Homework - Least Squares Due Thurs. 12/15/16

Be sure to include all MatLab programs used to obtain answers.

1. In the lecture notes, we created the normal equations, which were given by the matrix equation:

$$
\left(\begin{array}{cc}
(n+1) & \sum_{i=0}^{n} x_{i} \\
\sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2}
\end{array}\right)\binom{a_{0}}{a_{1}}=\binom{\sum_{i=0}^{n} f_{i}}{\sum_{i=0}^{n} x_{i} f_{i}} .
$$

The solution of this matrix equation gives the linear least squares best fit line

$$
f(x)=a_{0}+a_{1} x .
$$

We also noted that Statistics texts usually give the following formula for finding the same linear least squares best fit line. Define the averages

$$
\bar{x}=\frac{1}{n+1} \sum_{i=0}^{n} x_{i} \quad \text { and } \quad \bar{f}=\frac{1}{n+1} \sum_{i=0}^{n} f_{i} .
$$

The best fitting slope and intercept are

$$
a_{1}=\frac{\sum_{i=0}^{n}\left(x_{i}-\bar{x}\right) f_{i}}{\sum_{i=0}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad \text { and } \quad a_{0}=\bar{f}-a_{1} \bar{x} .
$$

Show these two methods are equivalent.
2. Work Problem 5.7 from the text. It states to generate 11 data points, $t_{k}=(k-1) / 10, y_{k}=$ $\operatorname{erf}\left(t_{k}\right), k=1, \ldots, 11$.
a. Fit the data in a least squares sense with polynomials of degree 1 through 10. Compare the fitted polynomial with $\operatorname{erf}(t)$ for values of t between the data points. How does the maximum error depend on the polynomial degree?
b. Because $\operatorname{erf}(t)$ is an odd function of t, that is $\operatorname{erf}(x)=-\operatorname{erf}(-x)$, it is reasonable to fit the data by a linear combination of odd powers of t :

$$
\operatorname{erf}(t) \approx c_{1} t+c_{2} t^{3}+\cdots+c_{n} t^{2 n-1}
$$

Again, see how the error between data points depends on n.
c. Polynomials are not particularly good approximants for $\operatorname{erf}(t)$ because they are unbounded for large t, whereas $\operatorname{erf}(t)$ approaches 1 for large t. So using the same data points, fit a model of the form

$$
\operatorname{erf}(t) \approx c_{1}+e^{-t^{2}}\left(c_{2}+c_{3} z+c_{4} z^{2}+c_{5} z^{3}\right)
$$

where $z=1 /(1+t)$. How does the error between the data points compare with the polynomial models?
3. Work Problem 5.8 from the text. It states that here are 25 observations, y_{k}, taken equally spaced values of t.

```
t = 1:25
y = [ [ 5.0291 6.5099 5.3666 4.1272 4.2948
    6.1261 12.5140 10.0502 9.1614 7.5677
    7.2920 10.0357 11.0708 13.4045 12.8415
    11.9666 11.0765 11.7774 14.5701 17.0440
    17.0398 15.9069 15.4850 15.5112 17.6572]
y = y';
y = y(:);
```

a. Fit the data with a straight line, $y(t)=\beta_{1}+\beta_{2} t$, and plot the residuals, $y\left(t_{k}\right)-y_{k}$. You should observe that one of the data points has a much larger residual than the others. This is probably an outlier.
b. Discard the outlier, and fit the data again by a straight line. Plot the residuals again. Do you see any pattern in the residuals?
c. Fit the data, with the outlier excluded, by a model of the form

$$
y(t)=\beta_{1}+\beta_{2} t+\beta_{3} \sin (t) .
$$

d. Evaluate the third fit on a finer grid over the interval [0, 26]. Plot the fitted curve, using line style '-', together with the data, using line style 'o'. Include the outlier, using a different marker, ${ }^{\prime}$,

