Calculus for the Life Sciences
Lecture Notes – The Derivative of e^x and $\ln(x)$

Joseph M. Mahaffy,
⟨jmahaffy@mail.sdsu.edu⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://www-rohan.sdsu.edu/~jmahaffy

Spring 2017
Outline

1. Fluoxetine (Prozac)
 - Background
 - Drug Kinetics
 - Norfluoxetine Kinetics

2. Derivative of e^x
 - Derivative of Prozac Model
 - Polymer Drug Delivery System

3. Derivative of Natural Logarithm
 - Height and Weight Relationship for Children
 - Examples
Introduction

- Special functions often arise in biological problems
 - Biochemical Kinetics
 - Population dynamics
- Need the derivatives for e^x and $\ln(x)$
- Find maxima, minima, and points of inflection
Fluoxetine (Prozac)

- **Fluoxetine** (trade name **Prozac**) is a selective serotonin reuptake inhibitor (SSRI)
- This drug is used to treat depression, obsessive compulsive disorder, and a number of other neurological disorders
- It works by preventing serotonin from being reabsorbed too rapidly from the synapses between nerve cells, prolonging its availability, which improves the patient’s mood
Fluoxetine (Prozac) - cont

- Fluoxetine is metabolized in the liver and transformed into a slightly less potent SSRI, norfluoxetine.
- Both compounds bind to plasma protein, then become concentrated in the brain (up to 50 times more concentrated).
- Fluoxetine and norfluoxetine are eliminated from the brain with characteristic half-lives of 1-4 days and 7-15 days, respectively.

Joseph M. Mahaffy, {jmahaffy@mail.sdsu.edu}
Drug Kinetics

- It is very important to understand the kinetics of the drug in the body
- Drugs metabolized into another active form make modeling more complex
- Models below examine first order kinetic models for the concentrations of fluoxetine \(F(t) \) and norfluoxetine \(N(t) \) in the blood
Half-Life of a Drug

- A subject taking a 40 mg oral dose of fluoxetine rapidly exhibits a blood stream concentration of 21 ng/ml.
- One study of healthy volunteers showed the half-life of fluoxetine was 1.5 days.
- When a drug is either filtered out by the kidneys or metabolized by some organ such as the liver proportional to its concentration, then the drug is said to exhibit first-order kinetics.
- The drug decays exponentially with a characteristic half-life.
Fluoxetine (Prozac)

Half-Life of a Drug - Calculation

- Assume instantaneous uptake of the drug, then the initial blood concentration of fluoxetine is

\[F(0) = 21 \text{ ng/ml} \]

- Fluoxetine is metabolized in both the brain and liver, so satisfies the kinetic equation

\[F(t) = 21e^{-kt} \]

- With a half-life of 1.5 days, we have

\[F(1.5) = 10.5 = 21e^{-1.5k} \]

- Solving this equation for \(k \),

\[e^{1.5k} = 2 \quad \text{or} \quad k = \ln(2)/1.5 = 0.462 \]
Model for Fluoxetine

A good model for blood plasma concentration of fluoxetine is

\[F(t) = 21 e^{-0.462t} \]
Norfluoxetine Kinetic Model

- Fluoxetine is metabolized in the liver and through a hepatic biotransformation becomes norfluoxetine (through a demethylation)
- Norfluoxetine continues to act as potent and specific serotonin reuptake inhibitor
- The half-life is taken to be 9 days for norfluoxetine
- A reasonable model using linear kinetics for the blood plasma concentration of norfluoxetine is

\[N(t) = 27.5(e^{-0.077t} - e^{-0.462t}) \]

- Pharmokinetic models often are composed of the difference of two decaying exponentials
Graph of Fluoxetine and Norfluoxetine

Prozac Metabolism

Blood Plasma (ng/ml)

Fluoxetine
Norfluoxetine

Joseph M. Mahaffy, ⟨jmahaffy@mail.sdsu.edu⟩
Lecture Notes – The Derivative of e^x and $\ln(x)$ — (11/38)
Fluoxetine and Norfluoxetine Kinetic Models

