
Fall 2018 Math 636 Practice Exam 2 - Solutions

1. a. An age-structured model for Tribolium is given by:

Ln+1 =
bAn

(1 + ceaAn + celLn)4
,

Pn+1 = slLn,

An+1 =
Pn

(1 + cpaAn)4
+ saAn,

with parameters, b = 15, sl = 0.4, sa = 0.5, cea = 0.002, cel = 0.005, and cpa = 0.03. A
simulation of this system starting with (L0, P0, A0) = (0, 0, 2) yielded the table of populations:

n L P A

0 0 0 2

10 53.190 46.049 13.314

20 54.998 28.770 12.329

30 58.216 26.580 12.760

50 60.880 25.144 13.058

100 61.833 24.750 13.121

A graph of this simulation is shown below:
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b. It is easy to see that one equilibrium is the extinction equilibrium with (Le, Pe, Ae) =
(0, 0, 0). Numerically, we can solve to find the positive equilibrium and find (Le, Pe, Ae) =
(61.8594, 24.7437, 13.1201). The Jacobian matrix for this system is readily computed and gives:

J(L,P,A) =


−0.3A

(1+0.002A+0.005L)5
0 15 (1−0.006A+0.005L)

(1+0.002A+0.005L)5

0.4 0 0

0 1
(1+0.03A)4

−0.12P
(1+0.03A)5

+ 0.5

 .



About the extinction equilibrium, the Jacobian matrix becomes:

J(0, 0, 0) =


0 0 15

0.4 0 0

0 1 0.5

 ,

which has eigenvalues λ1 = 2 and λ2,3 = −0.75 ± 1.56125 i. All of these eigenvalues satisfy
|λ| > 1, so this equilibrium is clearly unstable.

About the positive equilibrium, the Jacobian matrix becomes:

J(61.8594, 24.7437, 13.1201) =


−0.92636 0 4.34430

0.4 0 0

0 0.26512 −0.06487

 ,

which has eigenvalues λ1 = 0.53079 and λ2,3 = −0.76101±0.53743 i. Note the |λ2,3| = 0.93165,
so all of these eigenvalues satisfy |λ| < 1, so this equilibrium is clearly stable, which is readily
seen in the simulation. Since this equilibrium is stable, it attracts all positive solutions. The
result is a stable population distribution that consists of 62.031% larva, 24.812% pupa, and
13.157% adult Tribolium beetles.

c. With b = 30 the age-structured model above is again simulated starting with (L0, P0, A0) =
(0, 0, 2) and yielded the table of populations:

n L P A

0 0 0 2

10 158.191 25.171 20.504

20 69.227 49.329 14.204

30 107.690 30.434 18.653

50 76.843 43.543 15.249

100 87.855 42.503 14.632

A graph of this simulation (not showing the peak of larva L4 = 451.54) is shown below:
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Once again one equilibrium is the extinction equilibrium with (Le, Pe, Ae) = (0, 0, 0). Nu-
merically, we can solve to find the positive equilibrium and find
(Le, Pe, Ae) = (93.7504, 37.5001, 15.8385). The Jacobian matrix for this system is readily com-
puted and gives:

J(L,P,A) =


−0.6A

(1+0.002A+0.005L)5
0 30 (1−0.006A+0.005L)

(1+0.002A+0.005L)5

0.4 0 0

0 1
(1+0.03A)4

−0.12P
(1+0.03A)5

+ 0.5

 .

About the extinction equilibrium, the Jacobian matrix becomes:

J(0, 0, 0) =


0 0 30

0.4 0 0

0 1 0.5

 ,

which has eigenvalues λ1 = 2.4688 and λ2,3 = −0.9844 ± 1.9727 i. All of these eigenvalues
satisfy |λ| > 1, so this equilibrium is clearly unstable.

