Least Squares Analysis
Least Squares Best Fit
Worked Example 1
Error Analysis
Worked Example 2

Linear Least Squares Best Fit

- Linear Models section showed cricket data appear to lie on a line
- **Linear least squares best fits** a linear model to data
- **Linear regression** is another common name for this analysis
 - The term regression comes from a pioneer in the field of applied statistics who gave the least squares line this name because his studies indicated that the stature of sons of tall parents reverts or regresses toward the mean stature of the population

Cell Division in *E. coli*

- Genome is a single large loop of DNA (3,800,000 base pairs)
- Replicates in both directions, starting at *oriC*
- Bacteria (prokaryotes) cell cycle differs from eukaryotic organisms – replication cycles overlap for rapid growth

Figures for Cell Cycle for *E. coli*
Replication of DNA in E. coli

- *Escherichia coli* can divide every 20 minutes
- Time for the DNA to replicate is the C period
- Time for the two loops of DNA to split apart, segregate, and form two new daughter cells is the D period
- The C period is 35-50 min, and the D period is over 25 min
- Replication cycle often longer than cell division time
- Up to 8 oriCs in a single *E. coli*

Pulse Labeling Experiment

Finding the C Period

- A pulse of radioactive thymidine given to *E. coli*
- Drugs at $t = 0$ to stop new replication forks and division
- Radioactive thymidine added to existing forks
- As forks end, no new radioactive thymidine added
- Radioactive emissions, c in counts/min (cpm) measured in lab of Prof. Judith Zyskind (SDSU)

<table>
<thead>
<tr>
<th>t (min)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>c (cpm)</td>
<td>7130</td>
<td>4580</td>
<td>2420</td>
<td>810</td>
</tr>
</tbody>
</table>

Linear Model

$$c = at + b$$

- Actual model uses techniques of Integral Calculus
- Linear model a reasonable approximation
- The t-intercept approximates the C period
- **Least squares best fit** minimizes sum of c-distance from data to linear model
- Minimizes distance by adjusting slope, a, and intercept, b

Data suggest that C period is 42.7 min
The **least squares best fit** of a line to data is the best line through a set of data.

Consider a set of \(n\) data points:

\[(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\]

Select a slope, \(a\), and an intercept, \(b\), that results in a line that in some sense best fits the data

\[y(x) = ax + b\]

The least squares best fit minimizes the square of the error in the distance between the \(y_i\) values of the data points and the \(y\) value of the line.

Distance depends on selection of the slope, \(a\), and the intercept, \(b\).

Error between each of the data points and the line is

\[e_i = y_i - y(x_i) = y_i - (ax_i + b), \quad i = 1, ..., n\]

Define the **Absolute Error** between each of the data points and the line as

\[|e_i| = |y_i - y(x_i)| = |y_i - (ax_i + b)|, \quad i = 1, ..., n\]

The error \(e_i\) varies as \(a\) and \(b\) vary.

Create a function depending on the slope \(a\) and intercept \(b\) of the line, which sums the square errors

\[J(a, b) = e_1^2 + e_2^2 + ... + e_n^2 = \sum_{i=1}^{n} e_i^2\]

The **Least Squares Best Fit Line** is the minimum value of the function \(J(a, b)\).

Minimum is determined using Calculus of two variables.
Formula for Best Fitting Line

Assume data points \((x_i, y_i)\), \(i = 1, \ldots, n\), and line

\[y = ax + b \]

Define the mean of the \(x\) values

\[\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

The best fitting slope satisfies

\[a = \frac{\sum_{i=1}^{n} (x_i - \bar{x})y_i}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \]

The best fitting intercept satisfies

\[b = \frac{1}{n} \sum_{i=1}^{n} y_i - a\bar{x} = \bar{y} - a\bar{x} \]

C Period Example (continued)

The **pulse labeling** experiment for *E. coli* gave data points:

\[(10, 7130), (20, 4580), (30, 2420), (40, 810)\]

The mean time is

\[\bar{t} = \frac{10 + 20 + 30 + 40}{4} = 25 \]

The best slope, \(a\), satisfies

Thus, the best fitting line is given by

\[c(t) = -211.2t + 9015 \]

Similarly, the \(c\)-intercept, \(b\), satisfies:

\[b = \frac{7130 + 4580 + 2420 + 810}{4} - (-211.2)25 = 9015 \]

Thus, the best fitting line is given by

\[c(t) = -211.2t + 9015 \]

With \(c(t) = -211.2t + 9015\), compute the errors

For the first datum point \((t, c) = (10, 7130)\), the model predicts \(c(10) = 6900\), so

\[e_1 = c_1 - c(10) = 7130 - 6903 = 227 \]

\[e_2 = c_2 - c(20) = 4580 - 4791 = -211 \]

\[e_3 = c_3 - c(30) = 2420 - 2679 = -259 \]

\[e_4 = c_4 - c(40) = 810 - 567 = 243 \]

The sum of the square of these errors is

\[J(-211.2, 9015) = 51529 + 44521 + 67081 + 59049 = 222180 \]
Juvenile Growth Model - Revisited

The linear Models section showed that Juvenile Height was approximated well with a linear model.

