I-Clicker Question

Which of the following optimization Homework or Review problems would you most like to see worked in Lecture?

A. **Homework 3 or 4**: Optimal dimensions of an open box.

B. **Homework 11 or Review 24**: Optimal time of escape (otter or rabbit).

C. **Homework 12**: Optimal lamp illumination.

D. **Review 23**: Optimal size of brochure.

E. **Review 26**: Optimal size of holding pens.

Joseph M. Mahaffy, ⟨jmahaffy@mail.sdsu.edu⟩
Optimization – Homework — (1/12)
Optimization problem seeks to find the maximum illumination by changing h if

$$I = \frac{3.3 \cos(\theta)}{d^2}$$
Given the diagram for the table, find \(d \).

A. \(d = \frac{4}{\tan(\theta)} \)

B. \(d = 4 \tan(\theta) \)

C. \(d = 4 \sin(\theta) \)

D. \(d = \frac{4}{\sin(\theta)} \)

E. \(d = \frac{4}{\cos(\theta)} \)
Given that

\[I = \frac{3.3 \cos(\theta)}{d^2} \quad \text{and} \quad d = \frac{4}{\sin(\theta)} \]

It follows that

\[I = \frac{3.3}{16} \cos(\theta) \sin^2(\theta) \]
Given

\[I(\theta) = \frac{3.3}{16} \cos(\theta) \sin^2(\theta) \]

Find the derivative of \(I(\theta) \)?

A. \(I'(\theta) = \frac{3.3}{16} \sin(\theta)(\cos^2(\theta) - \sin^2(\theta)) \)

B. \(I'(\theta) = -\frac{6.6}{16} \sin^2(\theta) \cos(\theta) \)

C. \(I'(\theta) = \frac{3.3}{16} \sin(\theta)(3 \cos^2(\theta) - 1) \)

D. \(I'(\theta) = \frac{3.3}{16} \sin(\theta)(\sin^2(\theta) - 2 \cos^2(\theta)) \)

E. \(I'(\theta) = \frac{3.3}{16} \cos(\theta)(2 \cos^2(\theta) - \sin^2(\theta)) \)

Hint: You may need to use the identity \(\cos^2(\theta) + \sin^2(\theta) = 1 \)
Lamp Problem

For

\[I = \frac{3.3 \cos(\theta)}{d^2} \]

We have

\[I'(\theta) = \frac{3.3}{16} \sin(\theta) (3 \cos^2(\theta) - 1) \]
Lamp Problem

For

\[I = \frac{3.3 \cos(\theta)}{d^2} \]

We have

\[I'(\theta) = \frac{3.3}{16} \sin(\theta)(3 \cos^2(\theta) - 1) \]

The optimal solution satisfies

\[\frac{3.3}{16} \sin(\theta)(3 \cos^2(\theta) - 1) = 0 \]
Lamp Problem

For

\[I = \frac{3.3 \cos(\theta)}{d^2} \]

We have

\[I'(\theta) = \frac{3.3}{16} \sin(\theta)(3 \cos^2(\theta) - 1) \]

The optimal solution satisfies

\[\frac{3.3}{16} \sin(\theta)(3 \cos^2(\theta) - 1) = 0 \]

It follows that either

\[\sin(\theta) = 0 \quad \text{or} \quad 3 \cos^2(\theta) - 1 \]
Lamp Problem

For

\[I = \frac{3.3 \cos(\theta)}{d^2} \]

We have

\[I'(\theta) = \frac{3.3}{16} \sin(\theta)(3 \cos^2(\theta) - 1) \]

The optimal solution satisfies

\[\frac{3.3}{16} \sin(\theta)(3 \cos^2(\theta) - 1) = 0 \]

It follows that either

\[\sin(\theta) = 0 \quad \text{or} \quad 3 \cos^2(\theta) - 1 \]

Since \(\sin(\theta) = 0 \) implies \(\theta = 0 \), which is not optimal, it follows that

\[\cos(\theta) = \frac{1}{\sqrt{3}} \]
Given

\[
\cos(\theta) = \frac{1}{\sqrt{3}} = \frac{h}{d}
\]

we need \(\sin(\theta)\). **What is** \(\sin(\theta)\)?

A. \(\sin(\theta) = \frac{2}{\sqrt{3}}\)

B. \(\sin(\theta) = \frac{2}{3}\)

C. \(\sin(\theta) = \frac{\sqrt{3}}{2}\)

D. \(\sin(\theta) = \frac{1}{2}\)

E. \(\sin(\theta) = \sqrt{\frac{2}{3}}\)
We combine our results.

- The optimal solution has

\[\cos(\theta_{opt}) = \frac{1}{\sqrt{3}} = \frac{h}{d} \]
Lamp Problem

We combine our results.

- The optimal solution has

\[
\cos(\theta_{opt}) = \frac{1}{\sqrt{3}} = \frac{h}{d}
\]

- The hypotenuse is

\[
d = \frac{4}{\sin(\theta_{opt})} \quad \text{with} \quad \sin(\theta_{opt}) = \sqrt{\frac{2}{3}}
\]
We combine our results.

