Rate of mRNA Synthesis

- DNA in *E. coli* provides the genetic code for all of the proteins
- DNA code used either for all aspects of the growth, maintenance, and reproduction of the cell
- The synthesis of proteins follows the processes of transcription and translation
- Proteins key for all cellular processes

Transcription

- A controlled sequence of steps, RNA polymerase, reads genetic code and produces a complementary messenger RNA (mRNA) template
- The mRNA is a short-lived blueprint for the production of a specific protein with a particular activity
Translation of a bacterial mRNA

- Begins shortly after transcription starts, with ribosomes reading the triplet codons on the mRNA
- Ribosome assembles a series of specific amino acids, forming a polypeptide
- Polypeptide probably folds passively into a tertiary structure which often combines with other proteins to become active or an enzyme

The rate of growth of a bacterial cell depends on the rate at which it assembles all of its cellular components inside the cell

The rate of production of different components inside the cell varies depending on the length of time it takes for a cell to double

The table below shows the doublings/hr, μ, and the rate of mRNA synthesis (nucleotides/min/cell), $r_m \times 10^5$

<table>
<thead>
<tr>
<th>μ</th>
<th>0.6</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_m</td>
<td>4.3</td>
<td>9.1</td>
<td>13</td>
<td>19</td>
<td>23</td>
</tr>
</tbody>
</table>
Function Review
Definitions and Properties of Functions

Rate of mRNA Synthesis
Transcription and Translation

Linear Model for Rate of mRNA Synthesis
Quadratic Function of Least Squares Best Fit
Lambert-Beer Law

Least Squares Best Fit to Linear Model

Linear model passing through the origin has the form

\[r_m = a\mu \]

- The linear least squares best fit of this model to the data uses only the slope of the model, \(a \)
- The sum of the squares of the errors is computed from each of the error terms

\[
\begin{align*}
\epsilon_1^2 &= (4.3 - 0.6a)^2 \\
\epsilon_2^2 &= (9.1 - a)^2 \\
\epsilon_3^2 &= (13 - 1.5a)^2 \\
\epsilon_4^2 &= (19 - 2a)^2 \\
\epsilon_5^2 &= (23 - 2.5a)^2
\end{align*}
\]

Sum of Square Errors is given by

\[J(a) = \sum_{i=1}^{5} e_i^2 \]

which reduces to

\[J(a) = 13.86a^2 - 253.36a + 1160.3 \]

- \(J(a) \) is a **quadratic function** representing the sum of the squares of the errors
- The best fit of the model is the smallest value of \(J(a) \)
- This occurs the vertex, \(a_v \), of this quadratic equation

Graph of Least Squares Function \(J(a) \)

Graph of Least Squares Function – Least Squares Best fit when \(a \) is at a minimum, the vertex \(a_v = 9.14 \)

Concentration and Absorbance

- A spectrophotometer uses the Lambert-Beer law to determine the concentration of a sample (\(c \)) based on the absorbance of the sample (\(A \))
- The ion dichromate forms an orange/yellow that has a maximum absorbance at 350 nm and is often used in oxidation/reduction reactions
- The Lambert-Beer law for the concentration of a sample from the absorbance satisfies the linear model

\[c = mA \]

where \(m \) is the slope of the line (assuming the spectrophotometer is initially zeroed)
Spectrophotometer data for an redox reaction
- Data collected on some known samples

<table>
<thead>
<tr>
<th>A</th>
<th>0.12</th>
<th>0.32</th>
<th>0.50</th>
<th>0.665</th>
</tr>
</thead>
<tbody>
<tr>
<td>c (mM)</td>
<td>0.05</td>
<td>0.14</td>
<td>0.21</td>
<td>0.30</td>
</tr>
</tbody>
</table>

- Determine the quadratic function $J(m)$ that measures the sum of the squares of the error of the linear model to the data
- Sketch a graph of $J(m)$ and find the vertex of this quadratic function
- Sketch a graph of the data and the line that best fits the data
- Use this model to determine the concentration of two unknown samples that have absorbances of $A = 0.45$ and $A = 0.62$

Solution: Given the linear model $c = mA$, the sum of square errors satisfies

$$J(m) = e_1^2 + e_2^2 + e_3^2 + e_4^2$$
$$= (0.05 - 0.12m)^2 + (0.14 - 0.32m)^2 + (0.21 - 0.50m)^2 + (0.30 - 0.66m)^2$$
$$= 0.8024m^2 - 0.7076m + 0.1562$$

The vertex has $m_v = \frac{0.7076}{2(0.8024)}$, so

$$(m_v, J(m_v)) = (0.44093, 0.00019995)$$

Solution (cont): Since the vertex has $m_v = 0.44093$, the best linear model is

$$c = 0.441A$$

For an absorbance $A = 0.45$

$$c(0.45) = 0.441(0.45) = 0.198$$

The best model predicts a concentration of 0.198 nM

For an absorbance $A = 0.62$

$$c(0.62) = 0.441(0.62) = 0.273$$

The best model predicts a concentration of 0.273 nM
Lambert-Beer Law

Solution (cont): Graph of Best Linear Model and Data

![Graph of Best Linear Model and Data]

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes – Function Review — (17/35)

Definitions and Properties of Functions

- Functions form the basis for most of this course
- A function is a relationship between one set of objects and another set of objects with only one possible association in the second set for each member of the first set

