Introduction

Managing More Integrals

- To date we have learned a collection of basic integrals
 - Polynomials
 - Power Law
 - Exponentials - e^{kt}
 - Trig Functions - $\sin(kt)$ and $\cos(kt)$
- Integration by substitution allows a substitution that reduces the integral to a simpler form
- This is basically this inverse of the Chain Rule of differentiation
- Apply to models using separable differential equations
 - The logistic growth model
 - Model for motion of an object subject to gravity

Logistic Growth Model for Yeast

Model considers a limited food source

- After a lag period, the organisms begin growing according to Malthusian growth
- As the food source becomes limiting, the growth of the organism slows and the population levels off
- This behavior is modeled by adding a negative quadratic term to the Malthusian growth model

$$\frac{dP}{dt} = rP \left(1 - \frac{P}{M} \right) \quad \text{with} \quad P(0) = P_0$$
Experiment: G. F. Gause (*Struggle for Existence*) studied standard brewers yeast, *Saccharomyces cerevisiae*

- *S. cerevisiae* placed in a closed vessel, where nutrient was changed regularly (every 3 hours)
- Simulates a constant source of nutrient

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>0</th>
<th>1.5</th>
<th>9</th>
<th>10</th>
<th>18</th>
<th>18</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.37</td>
<td>1.63</td>
<td>6.2</td>
<td>8.87</td>
<td>10.66</td>
<td>10.97</td>
<td>12.5</td>
</tr>
<tr>
<td>Time (hr)</td>
<td>25.5</td>
<td>27</td>
<td>34</td>
<td>38</td>
<td>42</td>
<td>45.5</td>
<td>47</td>
</tr>
<tr>
<td>Volume</td>
<td>12.6</td>
<td>12.9</td>
<td>13.27</td>
<td>12.77</td>
<td>12.87</td>
<td>12.9</td>
<td>12.7</td>
</tr>
</tbody>
</table>

Model: The *Logistic Growth Model* that best fits the data is

\[
\frac{dP}{dt} = 0.259 P \left(1 - \frac{P}{12.7} \right), \quad \text{with} \quad P(0) = 1.23
\]

- How do we find the solution to this nonlinear differential equation?
- This is a separable equation
- The integral for *P* involves two integration techniques
- We’ll concentrate on the the integration by substitution

Integration by Substitution

- Integration is the inverse of differentiation
- Many functions that do not have an antiderivative
- **Integration by substitution** extends the number of integrable functions
- This technique is the inverse of the chain rule of differentiation
- The substitution technique finds a function that reduces an integral to an easier form
Example 1: Let \(a \) be a constant and consider the integral
\[
\int (x + a)^n \, dx
\]
Make the substitution \(u = x + a \), and the derivative gives the differentials \(du = dx \), so
\[
\int (x + a)^n \, dx = \int u^n \, du = \frac{u^{n+1}}{n+1} + C = \frac{(x + a)^{n+1}}{n+1} + C.
\]

Example 2: Consider the integral
\[
\int x e^{-x^2} \, dx
\]
Make the substitution \(u = -x^2 \), and the derivative gives the differentials \(du = -2x \, dx \), so
\[
\int x e^{-x^2} \, dx = \int e^{-x^2} \left(-\frac{1}{2} \right) (-2x) \, dx = \frac{1}{2} \int e^u \, du = \frac{1}{2} e^u + C = \frac{1}{2} e^{-x^2} + C.
\]

Example 3: Consider the integral
\[
\int (x^2 + 2x + 4)^3 (x + 1) \, dx
\]
Make the substitution \(u = x^2 + 2x + 4 \), and the derivative gives the differentials \(du = (2x + 2) \, dx \), so
\[
\int (x^2 + 2x + 4)^3 (x + 1) \, dx = \frac{1}{2} \int (x^2 + 2x + 4)^3 (2x + 2) \, dx = \frac{1}{2} \int u^3 \, du = \frac{u^4}{8} + C = \frac{(x^2 + 2x + 4)^4}{8} + C.
\]

Integration by Substitution: What makes a good substitution?

- Choose \(u \) such that when \(u \) and \(du \) are substituted for the expression of \(x \) under the integrand, the remaining integral became of one of the basic integrals solved earlier.
- There are a few choices that are very natural for a substitution.
 - Let \(u \) be any expression of \(x \) in the exponent of the exponential function \(e \) or the argument of any trigonometric functions or the logarithm function.
 - Let \(u \) be an expression of \(x \) inside parentheses raised to a power, where you should be able to see the derivative of that expression multiplying this expression to a power.
Introduction

Logistic Growth Model for Yeast

Integration by Substitution

Return to Logistic Growth

Examples

Return to Logistic Growth: The Logistic Growth Model is

\[\frac{dP}{dt} = rP \left(1 - \frac{P}{M}\right) = -rP \left(\frac{P}{M} - 1\right) \]

- Separate Variables to give

 \(\int \frac{dP}{P \left(\frac{P}{M} - 1\right)} = -r \int dt \)