- Determine the rate of change of fluoxetine and norfluoxetine
- Find the time of maximum blood plasma concentration of norfluoxetine and what that concentration is
- To solve these problems, we need to learn the formula for the derivative of the exponential function
Derivative of e^x

- The exponential function e^x is a special function
- It’s the only function (up to a scalar multiple) that is the derivative of itself

$$\frac{d}{dx}(e^x) = e^x$$
Derivative of e^x

\[
\frac{d}{dx}(e^x) = e^x
\]

One definition of the number e is the number that makes

\[
\lim_{h \to 0} \frac{e^h - 1}{h} = 1
\]

From the definition of the derivative and using the properties of exponentials

\[
\frac{d}{dx}(e^x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x
\]
Derivative of e^x

Geometrically, the function e^x is a number raised to the power x, whose slope of the tangent line at $x = 0$ is 1.

General rule for the derivative of e^{kx}

The derivative of e^{kx} is

$$\frac{d}{dx}(e^{kx}) = k \cdot e^{kx}$$
Example: Find the derivative of

\[f(x) = 5 e^{-3x} \]

Solution: From our rule of differentiation and the formula above

\[f'(x) = -15 e^{-3x} \]
Application of the Derivative to Prozac Model

Derivative of Prozac Model: Find the rate of change of the fluoxetine model

\[F(t) = 21 e^{-0.462t} \]

Solution: The derivative is

\[F'(t) = (-0.462)21 e^{-0.462t} = -9.702 e^{-0.462t} \]

The rate of change of blood plasma concentration of fluoxetine at times \(t = 2 \) and \(10 \) is

\[F'(2) = -9.702 e^{-0.462(2)} = -3.85 \text{ ng/ml/day} \]
\[F'(10) = -9.702 e^{-0.462(10)} = -0.0956 \text{ ng/ml/day} \]
Application of the Derivative to Norfluoxetine Model

Derivative of Norfluoxetine Model: Find the rate of change of the norfluoxetine model

\[N(t) = 27.5(e^{-0.077t} - e^{-0.462t}) \]

Solution: The derivative is

\[N'(t) = 27.5(-0.077e^{-0.077t} + 0.462e^{-0.462t}) \]

\[= 12.705e^{-0.462t} - 2.1175e^{-0.077t} \]

The rate of change of blood plasma concentration of norfluoxetine at times \(t = 2 \) and \(10 \) is

\[N'(2) = 12.705e^{-0.462(2)} - 2.1175e^{-0.077(2)} = 3.23 \text{ ng/ml/day} \]

\[N'(10) = 12.705e^{-0.462(10)} - 2.1175e^{-0.077(10)} = -0.855 \text{ ng/ml/day} \]
Maximum Concentration of Norfluoxetine Model

Maximum of Norfluoxetine Model: The derivative is

\[N'(t) = 12.705 e^{-0.462t} - 2.1175 e^{-0.077t} \]

The maximum occurs when the derivative is zero or

\[2.1175 e^{-0.077t} = 12.705 e^{-0.462t} \]

\[\frac{e^{-0.077t}}{e^{-0.462t}} = \frac{12.705}{2.1175} \]
\[e^{0.385t} = 6.0 \]

The maximum occurs at

\[0.385t = \ln(6) \quad \text{and} \quad t_{\text{max}} = 4.654 \text{ days} \]

The maximum blood plasma concentration of norfluoxetine is

\[N(t_{\text{max}}) = 16.01 \text{ ng/ml} \]
Maximum Removal of Norfluoxetine

Maximum Removal of Norfluoxetine: The derivative is

\[N'(t) = 12.705 e^{-0.462t} - 2.1175 e^{-0.077t} \]

The second derivative satisfies

\[N''(t) = -5.8697 e^{-0.462t} + 0.16305 e^{-0.077t} \]

\[
\frac{e^{-0.077t}}{e^{-0.462t}} = \frac{5.8697}{0.16305} \\
\frac{e^{0.385t}}{e^{0.385t}} = 36.0
\]

