal to the flow
of the system.
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Poincaré Maps 2

Definition (Poincaré Map)

Let γ be a periodic orbit of some flow φt(x0) ∈ Rn arising from some ODE. Let
Σ ⊂ Rn be a local differentiable section of dimension n− 1, where the flow φt is
everywhere transverse to Σ, called a Poincaré section through x0 (implying that
if nv is the normal to Σ at a point x, then nv · φt 6= 0).

Given an open and connected neighborhood U ⊂ Σ of x0, a function

P : U → Σ

is called a Poincaré map for the orbit γ on the Poincaré section Σ through the
point x0 if:

P (x0) = x0.

P (U) is a neighborhood of x0 and P : U → P (U) is a diffeomorphism.

For every point x in U , the positive semi-orbit of x intersects Σ for the first
time at P (x)
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Poincaré Maps 3

Poincaré maps can be interpreted as discrete dynamical systems (Math 538).

The stability of a periodic orbit of the original ODE connects to the stability of
the fixed point of the corresponding Poincaré map.
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Poincaré Maps 4

Poincaré maps have the property that the periodic orbit γ of the continuous
dynamical system, ODE, is stable if and only if the fixed point x0 of the discrete
dynamical system is stable.

Let the Poincaré map, P : U → Σ, be defined as above and create a discrete
dynamical system,

P (n, x) ≡ Pn(x) with P : Zn × U → U,

where
P 0 ≡ idU , Pn+1 ≡ P ◦ Pn, P−n−1 ≡ P−1 ◦ P−n

and x0 is a fixed point.

Stability of this discrete map is found by linearizing, P , at x0, and determining
the eigenvalues of DP (x0).

If these eigenvalues are all inside the unit circle, then x0 is stable, which in turn
gives the periodic orbit of the ODE as being stable.
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Nonautonomous ODE

Nonautonomous ODE: Consider the ODE system:

ẋ = f(x, t), (x, t) ∈ Rn × R,

where f(·, t) = f(·, t+ T ) is T -periodic.

This is written as an autonomous ODE by making time an explicit state variable:

ẋ = f(x, θ),

θ̇ = 1, (x, θ) ∈ Rn × S1.

The phase space is the manifold Rn × S1, where the circular component
S1 = R(mod T ) reflects the periodicity of the vector field in θ of this ODE.

In this case we obtain a natural global cross section

Σ = {(x, θ) ∈ Rn × S1|θ = θ0},

and the Poincaré map P : Σ→ Σ is defined globally by

P (x0) = Π[φT (x0, θ0)],

where φt : Rn × S1 → Rn × S1 is the flow of the ODE and Π denotes the
projection onto the x ∈ Rn phase space at θ = θ0.
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Forced Linear Oscillator: Consider the ODE given by:

ẍ+ 2βẋ+ x = γ cos(ωt), 0 ≤ β < 1,

which can be readily transformed into the ODE system with x = x1 and ẋ1 = x2:(
ẋ1

ẋ2

)
=

(
0 1
−1 −2β

)(
x1

x2

)
+

(
0

γ cos(ωt)

)
,

θ̇ = 1.

This system has a forcing function with period T = 2π/ω.

One can use techniques from Math 337 (method of undetermined coefficients)
to solve this problem

x(t) = e−βt
(
c1 cos(ωdt) + c2 sin(ωdt)

)
+A cos(ωt) +B sin(ωt),

where ωd =
√

1− ω2 is the damped natural frequency and

A =
(1− ω2)γ(

(1− ω2)2 + 4β2ω2
) , B =

2βωγ(
(1− ω2)2 + 4β2ω2

) .
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Forced Linear Oscillator 2

Forced Linear Oscillator: The initial conditions determine the c1 and c2, so if
x(0) = x1(0) = x10 and ẋ(0) = x2(0) = x20, then c1 = x10 −A and
c2 = (x20 + β(x10 −A)− ωB)/ωd.

Since φt(x10, x20, 0) is given with

x1(t) = e−βt
(
c1 cos(ωdt) + c2 sin(ωdt)

)
+A cos(ωt) +B sin(ωt),

x2(t) = e−βt
(
− β

(
c1 cos(ωdt) + c2 sin(ωdt)

)
+ ωd

(
− c1 sin(ωdt) + c2 cos(ωdt)

))
−ω
(
A sin(ωt)−B cos(ωt)

)
,

we can compute the Poincaré map explicitly as Π[φ2π/ω(x10, x20, 0)].

This simplifies more in the case of resonance when ω = ωd =
√

1− β2, and the
Poincaré map becomes

P (x10, x20, 0) =

(
(x10 −A)e−2πβ/ω +A

(x20 − ωB)e−2πβ/ω + ωB

)
.