About the positive equilibrium, the Jacobian matrix becomes:

J(93.7504, 37.5001, 15.8385) =


−1.24965 0 5.41930

0.4 0 0

0 0.21118 −0.14421

 ,

which has eigenvalues λ1 = 0.45161 and λ2,3 = −0.92273± 0.40275 i. Note the |λ2,3| = 1.0068.
It follows that the complex eigenvalues satisfy |λ2,3| > 1, so this equilibrium is unstable, which
is readily seen in the simulation. This equilibrium is barely unstable, so the oscillations have
fairly low amplitude. From the positive equilibrium, the age-structured population distribution
remains near 63.737% larva, 25.495% pupa, and 10.768% adult Tribolium beetles.

d. The eigenvalues λ2,3 are very close in magnitude to one, which is where the Hopf bifurcation
occurs. One creates a program to find the equilibrium as b varies, then the Jacobian matrix is
computed and its eigenvalues are found. A bisection method is used to determine the value of
b when |λ2,3| = 1, and this occurs when b = 28.1801 (between b = 28.18007 and b = 28.18008).

2. a. A pair of dice have 36 possible outcomes, which for fair dice occur equally likely. Since
there are six ways to obtain a 7, this means that fair dice have a 1

6 = 0.166667 chance of
obtaining a 7. From the assumptions on the loaded dice, we can easily compute that obtaining
a 2, 3, 4, or 5 is p = 1

6.5 = 0.153846. The 6 on the first die and 1 on the second die each has a
probability 0.307692, while the 1 on the first die and 6 on the second die each has a probability
0.0769231. The six possible means of obtaining a 7 have the following probability:

P (7) = 4

(
1

6.5

)2

+

(
2

6.5

)2

+

(
0.5

6.5

)2

= 0.195266.

It is just as likely that you obtain the loaded 7 (P = 0.0946746) as obtained with 2 and 5 or 3
and 4. The MatLab dice program given in class was modified to reflect the different probabilities
of the loaded dice. When a simulation of throwing these dice 10,000 times was performed 3



times, it was easy to show that a 7 occurred 1971, 1978, and 1907 times, which is consistent
with the theoretical expected value.

b. The dice were rolled twice and added 10,000 times, then to show consistency, the process
was repeated three times. The three separate means were 14.0043, 14.0104, and 13.9914 with
respective standard deviations of 3.3635, 3.3653, and 3.3841. This process was repeated with
fair dice, the three separate means were 14.0321, 13.9711, and 13.9667 with respective standard
deviations of 3.4224, 3.3770, and 3.4300. The means are clearly the same for both fair and
loaded dice, but the standard deviation increased slightly for the fair dice.

3. a. The three compartment model for fentanyl seen in the figure below is given by the system
of differential equations that follows.

The system of differential equations satisfies:

Ċ1 = −(k10 + k12 + k13)C1 + k21C2 + k31C3, C1(0) = I0,

Ċ2 = k12C1 − k21C2, C2(0) = 0,

Ċ3 = k13C1 − k31C3, C3(0) = 0.

b. Since the experiment only measures blood concentration, we should only be examining C1(t).
It is expected that this solution should only contain decaying exponentials, so has the form:

C1(t) = a1e
−λ1t + a2e

−λ2t + a3e
−λ3t. (1)

The DE above can be written in matrix form as follows:

Ċ1 =

 −(k10 + k12 + k13) k21 k31
k12 −k21 0
k13 0 −k31

C1.

The challenge is showing that all the eigenvalues of this matrix are real and negative. Physically,
the two peripheral compartments are closed to the outside and the central/plasma compart-
ment loses fentanyl through filtration and metabolism. It follows that there must only be an
exponential decay of fentanyl in the blood compartment, which drives the other compartments,
so all three compartments in this model must exhibit exponential decay. However, the general
characteristic equation of the matrix above is given by:

λ3 + (k10 + k12 + k13 + k21 + k31)λ
2 + ((k10 + k13 + k31)k21 + k31(k10 + k12))λ+ k10k21k31 = 0,

and its three roots are very complicated, making it hard to prove they are all real.



