
Fall 2018 Math 636 Practice Exam 2

1. Numerous population studies of the flour beetle, Tribolium, have been done where the amount
of flour was limited. These studies were matched with mathematical models. In this problem
you explore one of the structured models for some different parameters.

a. The population of Tribolium is divided into larva, pupal, and adult numbers. Both the larva
and adults cannibalize other larva and adults when the populations become crowded. In the
discrete dynamical systems studies we explored Hassell’s model, which simulates the crowding
effects. Below is one version of an age-structured model for Tribolium:

Ln+1 =
bAn

(1 + ceaAn + celLn)4
,

Pn+1 = slLn,

An+1 =
Pn

(1 + cpaAn)4
+ saAn,

which has the population limiting terms from the rational Hassell functions. For this part, take
the birth parameter, b = 15, survival parameters, sl = 0.4 and sa = 0.5, and population limiting
parameters, cea = 0.002 (adults eating eggs), cel = 0.005 (larva eating eggs), and cpa = 0.03
(adults eating pupa). Simulate this system starting with only two adults A0 = 2 (L0 = 0 and
P0 = 0). List the populations at n = 10, 20, 30, 50, and 100.

b. Find all (non-negative) equilibria for this system. Linearize this system about the equilibria.
Write your Jacobian matrices for each of the equilibria and find the eigenvalues for these matri-
ces. Briefly discuss the stability about these equilibria and describe the limiting age-structure
of the population.

c. Let b = 30 and repeat Parts a and b. Repeat the simulations and the calculations for the
equilibria and eigenvalues.

d. One should see a stability change between Parts b and c with only a change in the parameter
b. Find the bifurcation value of b, where this stability changes. (Hint: Create a program to
find the positive equilibrium as b varies, substitute this into your Jacobian matrix, and find the
eigenvalues. A bisection comparing the magnitude of the largest eigenvalue can fairly rapidly
be made to converge to the bifurcation value. The bisection can even be done by hand for a
few figures of accuracy provided you have a good equilibrium program and Jacobian/eigenvalue
program.)

2. A fair die has an equal probability of each number occurring on a roll. This problem examines
what happens when a pair of dice are loaded by weighting one die to favor a six and another
die loaded to favor a one. (This is often done by putting lead filings in one side of the die.)
Assume that for one die it is weighted to favor a six twice as much as the sides two, three,
four, and five, and the opposite side with a one having half the probability of the side numbers.
That is if p is the probability of a two, three, four, or five, then 2p is the probability of a six,
and 0.5p is the probability of a one. Assume that a second die is weighted oppositely to favor
a one with p again the probability of a two, three, four, or five, 2p is the probability of a one,
and 0.5p is the probability of a six.



a. Roll these two dice 10,000 times and determine the frequency of the dice totalling 7. Compare
this to the expected value for fair dice.

b. Roll the dice twice and add these results. Perform this operation 10,000 times and determine
the average and standard deviation of these sums. Compare this mean and standard deviation
to what one would obtain with fair dice.

3. A study including 6 dogs were injected with the opioid 3H-fentanyl citrate. Below is a table1

of the time evolution of plasma concentration (ng/ml), where t is in min.

t C t C t C

5 7.42 60 0.95 240 0.24

7 3.87 90 0.67 270 0.21

11 3.21 120 0.52 300 0.20

13 2.80 150 0.42 330 0.17

22 1.86 180 0.32 360 0.16

30 1.46 210 0.27

We model the fentanyl blood concentration with a three-compartment model.

a. Use the diagram above to create a 3D model for the concentrations in the three compartments:

Ċ1 = f1(C1, C2, C3), C1(0) = I0,

Ċ2 = f2(C1, C2, C3), C2(0) = 0,

Ċ3 = f3(C1, C2, C3), C3(0) = 0.

