
Fall 2016 Take-Home Exam 2 Math 541
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my own work, and that I did not take, borrow or steal any portions from
any other person. I understand that if I violate this honesty pledge, I
am subject to disciplinary action pursuant to the appropriate sections
of the San Diego State University Policies.

Signature

Be sure to show all your work or include a copy of your programs.

1. Consider the matrix A and vector b given by

A =





1 −1 α
−1 2 −α
α 1 1



 and b =





−2
3
2



 .

a. The Direct Method for solving this system is Gaussian elimination. For this part of
the problem, ignore any partial pivoting (as there are many cases). The process of Gaussian
elimination is written compactly in the LU factorization of A, given by A = LU , where L is a
lower triangular matrix representing the row operations of the Gaussian elimination and U is
an upper triangular matrix. Find L and U for the matrix A above.

b. Use your LU factorization in Part a to solve the system of linear equations:

Ax = b,

for A and b given above, noting any special cases with their particular solutions.

c. Find the condition number, κ1(A). You may want to use the information on p. 19 of the text
to help find the 1-norm of the matrices used to compute κ1(A).

d. Let α = 1.01. Perform the LU factorization, including partial pivoting, so PA = LU . List
the matrices P , L, and U . Find the condition number, κ1(A), and find the exact solution to
this problem. If your computer has only 3-digit arithmetic, then find the solution through LU
factorization with partial pivoting with this restricted computer and determine the absolute
error in the 1-norm between the actual solution and the solution obtained with your 3-digit
computer.

2. Given the n× n matrix A defined by

Aij =







2 i = j
−1/2 i < j

0 i > j
,



show that the condition number of this matrix in the one norm is given by

κ1(A) =
n+ 3

4

(

5

4

)n−1

.

Do this by first showing (again, formula on pg. 19 Chapter 2 is fair game, just be clear in your
use of it)

‖A‖1 =
n+ 3

2
.

Show using an inductive argument (see solutions for HW 5) that

A−1 =















1/2 1/8 (5/4)(1/8) · · · (5/4)n−2(1/8)
0 1/2 1/8 · · · (5/4)n−3(1/8)
...

. . .
. . .

...
0 · · · · · · 1/2 1/8
0 · · · · · · · · · 1/2















and then use your formula from pg. 19 to complete the result.

3. In Chemical Engineering, the steady state diffusion in a quiescent fluid body with a first
order chemical reaction may be modeled by the following boundary value problem.

D
d2w

dx2
−Kw = 0, with w(0) = 0, w(1) = C, and x ∈ (0, 1),

where w is the concentration of the substance, D is the diffusivity, K is the reaction rate, and C
is the fixed boundary concentration at x = 1. For this problem, we assume that D = 0.01 cm2/s,
K = 0.1 s−1, and C = 1.0 g/cm3. It can be shown that the continuous solution to this boundary
value problem is

w(x) =
sinh(

√
10x)

sinh(
√
10)

.

Often the diffusion operator is discretized with a second order difference. This allows the
boundary value problem to be written as a matrix system, which can be solved.

a. Let the interval (0, 1) be divided into n even steps with h = 1
n , so x0 = 0, x1 = h, ... xn = 1.

The discrete system can be written AW = b, where

A =



















1 0 · · · · · · · · · 0
1 −q 1 0 · · · 0
0 1 −q 1 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · 0 1 −q 1
0 · · · · · · · · · 0 1



















and b =











0
...
0
C











,

with q = 2 + Kh2/D. Let n = 8 and perform an LU factorization of A. Give your matrices
A, L, and U . Solve the system AW = b, where W = [w(x0), w(x1), ..., w(xn)]

T . Write your
solution W . What is the absolute error of this discrete solution at x = 0.5 as compared to the
actual continuous solution?



b. Repeat the process in Part a with n = 16. However, don’t write your matrices A, L, and
U . Write your solution W and determine what is the absolute error of this discrete solution
at x = 0.5 as compared to the actual continuous solution. Create a single graph showing the
discrete solutions, W , from both Parts a and b (n = 8 and 16) along with the exact solution.

c. In HW 5, we introduced Jacobi’s iterative method, where A, a diagonally dominant
matrix, was decomposed into a diagonal matrix D, a strictly lower triangular matrix L, and a
strictly upper triangular matrix U , so that A = D−L−U . By defining Tj = D−1(L+U) and
cj = D−1b, then a convergent iterative scheme was produced by

x(k+1) = Tjx
(k) + cj , k = 0, 1, ...,

where x0 is an initial vector. Let x0 = [0, ..., 0]T (initially clear solution). Use Jacobi’s iterative
method to approximate the equilibrium solution w(x) with n = 8, so A is a 9× 9 matrix. List
your iterates, w(k), at k = 4, 10, 20, and 50. Create a single graph showing the first 10 iterates
of w(k) along with the exact solution.