The cubic polynomial is of the form: λ3 + a2λ
2 + a3λ + a0 = 0. The Routh-Hurwitz

Criterion for cubic polynomials, showing that all eigenvalues have negative real part, reduces
to a2 > 0, a0 > 0, and a2a1 > a0. These conditions are clearly satisfied showing stability
of the DE. However, it only proves that one eigenvalue is negative. If you add the condition
that k12 = k21 and k13 = k31, then the matrix becomes symmetric, so all eigenvalues are real.
This combined with the Routh-Hurwitz Criterion would prove that all three eigenvalues are
negative. If k12 = k21 = k13 = k31 = k, then Maple readily solves the characteristic equation
and gives strictly negative eigenvalues. The general case, showing 3 negative eigenvalues, is not
demonstrated here. The three negative eigenvalues can be ordered, −λ1 < −λ2 < −λ3, where
λ1 represents the rapid distribution phase, λ2 represents the middle distribution phase, and λ3
represents the terminal/elimnation phase, as −λ1 results in the most rapid decay, while −λ3
gives the slowest decay.

c. Details for the solution to this problem can be found in the lecture notes at
https://jmahaffy.sdsu.edu/courses/f16/math541/beamer/lst sq-04.pdf. Specifically the details
are on Slides 73-80. The model found by exponential peeling is given by:

C1(t) = 8.1514 e−0.1601t + 1.6396 e−0.02078t + 0.6083 e−0.003794t.

The sum of square errors is J1(a1, a2, a3) = 3.4859. The sum of square errors found by comparing
the logarithm of the data to the logarithm of the model gives J2(a1, a2, a3) = 0.12778.

d. With the 6 parameters from the exponential peeling (3 coefficients and 3 exponents) we apply
MatLab’s fminsearch (Nonlinear Least Squares fit) to find the best fitting parameters for the
3-compartment model. We perform a least squares best fit of the logarithm of the model to the
logarithm of the data, starting with the initial guess from the exponential peeling model and
minimizing:

J3(p) = min
p

(
ln(Ci)− ln(p1e

−p2t + p3e
−p4t + p5e

−p6t)
)2
.

The result is

C1(t) = 14.1472e−0.24226t + 2.0063e−0.020695t + 0.4928e−0.0031957t,

which has the sum of square errors J3(p) = 0.08607 and improves on the exponential peeling
fit. Below is a graph of these models (along with another model not discussed here).
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We see that the differences between the exponential peeling model and the nonlinear fit models
are quite small both visually and from their sum of square errors. The nonlinear fit is a very
sensitive problem and requires a very good initial guess, which is a problem for this approach.
However, the graph shows that it is an excellent fit to the experimental data. The exponential
peeling procedure is fairly easy by just requiring linear fits to the logarithms of the data, and
this model does a very good job fitting the data also. The exponential peeling method does
suffer from having an element of non-objectivity where the user makes an arbitrary decision on
the boundaries of the different phases of the model. In addition, it can be hard deciding on the
number of compartments that should be used.

4. a. We consider the system of delay differential equations given by:

dx1(t)

dt
=

a1
1 + k1x23(t− r)

− b1x1(t),

dx2(t)

dt
=

a2x
2
1(t)

1 + k2x21(t)
− b2x2(t),

dx3(t)

dt
= a3x2(t)− b3x3(t),

where ai are production rates, bi are decay constants, ki are kinetic constants, and r is the delay
for the various processes. The equilibrium is found solving the right hand side of the above
equation equal to zero. Using a nonlinear solver, we solve

a1
1 + k1x23e

− b1x1e = 0,
a2x

2
1e

1 + k2x21e
− b2x2e = 0, a3x2e − b3x3e = 0,

with the parameters ai = 1, bi = 0.5, and ki = 1. There is a unique equilibrium due to the
increasing nature of the positive terms of the last two equations and the decreasing form of the
first term in the first equation. The resulting equilibrium is:

(x1e, x2e, x3e) = (0.71184, 0.67261, 1.34522).