The **point of inflection** with **maximum decrease** occurs at

\[0.385t = \ln(36) = 2 \ln(6) \quad \text{and} \quad t_{poi} = 9.308 \text{ days} \]

with blood plasma concentration of norfluoxetine at

\[N(t_{poi}) = 12.91 \text{ ng/ml} \quad \text{and} \quad N'(t_{poi}) = -0.862 \text{ ng/ml/day} \]
Drug Delivery: Drugs are often administered by a pill or an injection

- The body receives a high dose rapidly
- The drug remaining in the blood disappears exponentially
 - Filtration by the kidneys
 - Metabolism of the drug
- Model for Injection of a Drug

\[k(t) = A_0 e^{-qt} \]

- Concentration of the drug, \(k(t) \)
- Total dose, \(A_0 \)
- Rate of clearance, \(q \)
Example – Polymer Drug Delivery System

Polymer Drug Delivery System:

- Scientists invented polymers that are implanted to deliver a drug or hormone
 - Deliver the drug (or hormone) for a much longer period of time
 - Drug doses can be lower
- Several long term birth control devices
 - Devices deliver the hormones estrogen and progesterone
 - Delivery gives a more uniform level of the hormones over extended periods of time to prevent pregnancy
- New drug delivery devices
 - Diabetes sufferers could receive a more uniform level of insulin
 - Chemotherapeutic drugs to cancer patients could extend over a much longer period of time at lower doses to maximize their efficacy
Example – Polymer Drug Delivery System

Model for a Polymer Drug Delivery Device:
Mathematically, this is described by two decaying exponentials

\[c(t) = C_0(e^{-rt} - e^{-qt}) \]

- \(c(t) \) is the concentration of the drug
- \(C_0 \) relates to the dose in the polymer delivery device
- \(r \) relates to the decay of the polymer, releasing the drug \((q > r)\)
- \(q \) is a kinetic constant depending on how the patient clears the drug
- The amounts of drug are the same when

\[A_0 = \frac{C_0}{r} \]
Drug Delivery: This example examines the same amount of drug delivered by injection and a polymer delivery device

- Suppose the drug is injected

\[k(t) = 1000 e^{-0.2t} \]

- \(k(t) \) is a concentration in mg/dl and the time \(t \) is in days

- The same amount of drug is delivered by a polymer drug delivery device satisfies

\[c(t) = 10(e^{-0.01t} - e^{-0.2t}) \]

- \(c(t) \) is a concentration in mg/dl
Drug Delivery: Comparing the injected and polymer delivered drug systems

- Find the rate of change in concentration for both \(k(t)\) and \(c(t)\) at \(t = 5\) and 20
- Determine the maximum concentration of \(c(t)\) and when it occurs
- Graph each of these functions
Example – Polymer Drug Delivery System

Solution: Since \(k(t) = 1000 e^{-0.2t} \), the derivative is

\[
k'(t) = (-0.2)1000 e^{-0.2t} = -200 e^{-0.2t}
\]

- The rate of change of the drug concentrations at times \(t = 5 \) and 20 for the injected drug is
 - \(k'(5) = -200 e^{-0.2(5)} = -73.58 \text{ mg/dl/day} \)
 - \(k'(20) = -200 e^{-0.2(20)} = -3.66 \text{ mg/dl/day} \)
Example – Polymer Drug Delivery System

Solution (cont): Since \(c(t) = 10(e^{-0.01t} - e^{-0.2t}) \), the derivative is

\[
c'(t) = 10(-0.01 e^{-0.01t} - (-0.2)e^{-0.2t}) = 2 e^{-0.2t} - 0.1 e^{-0.01t}
\]