This is readily seen to have a fixed point at (x1, x2) = (A,ωB)
(when c1 = c2 = 0).
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Forced Linear Oscillator 2

Forced Linear Oscillator: The stability of the Poincaré map is determined by
the eigenvalues of the Jacobian matrix for P (x10, x20, 0)(

∂P1
∂x10

∂P1
∂x20

∂P2
∂x10

∂P2
∂x20

)
=

(
e−2πβ/ω 0

0 e−2πβ/ω

)
,

which are both eigenvalues with magnitude less than 1.
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Method of Averaging 1

Method of Averaging: We examine some classical methods for problem in
nonlinear oscillations.

These techniques build on our studies of perturbation theory and extend to
studies of Poincaré maps.

In a linear oscillator problem with weakly nonlinear effects or small
perturbations, one expects that solutions of the linear oscillator should be close
to the perturbed problem.

In general, this may NOT be the case. However, for finite time one usually finds
the solutions close.

The method of averaging is applicable to systems of the form:

ẋ = εf(x, t), x ∈ Rn, ε� 1,

where f is T -periodic in t.

The T -periodic forcing contrasts with the slow evolution of the averaged solutions
from the O (ε) vector field.
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Method of Averaging 2

The method of averaging is applicable to systems of the form:

ẋ = εf(x, t, ε), x ∈ U ⊂ Rn, ε� 1, (2)

where f : Rn × R× R+ → Rn is Cr, r ≥ 1, bounded on bounded sets, and
T -periodic in t; U is bounded and open.

The associated autonomous averaged system is given by:

ẏ =
ε

T

∫ T

0
f(y, t, 0)dt = εf̄(y). (3)

The averaged system (3) should be easier to study, and its properties should
reflect the dynamics of (2).

1 A weakly nonlinear system often has the form

ẋ = A(t)x+ εf(x, t, ε),

which doesn’t have the form of (2), so how can averaging be applied?

2 Does the qualitative behavior of the averaged system (3) reflect the
behavior of the original system, (2)?
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Lagrange Standard Form 1

Consider the IVP:
ẋ = A(t)x+ εg(x, t), x(0) = x0,

where A(t) is a continuous n× n, and g(x, t) is a sufficiently smooth function of t
and x.

Assume that Φ(t) is the fundamental matrix solution of the unperturbed
system (ε = 0), and y(t) satisfies y(0) = x0 and becomes part of comoving
coordinates with

x = Φ(t)y, so ẋ = Φ̇(t)y + Φ(t)ẏ.

Since x(t) solves the perturbed system above, we have

Φ̇(t)y + Φ(t)ẏ = A(t)Φ(t)y + εg(Φ(t)y, t),

or
Φ(t)ẏ =

(
A(t)Φ(t)− Φ̇(t)

)
y + εg(Φ(t)y, t).
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Lagrange Standard Form 2

Since Φ(t) is the fundamental matrix solution of the unperturbed system, so
Φ̇(t) = A(t)Φ(t), it follows that:

Φ(t)ẏ = εg(Φ(t)y, t), equivalently ẏ = εΦ−1(t)g(Φ(t)y, t).

This equation is said to have the Lagrange standard form and can be written
without loss of generality as

ẏ = εf(y, t),

which is the same form as our weakly nonlinear ODE given by (2).

Example of weakly nonlinear forced oscillations: Studies examine:

ẍ+ ω2
0x = εf(x, ẋ, t),

where the linear ODE with ε = 0 has solutions with

x(t) = c1 cos(ω0t) + c2 sin(ω0t).

This 2nd order ODE is transformed into a 1st order system, then converted to
polar coordinates to study the behavior of the periodic solutions.
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van der Pol Equation 1

van der Pol Oscillator has been studied for many years due to the interesting
behaviors observed, and its behavior simulates a tunnel diode in electric circuits
and has been used for simple models of neurons.

The equation is given by
ü− ε(1− u2)u̇+ u = 0,

where ε is a small parameter.

This equation is readily transformed into the system:(
u̇
v̇

)
=

(
v

−u+ ε(1− u2)v

)
. (4)

For ε = 0, the solution satisfies:

u(t) = r cos(θ), v(t) = −r sin(θ),

where θ = t+ φ and the constants r and φ are arbitrary representing the
amplitude and phase of the system.
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van der Pol Equation 2

van der Pol Oscillator: If the periodic solution of (4) is a continuous function
of ε, then the orbit of this solution should be close to one of the solutions for
ε = 0, where r is a constant and θ varies in [0, 2π].

We need to find what values of r can generate periodic orbits when ε 6= 0.

Let r(t) and θ(t) be new coordinates (think polar), then with u = r cos(θ) and
v = −r sin(θ), we have

u̇ = ṙ cos(θ)− r sin(θ)θ̇,

v̇ = −ṙ sin(θ)− r cos(θ)θ̇.