Rate of mRNA Synthesis Example

mRNA Example has two functions
- A set of possible cell doubling times, \(\mu \), to which was found a particular average rate of mRNA synthesis, \(r_m \)
- This subdivides into two functional representations
 - The experimental data, which represents a function with a finite set of points
 - The linear model, which creates a different function representing your theoretical expectations
- The sum of the squares of the errors between the data points and the model, \(J(a) \), forms another function, where the set of possible slopes, \(a \), in the model, each produced a number, \(J(a) \), representing how far away the model was from the true data
- Claim that the best model is when this function is at its lowest point

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes – Function Review — (18/35)

Definition of a Function

Definition: A function of a variable \(x \) is a rule \(f \) that assigns to each value of \(x \) a unique number \(f(x) \). The variable \(x \) is the independent variable, and the set of values over which \(x \) may vary is called the domain of the function. The set of values \(f(x) \) over the domain gives the range of the function

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes – Function Review — (19/35)
Definition: The graph of a function is defined by the set of points \((x, y)\) such that \(y = f(x)\), where \(f\) is a function.

- Often a function is described by a graph in the \(xy\)-coordinate system.
- By convention \(x\) is the domain of the function and \(y\) is the range of the function.
- The graph is defined by the set of points \((x, f(x))\) for all \(x\) in the domain.

Example of Domain and Range

Example 1: Consider the function

\[f(t) = t^2 - 1 \]

a. What is the range of \(f(t)\) (assuming a domain of all \(t\))?

Solution: \(f(t)\) is a parabola with its vertex at \((0, -1)\) pointing up.

Since the vertex is the low point of the function, it follows that the range of \(f(t)\) is \(-1 \leq y < \infty\).
Example 1 (cont): More on the function

\[f(t) = t^2 - 1 \]

b. Find the domain of \(f(t) \), if the range of \(f \) is restricted to \(f(t) < 0 \)

Solution b: Solving \(f(t) = 0 \) gives \(t = \pm 1 \)

It follows that the domain is \(-1 < t < 1\)

Example 2: Let \(f(x) = x - 1 \) and \(g(x) = x^2 + 2x - 3 \)

Determine \(f(x) + g(x) \) and \(f(x)g(x) \)

Solution: The addition of the two functions

\[f(x) + g(x) = x - 1 + x^2 + 2x - 3 = x^2 + 3x - 4 \]

The multiplication of the two functions

\[
\begin{align*}
 f(x)g(x) &= (x - 1)(x^2 + 2x - 3) \\
 &= x^3 + 2x^2 - x^2 - 2x + 3 \\
 &= x^3 + x^2 - 5x + 3
\end{align*}
\]

Example 3: Let

\[f(x) = \frac{3}{x - 6} \quad \text{and} \quad g(x) = -\frac{2}{x + 2} \]

Determine \(f(x) + g(x) \)

Solution: The addition of the two functions

\[
\begin{align*}
 f(x) + g(x) &= \frac{3}{x - 6} + \frac{-2}{x + 2} \\
 &= \frac{3(x + 2) - 2(x - 6)}{(x - 6)(x + 2)} \\
 &= \frac{x + 18}{x^2 - 4x - 12}
\end{align*}
\]

Composition of Functions is another important operation for functions

Given functions \(f(x) \) and \(g(x) \), the composite \(f(g(x)) \) is formed by inserting \(g(x) \) wherever \(x \) appears in \(f(x) \)

Note that the domain of the composite function is the range of \(g(x) \)
Composition of Functions

Example 4: Let

\[f(x) = 3x + 2 \quad \text{and} \quad g(x) = x^2 - 2x + 3 \]

Determine \(f(g(x)) \) and \(g(f(x)) \)

Solution: For the first composite function

\[f(g(x)) = 3(x^2 - 2x + 3) + 2 = 3x^2 - 6x + 11 \]

The second composite function

\[g(f(x)) = (3x + 2)^2 - 2(3x + 2) + 3 = 9x^2 + 6x + 3 \]

Clearly, \(f(g(x)) \neq g(f(x)) \)

Even and Odd Functions

A function \(f \) is called:

1. **Even** if \(f(x) = f(-x) \) for all \(x \) in the domain of \(f \). In this case, the graph is symmetrical with respect to the \(y \)-axis

2. **Odd** if \(f(x) = -f(-x) \) for all \(x \) in the domain of \(f \). In this case, the graph is symmetrical with respect to the origin

Example of Even Function

Consider our previous example

\[f(t) = t^2 - 1 \]

Since

\[f(-t) = (-t)^2 - 1 = t^2 - 1 = f(t), \]

this is an even function.

The Graph of an Even Function is symmetric about the \(y \)-axis

\[\text{Graph of } f(t) = t^2 - 1 \]

One-to-One Function

Definition: A function \(f \) is **one-to-one** if whenever \(x_1 \neq x_2 \) in the domain, then \(f(x_1) \neq f(x_2) \).

Equivalently, if \(f(x_1) = f(x_2) \), then \(x_1 = x_2 \).
Definition: If a function f is one-to-one, then its corresponding inverse function, denoted f^{-1}, satisfies:

$$f(f^{-1}(x)) = x \quad \text{and} \quad f^{-1}(f(x)) = x.$$

Since these are composite functions, the domains of f and f^{-1} are restricted to the ranges of f^{-1} and $f(x)$, respectively.

Example of an Inverse Function 1

Consider the function $f(x) = x^3$

It has the inverse function $f^{-1}(x) = x^{1/3}$

The domain and range for these functions are all of x

$$f^{-1}(f(x)) = (x^3)^{1/3} = x = \left(x^{1/3}\right)^3 = f(f^{-1}(x))$$

Example of an Inverse Function 2

These functions are mirror images through the line $y = x$ (the Identity Map).