Linear model is given by:

\[h(a) = 6.46a + 72.3 \]

and fit the data well.

Least sum of square errors is found to be

\[J(m, b) = 41.5 \]

Applet for Juvenile Height Growth

Example 1 - Model Choice

Two researchers had only a limited set of data, the points (2,2), (5,6), and (8,3).

Researcher A felt that the model given by with \(y \) increasing with increasing \(x \):

\[y = \frac{5}{9}x + \frac{8}{9} \]

Researcher B felt that the model given by with \(y \) decreasing with increasing \(x \):

\[y = -\frac{2}{9}x + \frac{43}{9} \]

Graph of data and two models:

Solution: Recall the error for line \(y = ax + b \) satisfies:

\[e_i = y_i - (ax_i + b) \]

For Model A,

\[J_A = e_1^2 + e_2^2 + e_3^2 \]

\[J_A = (2 - (\frac{5}{9}(2) + \frac{8}{9}))^2 + (6 - (\frac{5}{9}(5) + \frac{8}{9}))^2 + (3 - (\frac{5}{9}(8) + \frac{8}{9}))^2 \]

\[J_A = 10.89 \]
For Model B,

\[J_B = e_1^2 + e_2^2 + e_3^2 \]

\[J_B = (2 - (-\frac{2}{3}2 + \frac{4}{3}))^2 + (6 - (-\frac{2}{3}5 + \frac{4}{3}))^2 + (3 - (-\frac{2}{3}8 + \frac{4}{3}))^2 \]

\[J_B = 10.89 \]

Since \(J_A = J_B \), the two models are equally valid.

Example 1

The sum of square error between the data and the best fitting model is **8.17**, which is better than other models (**10.89**).

There are clearly too few data to really produce a model.

Graph of data and three models:

Actual and Absolute Error

- Error analysis is important for testing validity of a model.
- Let \(X_e \) be an experimental measurement or the worst value from a model being tested.
- Let \(X_t \) be a theoretical value or the best value from actual data.
- The **Actual Error** is

 \[\text{Actual Error} = X_e - X_t \]

- The **Absolute Error** is appropriate when only the magnitude of the error is needed.

 \[\text{Absolute Error} = |X_e - X_t| \]
Relative and Percent Error

- Relative and Percent error allow a better comparison of the error between data sets or within a data set with large differences in the numerical values.

- Again let \(X_e \) be an experimental measurement or the worst value from a model being tested and \(X_t \) be a theoretical value or the best value from actual data.

- The **Relative Error** is

\[
\text{Relative Error} = \frac{X_e - X_t}{X_t}
\]

- The **Percent Error** is the most common and divides the Relative error by the best expected value

\[
\text{Percent Error} = \frac{X_e - X_t}{X_t} \times 100\%
\]

Growth Model

Consider the growth of a fish given by the data:

<table>
<thead>
<tr>
<th>(t) (weeks)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L) (cm)</td>
<td>2.4</td>
<td>3.1</td>
<td>3.7</td>
<td>4.1</td>
<td>5.2</td>
<td>4.9</td>
<td>6.9</td>
</tr>
</tbody>
</table>

The formula for finding the least squares best fit linear model gives:

\[L = 0.437t + 2.644 \]

Determine the growth rate for this model

Solution: The rate of growth is the slope of the best fitting line, so

\[\text{Growth Rate} = 0.437 \text{ cm/week} \]

Find the sum of square errors

Solution: Each of the square errors is:

\[
\begin{align*}
 e_1^2 &= (2.4 - 2.644)^2 = 0.0595 \\
 e_2^2 &= (3.1 - (0.437 + 2.644))^2 = 0.0004 \\
 e_3^2 &= (3.7 - (0.874 + 2.644))^2 = 0.0331 \\
 e_4^2 &= (4.1 - (1.311 + 2.644))^2 = 0.0210 \\
 e_5^2 &= (5.2 - (2.185 + 2.644))^2 = 0.1376 \\
 e_6^2 &= (4.9 - (3.059 + 2.644))^2 = 0.6448 \\
 e_7^2 &= (6.9 - (3.933 + 2.644))^2 = 1.0431 \\
\end{align*}
\]

Sum of Square Errors is

\[J(0.437, 2.644) = 1.0008 \]
Which point is most likely erroneous?
The point with the most error is (7, 4.9)
When this point is removed, the new least squares best fit model is
\[L = 0.492t + 2.594 \]

Determine the growth rate for this model
Growth Rate = 0.492 cm/week

What is the new sum of square errors
Solution: The new sum of square errors is
\[J(a, b) = 0.0376 + 0.0002 + 0.0149 + 0.0009 + 0.0213 + 0.0149 = 0.0898 \]
which is only 9% of the sum of squares error from above

What is the percent error between the computed growth rates?
Solution: The growth rate without the erroneous point is the best value, so
\[X_t = 0.492 \]
The original growth rate is the worst value, so
\[X_e = 0.437 \]
Percent error is
\[\left(\frac{0.437 - 0.492}{0.492} \right) \times 100 = -11.2\% \]

Graph of data and two models:

Graph readily shows linear data and erroneous point