
Fall 2018 Math 636 Practice Exam 1 Solutions

1. a. The first model has constants k = 0.084582 and a = 2.2542 with the SSE = 5.8156.

b. The second model has constants k = 0.094524 and a = 2.2145 with the SSE = 4.9664.

c. The third model uses a = 2, then k = 0.17536 with the SSE = 27.2195.

d. Part a uses the stable, easy linear least squares formula to find a and k, but the logarithms
weight the early data more. Part b has the best non-biased fit to the data, but the nonlinear
fitting routine could have instabilities and is certainly more complex. Part c uses the dimensional
analysis best fit with the a = 2, so is better connected to the physical model, and this fit uses
only a 1D parameter search, which is very stable. However, the data fit is significantly poorer
than the other two models. The value of a = 2 occurs because the strength of a tree occurs
from its cross-sectional area, which scales as diameter squared.

2. a. Because the data is spaced, this problem requires solving by simulating the model from
n = 0 to 15 and fitting the best parameters P0, r, and M to the logistic growth model:

Pn+1 = Pn + rPn

(
1 − Pn

M

)
, P (0) = P0.

The best fitting parameters are P0 = 2.3583, r = 0.61524, and M = 231.35 with the SSE =
123.29. In this model, the parameter r reflects the Malthusian growth, while M is the carrying
capacity of the population.

b. The logistic growth model always has equilibria, P1e = 0 (unstable) and P2e = M = 231.35
(stable). The derivative satisfies:

F ′(P ) = 1.61524 − 0.0053187P.

Thus, F ′(0) = 1.61524 > 1, showing solutions near P1e = 0 grow monotonically away from this
equilibrium (unstable). F ′(M) = 0.38476 < 1, showing solutions near P2e = 0 monotonically
approach this equilibrium (stable). From a modeling perspective, this analysis shows that
any reasonable positive population (0 < P0 < 607) will monotonically approach the carrying
capacity of 231.35.

c. For Ricker’s model with

Pn+1 = aPne
−bPn , P (0) = P0,

the best fitting parameters are P0 = 1.9005, a = 1.67712, and b = 0.0022002 with the SSE =
185.38. In this model, the parameter a = 1 + r, where r reflects the Malthusian growth. The
parameter b limits the growth rate and reflects the carrying capacity through P2e = ln(a)/b =
235.01. We see that this best fitting Malthusian growth rate is about 9% higher than the one
for the logistic growth, while the parameter b produces a very similar carrying capacity. Below
is a graph showing the best fitting logistic and Ricker’s growth models with the data. (This
graph was not requested, but shown for completeness.)
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d. Ricker’s growth model always has equilibria, P1e = 0 (unstable) and P2e = ln(a)
b = 235.01

(stable). The derivative satisfies:

R ′(P ) = (1.67712 − 0.0036900P )e−0.0022002P .

Thus, R ′(0) = 1.67712 > 1, showing solutions near P1e = 0 grow monotonically away from this
equilibrium (unstable). R ′(235.01) = 0.48292 < 1, showing solutions near P2e = 0 monotoni-
cally approach this equilibrium (stable). From a modeling perspective, this analysis shows that
any positive population will monotonically approach the carrying capacity of 235.01.

e. Below is a graph of the updating functions for both the logistic and Ricker’s model, including
the identity map and the equilibria where the updating functions intersect the identity map.
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The maximum growth rate for the logistic growth model occurs at (303.69, 245.26). The maxi-
mum growth rate for the Ricker’s growth model occurs at (454.50, 280.42). The logistic updating



function becomes negative (unrealistic) after Pn > 607.4, while Ricker’s updating function de-
creases after the maximum but goes to a horizontal asymptote of Pn+1 = 0. In the domain of
the data and before achieving the carrying capacity equilibrium, the two updating functions
remain extremely close, suggesting very similar behavior, which is observed in the time series
graph above.

f. We see that the logistic growth model has a smaller sum of square errors, so it fits the data
best. However, visually there is little difference between these models. The updating functions
vary significantly after they pass through the larger equilibrium. Significantly, for large pop-
ulations Ricker’s model remains positive. The strength of the logistic model is its simplicity
and good fit to the data. Its primary weakness is that the quadratic goes negative for larger
populations. Ricker’s model also fits the data well with only the two dynamic parameters, so is
equally simple, but it behaves better for large populations. It does not have a significant weak-
ness compared to the logistic, but it does fail to fit the data as well and is a more complicated
expression than a simple quadratic function.