4. Consider
∫ 4

0
x2e−0.5x dx

a. Find the exact value of the integral above. Show the steps for obtaining this answer using
integration by parts from your Calculus course, (i.e., an answer from Wolfram Alpha or Maple
is not adequate). Also, provide a graph of this function for the interval of interest.

b. Use Gaussian Quadrature with 2, 3, 4, and 5 points to approximate the integral above. Find
the absolute error is for each of these approximations.

c. Use the Composite Simpson’s Rule with n = 4 or h = 1 to approximate the integral above,
and find the absolute error.

d. Use the Composite Simpson’s Rule starting with the solution in Part c and halve the stepsize
until the accuracy just exceeds that of the Gaussian Quadrature with 5 points. Give the value
of that stepsize and state how large the value of n is to achieve this degree of accuracy.

5. Consider
∫ 3

0
x3 sin(x4) dx

a. Find the exact value of the integral above. Show the steps for obtaining this answer using
techniques from your Calculus course, (i.e., an answer from Wolfram Alpha or Maple is not
adequate). Also, provide a graph of this function for the interval of interest.

b. Use the Composite Midpoint and Composite Simpson’s Rules with n = 12 or h = 0.25 to
approximate the integral above, and find the absolute errors for these approximations.

c. Use the Composite Midpoint and Composite Simpson’s Rules starting with n = 12 or h = 0.25
to approximate the integral above and halving the stepsize until the accuracy is less than a
tolerance of 10−6. Give the value of the stepsizes and state how large the values of n are to
achieve this tolerance for each of these methods. The order of convergence, p, satisfies:

err ≈ Chp, which implies ln(err) ≈ ln(C) + p ln(h),



where err is the absolute error of the method minus the exact solution. It follows that the slope
of the log-log plot for err and h approximates the order of convergence. Create a log-log plot
of err and h from this halving of the stepsize for each procedure and determine the best fitting
p-values.

d. Use the Adaptive Composite Simpson’s Rule program provided in class and determine how
much this reduces the number of intervals required to be used for the tolerance of 10−6 as
compared to the even intervals used in Part c.

6. Consider the singular integral
∫ 1

0

ln(x)

x2 − 1
dx

a. Find the exact value of the integral above. In this case, you are likely to need a program
such as Maple. Also, provide a graph of this function for the interval of interest.

b. Use the Composite Midpoint Rule with starting with h = 1 and halving the stepsize until
the solution is reached to a tolerance of 10−5. Give the value of the stepsizes and state how
large the values of n are to achieve this tolerance for this method. The order of convergence,
p, satisfies:

err ≈ Chp, which implies ln(err) ≈ ln(C) + p ln(h),

where err is the absolute error of the method minus the exact solution. It follows that the
slope of the log-log plot for err and h approximates the order of convergence. Create a log-log
plot of err and h from this halving of the stepsize procedure and determine the best fitting p
for the Composite Midpoint Rule.

c. Use Gaussian Quadrature with 3, 5, 7, and 9 points to approximate the integral above. Find
the absolute error is for each of these approximations.

d. Since this is a singular integral, you need to modify your program like the one used in the
HW to use the Adaptive Composite Simpson’s Rule. Move your endpoints by the distance of
eps, then use your modified Adaptive Composite Simpson’s Rule to approximate this integral
to a tolerance of 10−5. Determine the number of subintervals required for this calculation and
compare it to the Composite Midpoint Rule done in Part b. Compare all of the methods above
to determine which one gives the most accurate answer.

7. Suppose, using the Trapezoid rule on the interval [a, b] with step size

∆x =
b− a

N
,

that
∫ b

a
f(x)dx = T∆xf +K2(∆x)2 +K4(∆x)4 + · · · ,

where

T∆xf =
∆x

2



f(a) + f(b) + 2
N−1
∑

j=1

f(xj)



 , xj = a+ j∆x.

Note, you are making assumptions about how the error behaves very much like the ones we
used to derive the Composite Simpson’s Rule (see pg. 4, Chapter 6 for discussion). Based on



this assumption, if we double the number of points 2N in our mesh, or if we cut the mesh width
∆x in half, we have that

∫ b

a
f(x)dx = T∆x/2f +

K2

4
(∆x)2 +

K4

16
(∆x)4 + · · ·

So, you now have two approximations, one better than the other. Using these two approxima-
tions, show how you get the approximation

∫ b

a
f(x)dx =

1

3

(

4T∆x/2f − T∆xf
)

− K4

4
(∆x)4 + · · ·

This shows that by finding two approximations, we can generate a third which should be of
higher order than either. Use the code for the Composite Trapezoid method as a starting point.

a. Write code which implements your new method.

b. For the function f(x) = cos(x3)e−x on [0, 10], make log-log plots, which determine the order
of convergence for your new method. (This is similar to showing the rate of convergence in 6b.)

c. For your given test function (Part b), compare the performance of your method to the
Composite Simpson’s method. Which is faster in terms of clock time? Are they as accurate as
the other? Is one better in any clear way?