 - The integral on the right is very easy to solve
 - The integral on the left requires a technique from algebra
 - Fraction is split into two simple fractions (reverse of a common denominator)

 \[\frac{1}{P \left(\frac{P}{M} - 1\right)} = \frac{1}{\left(\frac{P}{M} - 1\right)} - \frac{1}{P} \]

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) — (13/33)

Separated Differential Equation: From fractional form above, write the integral as

\[\int \frac{dP}{P \left(\frac{P}{M} - 1\right)} = \int \frac{dP}{\left(\frac{P}{M} - 1\right)} - \int \frac{dP}{P} \]

- One integral is easy

 \[\int \frac{dP}{P} = \ln |P| + C \]

- For the other make the substitution \(u = \frac{P}{M} - 1 \), so \(du = \frac{dP}{M} \)

 \[\frac{1}{M} \int \frac{dP}{\left(\frac{P}{M} - 1\right)} = \int \frac{du}{u} = \ln |u| = \ln \left|\frac{P}{M} - 1\right| \]

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) — (14/33)

Separated Differential Equation:

\[\int \frac{dP}{P \left(\frac{P}{M} - 1\right)} = -r \int dt = -rt + C \]

- From results above

 \[\ln \left|\frac{P}{M} - 1\right| - \ln |P| = -rt + C \]

- Thus,

 \[\ln \left|\frac{\frac{P}{M} - 1}{P}\right| = \ln \left|\frac{P - M}{MP}\right| = -rt + C \]

- Exponentiating,

 \[\left|\frac{P(t) - M}{MP(t)}\right| = e^{-rt+C} \]

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) — (15/33)

Solution: Removing the absolute value

\[\frac{P(t) - M}{MP(t)} = Ae^{-rt} \]

- Solving for \(P(t) \) gives

 \[P(t) = \frac{M}{1 - MAe^{-rt}} \]

- With the initial condition, \(P(0) = P_0 \)

 \[P_0 = \frac{M}{1 - MA} \quad \text{or} \quad A = \frac{P_0 - M}{MP_0} \]

- Inserting this into the solution above gives

 \[P(t) = \frac{P_0M}{P_0 + (M - P_0)e^{-rt}} \]

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) — (16/33)
Yeast Model: The best fitting yeast model
\[
\frac{dP}{dt} = 0.259 P \left(1 - \frac{P}{12.7} \right), \quad \text{with} \quad P(0) = 1.23
\]

- The general logistic solution is
 \[
P(t) = \frac{P_0 M}{P_0 + (M - P_0) e^{-rt}}
\]
- It follows that
 \[
P(t) = \frac{15.62}{1.23 + 11.47 e^{-0.259 t}}
\]
- This function creates the standard *S-shaped curve* of logistic growth and has the *carrying capacity* of 12.7

Integration Example 1:
Consider the integral
\[
\int x^2 \cos(4 - x^3)\,dx
\]

Solution: A natural substitution is
\[
u = 4 - x^3 \quad \text{so} \quad du = -3x^2\,dx
\]
The solution of the integral is
\[
\int x^2 \cos(4 - x^3)\,dx = -\frac{1}{3} \int \cos(u)(-3x^2)\,du
\]
\[
= -\frac{1}{3} \sin(u) + C
\]
\[
= -\frac{1}{3} \sin(4 - x^3) + C
\]

Integration Example 2:
Consider the integral
\[
\int \left(\ln(2x) \right)^2 \frac{1}{x}\,dx
\]

Solution: A natural substitution is
\[
u = \ln(2x) \quad \text{so} \quad du = \frac{dx}{x}
\]
The solution of the integral is
\[
\int \left(\ln(2x) \right)^2 \frac{1}{x}\,dx = \int u^2\,du
\]
\[
= \frac{u^3}{3} + C
\]
\[
= \frac{1}{3} \left(\ln(2x) \right)^3 + C
\]
Differential Equation Example 1

Solution (cont): The integrations give
\[\ln |y(t)| = \ln(t^2 + 4) + C \]

- Exponentiating
 \[y(t) = e^{\ln(t^2+4)+C} = e^C(t^2 + 4) \]
- Note that \(e^C \) could be positive or negative depending on the initial condition
- From the initial condition, \(y(0) = 8 \), it follows that
 \[y(t) = 2(t^2 + 4) \]

Differential Equation Example 2

Solution: Rewrite the differential equation
\[\frac{dy}{dt} = 2t e^{t^2-y}, \quad y(0) = 2 \]

Separate the differential equation into the two integrals
\[\int e^y dy = \int 2t e^{t^2} dt \]

Solution (cont): The right integral uses the substitution
\(u = t^2 \), so \(du = 2t dt \)
\[\int e^y dy = e^y = \int 2t e^{t^2} dt = \int e^u du = e^u + C \]
- By substitution the implicit solution is
 \[e^y = e^{t^2} + C \]
- Taking logarithms
 \[y(t) = \ln \left(e^{t^2} + C \right) \]
- From the initial condition, \(y(0) = 2 = \ln(1 + C) \), it follows that
 \[y(t) = \ln \left(e^{t^2} + e^2 - 1 \right) \]