3. a. The model given by
Cn+1 = αCn + µ,

has the best fitting initial value C0 = 0.0028169, while the best fitting parameters are α =
0.26915 and µ = 1.8485. The sum of square errors is 0.0024580. The model satisfies c(2) =
2.34624 with a percent error of 1.569%. It satisfies c(5) = 2.52569 with a percent error of
-0.9534%. The equilibrium for this model is Ce = 2.52926. The parameter µ relates to the
amount drug injected daily (divided by the volume of the blood compartment of the body
to give concentration) and α is the fraction remaining from the previous day after the drug
has been either metabolized or excreted from the body. (1 − α is the rate of metabolism or
excretion.) The equilibrium, Ce, is the steady-state concentration of the drug in the body,
which is needed to be at a level that is therapeutic.

b. The solution to the ODE model is given by:

c(t) = c∞ + (c0 − c∞) e−bt,

has the best fitting parameters c∞ = 2.52925 , c0 = 0.0028148, and b = 1.3125. The sum of
square errors is 0.0024580. (Note that this model converges better than the discrete model.)
This model satisfies c(2) = 2.34624 with a percent error of 1.569%. It satisfies c(5) = 2.52568
with a percent error of -0.9536%. This model is essentially the same as the model in Part a
using continuous variables. In this model, c∞ = 2.52925 is the equilibrium or homeostasis level
of the drug, while b is the rate that the drug is metabolized and/or excreted. Once again, the
equilibrium, c∞ = 2.52925 is the steady-state concentration of the drug in the body.

4. a. With the logistic growth models of the form:

dX

dt
= rxX

(
1 − X

Mx

)
, X(0) = X0,

dY

dt
= ryY

(
1 − Y

My

)
, Y (0) = Y0,

the solution to the first model is

X(t) =
X0Mx

X0 + (Mx −X0)e−rxt
,



which is fit to the given data. The best fitting initial conditions and parameters are for Species
X: X0 = 12.1869, Mx = 173.2115, rx = 0.069787, and for Species Y : Y0 = 5.14821, My =
110.957, ry = 0.035263. The least sums of square errors between the data and the models are
SSEX = 18.293 and SSEY = 3.5750.

b. The competition model has the form:

dX

dt
= rxX

(
1 − X

Mx

)
− XY

a3
,

dY

dt
= ryY

(
1 − Y

My

)
− XY

b3
,

where the constants rx, ry, Mx, and My are the same as above. The best initial conditions and
parameters satisfy: X0 = 8.98265, Y0 = 6.29768, a3 = 6451.93, and b3 = 8895.61. The least
sums of square errors between the data and the models are SSEX = 11.577

c. There are 4 equilibria: (Xe, Ye) = (0, 0), (173.2115, 0), (0, 110.957), and (151.0860, 57.5148).
The Jacobian matrix satisfies:

J(X,Y ) =

(
0.069787 − 0.000805801X − 0.000154992Y −0.000154992X

−0.000112415Y 0.035263 − 0.000635616Y − 0.000112415X

)
.

At the equilibrium (Xe, Ye) = (0, 0), the Jacobian matrix is:

J(0, 0) =

(
0.069787 0

0 0.035263

)
,

which has eigenvalue λ1 = 0.069787 with eigenvector ξ1 = [1, 0]T and λ2 = 0.035263 with
eigenvector ξ2 = [0, 1]T . This is an unstable node.

At the equilibrium (Xe, Ye) = (173.2115, 0), the Jacobian matrix is:

J(173.2115, 0) =

(
−0.069787 −0.026846

0 0.015791

)
,

which has eigenvalue λ1 = −0.069787 with eigenvector ξ1 = [1, 0]T and λ2 = 0.015791 with
eigenvector ξ2 = [−0.31371, 1])]T . This is a saddle point.

At the equilibrium (Xe, Ye) = (0, 110.957), the Jacobian matrix is:

J(0, 110.957) =

(
0.052590 0
−0.012473 −0.035263

)
,

which has eigenvalue λ1 = 0.052590 with eigenvector ξ1 = [1,−0.14198]T and λ2 = −0.035263
with eigenvector ξ2 = [0, 1]T . This is a saddle point.

At the equilibrium (Xe, Ye) = (151.0860, 57.5148), the Jacobian matrix is:

J(151.0860, 57.5148) =

(
−0.060873 −0.023417
−0.0064655 −0.018279

)
,

which has eigenvalue λ1 = −0.014980 with eigenvector ξ1 = [0.45451,−0.89074]T and λ2 =
−0.064172 with eigenvector ξ2 = [0.99022, 0.13951]T . This is a stable node.



d. The graph below is produced by pplane8, showing the phase portrait with nullclines and
equilibria and including the trajectory starting near the initial experimental point. It is clear
that any positive initial condition will result in the populations eventually approaching the
coexistence equilibrium at (Xe, Ye) = (151.0860, 57.5148).