It is not hard to see that this gives

ṙ = u̇ cos(θ)− v̇ sin(θ),

rθ̇ = −u̇ sin(θ)− v̇ cos(θ).

However, we know u̇ and v̇ from (4), so we can insert them into the equation
above.
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van der Pol Equation 3

van der Pol Oscillator: With the substitutions and a little algebra we obtain
the new system in the transformed coordinates:

θ̇ = 1 + ε
(
1− r2 cos2(θ)

)
sin(θ) cos(θ), (5)

ṙ = ε
(
1− r2 cos2(θ)

)
r sin2(θ).

For ε chosen such that 1 + ε
(
1− r2 cos2(θ)

)
sin(θ) cos(θ) > 0 and r in a bounded

set, then the orbits are described by the solutions of the scalar equation:

dr

dθ
= εg(r, θ, ε), (6)

where

g(r, θ, ε) =

(
1− r2 cos2(θ)

)
r sin2(θ)

1 + ε
(
1− r2 cos2(θ)

)
sin(θ) cos(θ)

.

This reduces finding periodic solutions of van der Pol’s equation to finding
periodic solutions of the scalar equation (6) of period 2π.
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van der Pol Equation 4

van der Pol Oscillator: We seek to find periodic solutions r∗(θ, ε) of (6) of
period 2π in θ.

In fact, if r∗(θ, ε) is such a 2π-periodic solution and θ∗(t, ε), θ∗(0, ε) = 0 solves the
equation:

θ̇ = 1 + ε
(
1− [r∗(θ, ε)]2 cos2(θ)

)
sin(θ) cos(θ),

then

u(t) = r∗(θ∗(t, ε), ε) cos(θ∗(t, ε)), v(t) = −r∗(θ∗(t, ε), ε) sin(θ∗(t, ε)),

is a solution of van der Pol’s equation.

Let T be the unique solution of θ∗(T, ε) = 2π. Then uniqueness of the θ̇ equation
implies θ∗(t+ T, ε) = θ∗(t, ε) + 2π for all t.

Thus, u(t+ T ) = u(t), v(t+ T ) = v(t) giving a T -periodic solution to van der
Pol’s equation.

We see that solving (6),
dr

dθ
= εg(r, θ, ε),

fits into our studies of perturbation problems.
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Method of Averaging Theorem

The method of averaging is applicable to systems of the form:

ẋ = εf(x, t, ε), x ∈ U ⊂ Rn, ε� 1.

Theorem (The Averaging Theorem)

There exists a Cr change of coordinates x = y + εw(y, t, ε) under which (2)
becomes

ẏ = εf̄(y) + ε2f1(y, t, ε),

where f1 is of period T in t. Moreover,

1 If x(t) and y(t) are solutions of (2) and (3) based at x0, y0, respectively, at
t = 0, and |x0y0| = O (ε), then |x(t)y(t)| = O (ε) on a time scale t ∼ 1

ε
.

2 If p0 is a hyperbolic fixed point of (3) then there exists ε0 > 0 such that, for
all 0 < ε ≤ ε0, (2) possesses a unique hyperbolic periodic orbit
γε(t) = p0 +O (ε) of the same stability type as p0.

3 If xs(t) ∈W s(γε) is a solution of (2) lying in the stable manifold of the
hyperbolic periodic orbit γε = p0 +O (ε), ys(t) ∈W s(p0) is a solution of (3)
lying in the stable manifold of the hyperbolic fixed point p0 and
|xs(0)ys(0)| = O (ε), then |xs(t)ys(t)| = O (ε) for t[0,∞). Similar results
apply to solutions lying in the unstable manifolds on the time interval
t ∈ (−∞, 0].
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van der Pol - revisited 1

van der Pol Oscillator: We examine the more general problem:

ü+ u = εF (u, u̇, t),

where for the van der Pol oscillator F (u, u̇, t) = −(u2 − 1)u̇.

We attempt a solution of the form:

u(t) = r(t) cos(t+ θ(t)), u̇ = −r(t) sin(t+ θ(t)),

motivated by the idea that r and θ are constants when ε = 0 and the functions
r(t), amplitude, and θ(t), phase, are slow varying functions of t.

Differentiating u(t) and requiring the second to hold gives:

ṙ cos(t+ θ(t))− rθ̇ sin(t+ θ(t)) = 0.