The rate of change of the drug concentrations at times \(t = 5 \) and \(20 \) for the injected drug is

\[
c'(5) = 2 e^{-0.2(5)} - 0.1 e^{-0.01(5)} = 0.64 \text{ mg/dl/day}
\]

\[
c'(20) = 2 e^{-0.2(20)} - 0.1 e^{-0.01(20)} = -0.045 \text{ mg/dl/day}
\]
Solution for Maximum for $c(t)$: Since the derivative is

$$c'(t) = 2e^{-0.2t} - 0.1e^{-0.01t}$$

$$2e^{-0.2t} - 0.1e^{-0.01t} = 0 \text{ or } 0.1e^{-0.01t} = 2e^{-0.2t}$$

Thus,

$$e^{-0.01t + 0.2t} = e^{0.19t} = 20$$

It follows that $t_{max} = \ln(20)/0.19 = 15.767$ days

The maximum occurs at $c(15.767) = 8.11 \mu g/dl$
Graph: Drug Delivery

The polymer delivered drug over a longer period of time.

These graphs show the obvious advantages of the time released drug if it has serious side effects or toxicity.
Height and Weight Relationship for Children:

<table>
<thead>
<tr>
<th>age (years)</th>
<th>height (cm)</th>
<th>weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>108</td>
<td>18.2</td>
</tr>
<tr>
<td>6</td>
<td>114</td>
<td>20.0</td>
</tr>
<tr>
<td>7</td>
<td>121</td>
<td>21.8</td>
</tr>
<tr>
<td>8</td>
<td>126</td>
<td>25.0</td>
</tr>
<tr>
<td>9</td>
<td>132</td>
<td>29.1</td>
</tr>
<tr>
<td>10</td>
<td>138</td>
<td>32.7</td>
</tr>
<tr>
<td>11</td>
<td>144</td>
<td>37.3</td>
</tr>
<tr>
<td>12</td>
<td>151</td>
<td>41.4</td>
</tr>
<tr>
<td>13</td>
<td>156</td>
<td>46.8</td>
</tr>
</tbody>
</table>
Ehrenberg Model: Logarithmic relationship

\[H(w) = 49.5 \ln(w) - 34.14 \]

Want to find the rate of change of height with respect to weight for the average girl.
Derivative of \(\ln(x) \)

The derivative of the natural logarithm, \(\ln(x) \), is given by the formula

\[
\frac{d}{dx} \ln(x) = \frac{1}{x}
\]

This relationship is most easily demonstrated after learning the Fundamental Theorem of Calculus (later in the course), which centers about the integral.
Derivative of Ehrenberg Model

Derivative of Ehrenberg Model: The Ehrenberg model for the previous data

\[H(w) = 49.5 \ln(w) - 34.14 \]

The derivative is given by

\[\frac{dH}{dw} = \frac{49.5}{w} \text{ cm/kg} \]

- As the weight increases, the rate of change in height decreases
- At \(w = 20 \text{ kg} \)

\[H'(20) = \frac{49.5}{20} = 2.475 \text{ cm/kg} \]

- At \(w = 49.5 \text{ kg} \)

\[H'(49.5) = \frac{49.5}{49.5} = 1 \text{ cm/kg} \]
Example: Find the derivative of

\[f(x) = \ln(x^2) \]

Solution: From our properties of logarithms and the formula above

\[f(x) = \ln(x^2) = 2 \ln(x) \]

The derivative is given by

\[f'(x) = \frac{2}{x} \]
Example: Consider the following function

\[y = x - \ln(x) \]

- Find the first and second derivatives of this function
- Find any local extrema
- Graph the function
Example – Logarithm Function

Solution: The function \(y = x - \ln(x) \) has the derivative

\[
\frac{dy}{dx} = 1 - \frac{1}{x} = \frac{x - 1}{x}
\]

The second derivative is

\[
\frac{d^2y}{dx^2} = \frac{1}{x^2}
\]

Note that since \(y''(x) > 0 \), this function is concave upward.
Solution (cont): Graphing the Function

- This function is only defined for $x > 0$
- There is no y-intercept
- There is a vertical asymptote at $x = 0$

Extrema: Solve the derivative equal to zero

$$\frac{dy}{dx} = \frac{x - 1}{x} = 0$$

Thus, $x = 1$

There is an extremum at $(1,1)$
Solution (cont): Graphing the Function

- Since the second derivative is always positive
- The point (1, 1) is a minimum

\[y = x - \ln(x) \]