Find the appropriate functions, f1, f2, and f3 illustrated in the diagram. This diagram assumes
that the drug is not metabolized (or lost) inside either peripheral compartment and that the
transfer rates are linear and proportional to the kinetic parameters, kij . This last assumption
means, for example, that C1 leaves the blood compartment to enter the slow peripheral com-
partment at a rate k13C1, so enters the slow peripheral compartment at the same rate. Assume
that the drug is injected into the blood stream, so the I(t) in the diagram simply enters as the
initial condition, C1(0) = I0.

b. Since the experiment only measures blood concentration, explain how your model for the
disappearance of fentanyl in Part a can be reduced to a single equation of the form:

C1(t) = a1e
−λ1t + a2e

−λ2t + a3e
−λ3t, (1)

1Murphy, M. R., Olson, W. A., and Hug, Jr, C. C., Pharmacokinetics of 3H-Fentanyl in the dog anesthetized
with enflurane, Anethesiology, 50: 13-19, 1979



which is fit to the data. The parameter λ1 represents the rapid distribution phase, λ2 represents
the middle distribution phase, and λ3 represents the terminal/elimnation phase. Connect the
solution of your differential equation to the form of the solution above, including why λi > 0.
(The general case to show λi > 0 is challenging and not expected for you to show. However,
the special cases where either k12 = k21 and k13 = k31 or k12 = k21 = k13 = k31 = k are readily
manageable. Furthermore, physical arguments can justify this result.)

c. The model (1) is simply three decaying exponentials, which we want fit to the data. Begin by
plotting the data with the vertical axis having a logarithmic scale, and we see that the data are
not in a straight line. However, squinting enough one can see roughly three linear sections over
the ranges t ∈ [0, 22], t ∈ [30, 150], and t ∈ [180, 360]. We introduce a fitting procedure called
exponential peeling, where piecewise we fit (1) with decaying exponentials. This procedure
is outlined below:

1. Start with the terminal/elimination phase and find best fitting exponential model (using
a linear least squares fit to the logarithms of the concentrations) with t ∈ [180, 360] (only
these data).

2. Subtract this model from the remaining data.

3. With the middle distribution phase find the best fitting exponential model (again using a
linear least squares fit to the logarithms of the concentrations) with t ∈ [30, 150].

4. Once again subtract this model from the remaining modified data.

5. With the rapid distribution phase find the best fitting exponential model with t ∈ [0, 22].

6. Combine these three fits to obtain your model (1).

Give the complete 3-compartment model using this exponential peeling procedure. Include the
sum of square errors for this model. In addition, compute the sum of square errors between the
logarithms of the data and the logarithm of this model.

d. Start with the 6 parameters from the exponential peeling (3 coefficients and 3 exponents)
and use MatLab’s fminsearch (Nonlinear Least Squares fit) to find the best fitting parameters
for the 3-compartment model. This procedure fails with a direct least squares fit of the model
to the data, so perform a least squares best fit of the logarithm of the model to the logarithm of
the data. Write this best fitting model with its parameters and give the sum of square errors.
Write a brief paragraph comparing the exponential peeling model to the nonlinear fit model.
Give at least one strength and one weakness of the two models.

4. The HW assignment examined a repression model with delays. This problem examines a
modified negative feedback system with delays, where the second reaction has an induction
of the production of x2 by the product of the first reaction. Consider the system of delay
differential equations given by:

dx1(t)

dt
=

a1
1 + k1x23(t− r)

− b1x1(t),

dx2(t)

dt
=

a2x
2
1(t)

1 + k2x21(t)
− b2x2(t),

dx3(t)

dt
= a3x2(t)− b3x3(t),



where ai are production rates, bi are decay constants, ki are kinetic constants, and r is the
delay for the various processes.

a. Consider the undelayed case, where r = 0. Let all ai = 1, bi = 0.5, and ki = 1. Find
all equilibria. Linearize the above system of ordinary differential equations about each of the
equilibria. Find the eigenvalues at each equilibrium and discuss the stability for this model.

b. With the same kinetic parameters the equilibria are the same for the delayed model. Lin-
earize the above system of delay differential equations about each of the equilibria. Write the
characteristic equation for finding the eigenvalues at each equilibrium. Consider the cases when
r = 1 and r = 5. For each of these cases, create a program to map the perimeter of rectangle
in the complex plane bounded by 0 ≤ x ≤ 4 and −3 ≤ y ≤ 3 in the counterclockwise direction
into the complex image space using the characteristic equation. Using the argument principle,
determine how many, if any, eigenvalues are contained in the rectangle described above. With
this information, discuss the stability of the delay differential equation for each of these delays.
If unstable, include what the analysis says about the period of oscillation.

c. Let λ = iω in the characteristic equation and find where the Hopf bifurcation occurs. Give
the value of both r and ω at the bifurcation.