Finding ü gives:

−ṙ sin(t+ θ(t))− rθ̇ cos(t+ θ(t)) = εF
(
r(t) cos(t+ θ(t)),−r(t) sin(t+ θ(t)), t

)
.
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van der Pol - revisited 2

van der Pol Oscillator: The equations above are solved to give the generalized
system in amplitude and phase:

ṙ = ε− F
(
r cos(t+ θ),−r sin(t+ θ), t

)
sin(t+ θ),

θ̇ = −
ε

r
F
(
r cos(t+ θ),−r sin(t+ θ), t

)
cos(t+ θ).

For ε small and θ constant, this system would satisfy our Method of Averaging
Theorem. However, θ(t) is slow varying, so the above system is not quite
2π-periodic.

Introduce an approximation, using a near-identity transformation:

r(t) = r̄ + εw1(r̄, θ̄, ε) +O
(
ε2
)
, θ(t) = θ̄ + εw2(r̄, θ̄, ε) +O

(
ε2
)
,

where w1 and w2 are generating functions such that r̄ and θ̄ are as simple as
possible.

This gives the approximations:

dr̄

dt
= ε

(
−
∂w1

∂t
− sin(t+ θ̄)F

(
r̄ cos(t+ θ̄),−r̄ sin(t+ θ̄), t

))
+O

(
ε2
)
,

dθ̄

dt
= ε

(
−
∂w2

∂t
−

cos(t+ θ̄)

r̄
F
(
r̄ cos(t+ θ̄),−r̄ sin(t+ θ̄), t

))
+O

(
ε2
)
.
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van der Pol - revisited 3

van der Pol Oscillator: To avoid having secular terms we choose w1 and w2 to
eliminate all O (ε) terms except for their average value.

The averaged equations become:

dr̄

dt
= −ε

1

T

∫ T

0
sin(t+ θ̄)F

(
r̄ cos(t+ θ̄),−r̄ sin(t+ θ̄), t

)
dt+O

(
ε2
)
,

dθ̄

dt
= −ε

1

T

∫ T

0

cos(t+ θ̄)

r̄
F
(
r̄ cos(t+ θ̄),−r̄ sin(t+ θ̄), t

)
dt+O

(
ε2
)
.

For the autonomous ODE, the averaging period is T = 2π and these equations
reduce to the form:

dr̄

dt
= −ε

1

2π

∫ 2π

0
sin(t)F

(
r̄ cos(t),−r̄ sin(t)

)
dt+O

(
ε2
)
,

dθ̄

dt
= −ε

1

2π

∫ 2π

0

cos(t)

r̄
F
(
r̄ cos(t),−r̄ sin(t)

)
dt+O

(
ε2
)
,

where we see that the slow amplitude variation ODE is decoupled.
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van der Pol - revisited 4

Many derivations of the van der Pol oscillator omit the near-identity
transformation.

Knowing this transformation allows greater accuracy in transforming back to the
original variables r and θ, and secondly, one can obtain higher order
approximations by simply extending our approximations above to O

(
ε3
)
.

van der Pol Oscillator: Now consider

F (u, u̇, t) = (1− u2)u̇,

then the averaged equation becomes:

dr̄

dt
= ε

1

2π

∫ 2π

0
r̄ sin2(t)

(
1− r̄2 cos2(t)

)
dt+O

(
ε2
)
,

dθ̄

dt
= ε

1

2π

∫ 2π

0
cos(t) sin(t)

(
1− r̄2 cos2(t)

)
dt+O

(
ε2
)
,

where we see that the slow amplitude variation ODE is decoupled.
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van der Pol - revisited 5

van der Pol Oscillator: Omitting the O
(
ε2
)
, the averaged equation is easily

integrated:

dr̄

dt
= ε

1

2π

∫ 2π

0
r̄ sin2(t)

(
1− r̄2 cos2(t)

)
dt = ε

r̄

8
(4− r̄2),

dθ̄

dt
= ε

1

2π

∫ 2π

0
cos(t) sin(t)

(
1− r̄2 cos2(t)

)
dt = 0.

The nonlinear ODE in r̄ can be analyzed qualitatively.

It has two negative equilibria, r̄e = 0, 2.

The equilibrium at r̄e = 0 has a positive eigenvalue, so it results in an unstable
node with solutions spiraling away from the origin.

The equilibrium at r̄e = 2 has a negative eigenvalue, so it results in an stable
node, which corresponds to a stable almost 2π-periodic orbit of radius 2.

The ODE for θ̄ shows that up to O
(
ε2
)

the phase shift remains constant.
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van der Pol - revisited 6

van der Pol Oscillator: The averaged equation for r̄ can be solved exactly by
separation of variables and gives the result:

r̄(t) =
2eεt/2√

eεt − 1 + 4
r̄(0)2

.

Below are graphs for the van der Pol oscillator for small ε.
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van der Pol - revisited 7

Below are graphs for the van der Pol oscillator for large ε. These show why this
is often called a relaxation oscillator.
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