Logistic Growth

Suppose that a population of animals satisfies the logistic growth equation
\[\frac{dP}{dt} = 0.01 P \left(1 - \frac{P}{2000} \right), \quad P(0) = 50 \]
- Find the general solution of this equation
- Determine how long it takes for this population to double
- Find how long it takes to reach half of the carrying capacity
Solution: We separate this logistic growth model

\[\int \frac{dP}{P \left(\frac{P}{2000} - 1 \right)} = -0.01 \int dt = -0.01 t + C \]

- The **Fundamental Theorem Algebra** gives

\[\frac{1}{P \left(\frac{P}{2000} - 1 \right)} = \frac{1}{2000} \left(\frac{P}{2000} - 1 \right) - \frac{1}{P} \]

- We use the substitution \(u = \frac{P}{2000} \), so \(du = \frac{P}{2000} \)

\[\frac{1}{2000} \int \frac{dP}{\left(\frac{P}{2000} - 1 \right)} = \int \frac{du}{u} - \int \frac{dP}{P} = -0.01 t + C \]

Solution (cont): From the substitution \(u = \frac{P}{2000} \)

\[\int \frac{du}{u} - \int \frac{dP}{P} = -0.01 t + C \]

- Thus,

\[\ln |u| - \ln |P| = \ln \left| \frac{P - 2000}{2000} \right| - \ln |P| = -0.01 t + C \]

- So,

\[\ln \left| \frac{P - 2000}{2000 P} \right| = -0.01 t + C \]

Solution (cont): Exponentiating the previous expression

\[\frac{P(t) - 2000}{2000 P(t)} = e^{-0.01 t + C} = Ae^{-0.01 t} \]

- Solving for \(P(t) \),

\[P(t) = \frac{2000}{1 - 2000 A e^{-0.01 t}} \]

- With the initial condition, \(P(0) = 50 \),

\[P(t) = \frac{2000}{1 + 39 e^{-0.01 t}} \]

Solution (cont): The logistic growth model is

\[P(t) = \frac{2000}{1 + 39 e^{-0.01 t}} \]

- The population doubles when

\[P(t_d) = \frac{2000}{1 + 39 e^{-0.01 t_d}} = 100 \]

- Thus,

\[1 + 39 e^{-0.01 t_d} = 20 \quad \text{or} \quad e^{0.01 t_d} = \frac{39}{19} \]

- Solving for doubling time

\[t_d = 100 \ln \left(\frac{39}{19} \right) = 71.9 \]
Logistic Growth

Solution (cont): The logistic growth model is

\[P(t) = \frac{2000}{1 + 39 e^{-0.017t}} \]

The population reaches half the carrying capacity when

\[P(t_h) = \frac{2000}{1 + 39 e^{-0.017 t_h}} = 1000 \]

Thus,

\[1 + 39 e^{-0.017 t_h} = 2 \quad \text{or} \quad e^{0.017 t_h} = 39 \]

Solving for doubling time

\[t_h = 100 \ln(39) = 366.4 \]

Lake Pollution with Seasonal Flow

Lake Pollution with the Seasonal Flow: Often the flow rate into a lake varies with the season

- Suppose that a 200,000 m³ lake maintains a constant volume and is initially clean
- A river flowing into the lake has 6 µg/m³ of a pesticide
- Assume that the flow of the river has the sinusoidal form

\[f(t) = 100(2 - \cos(0.0172 t)) \]

where \(t \) is in days

- Find and solve the differential equation describing the concentration of the pesticide in the lake
- Graph the solution for 2 years

Solution: Begin by creating the differential equation

- The change in the amount of pesticide, \(A(t) \), equals the amount entering - the amount leaving

\[\frac{dA(t)}{dt} = 600(2 - \cos(0.0172 t)) - 100(2 - \cos(0.0172 t))c(t) \]

Concentration satisfies \(c(t) = \frac{A(t)}{200,000} \); so

\[\frac{dc}{dt} = -\frac{(2 - \cos(0.0172 t))}{2000}(c - 6) \]

Separating variables

\[\int \frac{dc}{c - 6} = -\frac{1}{2000} \int (2 - \cos(0.0172 t)) dt \]

Integrating

\[\ln(u) = \ln(c(t) - 6) = -0.0005 \left(2t - \frac{\sin(0.0172 t)}{0.0172} \right) + C \]

By exponentiating this implicit solution, using the initial condition \(c(0) = 0 \), and letting \(\frac{1}{0.0172} = 58.14 \), the solution becomes

\[c(t) = 6 \left(1 - e^{-0.0005(2t-58.14) \sin(0.0172 t)} \right) \]
Graph: Consider solution for 2 yr or 730 days

\[c(t) = 6 \left(1 - e^{-0.0005(2t-58.14 \sin(0.0172 t))} \right) \]