- The optimal solution has

\[
\cos(\theta_{opt}) = \frac{1}{\sqrt{3}} = \frac{h}{d}
\]

- The hypotenuse is

\[
d = \frac{4}{\sin(\theta_{opt})} \quad \text{with} \quad \sin(\theta_{opt}) = \sqrt{\frac{2}{3}}
\]

- It follows that

\[
h = \frac{4}{\sqrt{2}}
\]
An open box with its base having a length twice its width is to be constructed with 800 square cm of material. **Find its dimensions that maximize the volume.**
An open box with its base having a length twice its width is to be constructed with 800 square cm of material. **Find its dimensions that maximize the volume.**

Let its width be denoted \(x\) and its height be denoted \(y\), then the volume, \(V(x, y)\), of this open box satisfies:

A. \(V(x, y) = 2x^2 + 6xy\)

B. \(V(x, y) = 2x^2y\)

C. \(V(x, y) = 2xy^2\)

D. \(V(x, y) = x^2y\)

E. \(V(x, y) = x^2 + 4xy\)
An open box with its base having a length twice its width is to be constructed with 800 square cm of material. Find its dimensions that maximize the volume.

Let its width be denoted \(x \) and its height be denoted \(y \), then the volume, \(V(x, y) \), of this open box satisfies:

A. \(V(x, y) = 2x^2 + 6xy \)

B. \(V(x, y) = 2x^2y \)

C. \(V(x, y) = 2xy^2 \)

D. \(V(x, y) = x^2y \)

E. \(V(x, y) = x^2 + 4xy \)

This is the Objective function.
The open box is to be constructed with 800 square cm of material. **Find an equation for the surface area, \(S(x, y) \).**
The open box is to be constructed with 800 square cm of material. **Find an equation for the surface area,** $S(x, y)$.

A. $S(x, y) = 2x^2 + 4xy = 800$

B. $S(x, y) = 2x^2y + 2x^2 = 800$

C. $S(x, y) = 2xy^2 = 800$

D. $S(x, y) = 2x^2 + 6xy = 800$

E. $S(x, y) = x^2 + 4xy = 800$
The open box is to be constructed with 800 square cm of material. **Find an equation for the surface area,** $S(x, y)$.

A. $S(x, y) = 2x^2 + 4xy = 800$

B. $S(x, y) = 2x^2y + 2x^2 = 800$

C. $S(x, y) = 2xy^2 = 800$

D. $S(x, y) = 2x^2 + 6xy = 800$

E. $S(x, y) = x^2 + 4xy = 800$

This is the Constraint condition.
Objective function is

\[V(x, y) = 2x^2 y \]

with Constraint condition

\[S(x, y) = 2x^2 + 6xy = 800 \]
Objective function is

\[V(x, y) = 2x^2y \]

with Constraint condition

\[S(x, y) = 2x^2 + 6xy = 800 \]

Thus, \(6xy = 800 - 2x^2\), or
Objective function is

\[V(x, y) = 2x^2 y \]

with Constraint condition

\[S(x, y) = 2x^2 + 6xy = 800 \]

Thus, \(6xy = 800 - 2x^2 \), or

\[y = \frac{400}{3x} - \frac{x}{3} \]
Box Problem

Objective function is

\[V(x, y) = 2x^2 y \]

with **Constraint condition**

\[S(x, y) = 2x^2 + 6xy = 800 \]

Thus, \(6xy = 800 - 2x^2\), or

\[y = \frac{400}{3x} - \frac{x}{3} \]

The objective function becomes

\[V(x) = 2x^2 \left(\frac{400}{3x} - \frac{x}{3} \right) = \frac{2}{3}(400x - x^3) \]
Since the objective function is

\[V(x) = \frac{2}{3}(400x - x^3), \]

we differentiate to obtain
Since the objective function is

\[V(x) = \frac{2}{3}(400x - x^3), \]

we differentiate to obtain

\[V'(x) = \frac{2}{3}(400 - 3x^2) \]
Since the objective function is

\[V(x) = \frac{2}{3}(400x - x^3), \]

we differentiate to obtain

\[V'(x) = \frac{2}{3}(400 - 3x^2) = 0 \]

for optimal solution.
Since the objective function is

\[V(x) = \frac{2}{3} (400x - x^3), \]

we differentiate to obtain

\[V'(x) = \frac{2}{3} (400 - 3x^2) = 0 \]

for optimal solution.

It follows that

\[x_{opt} = \frac{20}{\sqrt{3}} \]
Since the objective function is
\[V(x) = \frac{2}{3} (400x - x^3), \]
we differentiate to obtain
\[V'(x) = \frac{2}{3} (400 - 3x^2) = 0 \]
for optimal solution. It follows that
\[x_{opt} = \frac{20}{\sqrt{3}} \]
The length, height, and volume are easily obtained from this.