8. Cadmium is a toxic heavy metal used in nickel-cadmium batteries and cadmium telluride solar
panels. However, because of its toxicity its use has significantly decreased in other applications.
Human exposure to cadmium (Cd) comes from two primary sources. It can be ingested, often
with leafy vegetables, raw potatoes, and certain meats, where about 0.5-1.0 µg/day are retained.
It is much more readily absorbed through the lungs from cigarette smoke, often doubling the
intake in the body. The metal concentrates in the kidney tissue. High exposure can cause
itai-itai disease and renal failure (cadmium poisoning). Lower exposure has been linked to the
increased risk of cancer (cadmium and smoking).

a. Cadmium is poorly removed from the body and accumulates in the kidney. A differential
equation describing the amount of Cd, C(t), in the kidney of a nonsmoker (in mg) is given by:

dC

dt
= A− kC, C(0) = 0,

where A represents the amount of Cd entering by ingestion of food, k represents the removal
rate, and t is in years. The solution of this differential equation in terms of A and k is

C(t) =
A

k

(

1− e−kt
)

,

where the best fitting model to data for the total Cd in the kidney (in mg) for an average
nonsmoker at different ages1 gives

A = 0.076 and k = 0.038.
1Lars Friberg, Cadmium and the kidney, Environ. Health Persp. (1984), 54, 1-11.

http://en.wikipedia.org/wiki/Cadmium_poisoning
http://quitsmoking.about.com/od/chemicalsinsmoke/p/cadmium.htm


The risk of cancer from cadmium is computed by the exposure to this element. The exposure,
E(t), is found by the amount of Cd in the tissue times the amount of time that it remains in
the tissue. This is readily computed by the integral, which is given by:

E(t) =

∫ t

0
C(s)ds.

Use this formula and the computed model, C(t), to determine the exposure of the average
nonsmoker at ages 30, 50, and 70. Find the exact value of the integral, then use both the
Composite Trapezoid and Composite Simpson’s Rules with a stepsize of h = 5 to approximate
each of the integrals, giving the absolute errors.

b. Find the age to a tolerance of 10−2 at which the average nonsmoker achieves an exposure
level of 100 mg-yr. Detail how you find this exposure level using the Composite Simpson’s Rule
along with one of our techniques from the root finding methods. (Note that you could simply
use a root finding method if you used the exact solution, but I want you to combine numerical
techniques and think about what is contributing most to the error.)

c. As noted above, lungs absorb cadmium much more readily than the gut, so the Cd in
cigarettes can easily double the intake of Cd. Because of the carcinogenic properties of Cd, this
further increases the cancer risk from smoking. Assume that a smoker begins at age 18. As a
simplifying assumption, we will assume that the smoker smokes the same amount of cigarettes
annually, and that this increases the Cd intake by a factor of 2.1. For the first 18 years,
the amount of Cd entering the body of the smoker is the same as the nonsmoker, following
the differential equation in Part a above. For the remainder of the time in this problem, the
differential equation describing the amount of Cd, C1(t), in the kidney of the smoker (in mg)
satisfies:

dC1

dt
= 2.1A− kC1, C1(18) = C(18),

where A and k are the values presented above. This gives the solution of this initial value
problem for t ≥ 18.

C1(t) =
A

k

(

2.1 +
(

(1− e−18k)− 2.1
)

e−k(t−18)
)

,

Again, the exposure, E1(t), is found by the amount of Cd in the tissue times the amount of
time that it remains in the tissue. The first 18 years are found with the same formula as given
in Part c, so E1(t) = E(t). However, the increased Cd in tobacco results in a new formula for
E1(t) for t ≥ 18. This is computed by the integral, which is given by:

E1(t) =

∫ 18

0
C(s)ds+

∫ t

18
C1(s)ds.

Use this formula and the models, C(t) and C1(t), to determine the exposure of this smoker
at ages 30, 50, and 70. Find the exact value of the integral, then use both the Composite
Trapezoid and Composite Simpson’s Rules with a stepsize of h = 1 to approximate all of the
integrals.

d. Find the age to a tolerance of 10−2 at which this smoker achieves an exposure level of 100
mg-yr. Detail how you find this exposure level using the Composite Simpson’s Rule along with
one of our techniques from the root finding methods.



e. Create a graph of the two models, E(t) and E1(t), for exposure to Cd for t ∈ [0, 70]. Label your
axes and curves appropriately. Briefly describe what this graph is saying about the relative risk
of cancer from Cd for a smoker compared to a nonsmoker as they age. Include in this discussion
a comparison of the ages of a smoker versus a nonsmoker when they achieve the exposure level
of 100 mg-yr. Also, compare the risk for someone age 30 to someone age 60 (both smoker and
nonsmoker), assuming risk is directly related to exposure.