The Jacobian matrix for the nonlinear ODE satisfies:

J(x1, x2, x3) =


−b1 0 −2 a1k1x3

(1+k1x23)
2

2 a2x1

(1+k2x21)
2 −b2 0

0 a3 −b3

 .

With the particular parameters and the equilibrium, we can linearize the ODE by letting
y1(t) = x1(t)− x1e, y2(t) = x2(t)− x2e, and y3(t) = x3(t)− x3e, giving the linearized system:

 ẏ1
ẏ2
ẏ3

 =


−0.5 0 −0.340823

0.627118 −0.5 0

0 1 −0.5


 y1

y2
y3

 .

This has the characteristic equation given by:

λ3 + 1.5λ2 + 0.75λ+ 0.338736 = 0,



which produces the eigenvalues

λ1 = −1.097897 and λ2,3 = −0.201052± 0.517794 i.

All of the eigenvalues have negative real part, so it follows that the system of differential
equations has its equilibrium being asymptotically stable.

b. The linearization of the system of delay differential equations about the equilibrium follows
in a manner similar to the class notes, and with the same change of variables given above we
obtain the following: ẏ1(t)

ẏ2(t)
ẏ3(t)

 =


−0.5 0 0

0.627118 −0.5 0

0 1 −0.5


 y1(t)

y2(t)
y3(t)

+


0 0 −0.340823

0 0 0

0 0 0


 y1(t− r)

y2(t− r)
y3(t− r)


ẏ(t) = Ay(t) +By(t− r).

As usual, we attempt a solution of the form y(t) = ξ eλt, which following class notes gives:

λξIeλt = Aξ eλt +Bξ eλ(t−r)

(A+B e−λr − λI)ξ = 0.

This leads to the characteristic equation:

det |A+B e−λr − λI| = 0,

which is equivalent to the characteristic equation:

λ3 + 1.5λ2 + 0.75λ+ 0.125 = −0.213736 e−λr.

This characteristic equation maps the contour of the perimeter of rectangle in the complex
plane bounded by 0 ≤ x ≤ 4 and −3 ≤ y ≤ 3 in the counterclockwise direction into the complex
image space. The figure below shows the image when r = 1. The figure on the left shows the
entire image plot, while the figure on the right shows the image blown up near the origin.
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Following this image plot, we see a clockwise and a counter-clockwise encirclement of the origin.
Thus, the net counter-clockwise encirclements of the origin are zero, so there are no zeroes of the
characteristic equation, which suggests that this model with a delay of r = 1 is asymptotically
stable. (Simulation of this model with this delay does show stability of the model.)

Next the same program is applied with r = 5 in the figure below. The figure on the left
shows the entire image plot, while the figure on the right shows the image blown up near the
origin.
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Following this image plot, we see two counter-clockwise encirclements of the origin. Thus, there
are two zeroes of the characteristic equation inside the rectangle noted above, which shows
there are at least two eigenvalues with positive real parts. Thus, this model with a delay of
r = 5 is unstable. (Simulation of this model with this delay shows sustained oscillations, so the
equilibrium of the model is unstable, as seen below.)
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This rectangular region shows that the frequency is bounded by 3, so the period must be greater
than 2π

3 ≈ 2. The actual period from the simulation is approximately 20.

c. Inserting λ = iω into the characteristic equation gives:

−ω3i− 1.5ω2 + 0.75ωi+ 0.125 = −0.213736(cos(ωr)− i sin(ωr)).

Breaking this equation into the real and imaginary parts gives the two equations:

−1.5ω2 + 0.125 = −0.213736 cos(ωr),

−ω3 + 0.75ω = 0.213736 sin(ωr).

These equations are inserted into Maple’s fsolve, and one solution is

r = 4.271916 and ω = 0.327842.



This is the smallest value of r, giving where the Hopf bifurcation occurs. It follows that the
repression model loses stability at r = 4.271916, and from the frequency ω = 0.327842 we
obtain the period 2π

ω = 19.165294.


