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Matrix Application - Truss

Trusses are lightweight structures capable of carrying heavy loads,
e.g., roofs.

TRUSS

f
E 2 10,000 N 5 E
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Physics of Trusses

The truss on the previous slide has the following properties:
1. Fixed at Joint 1
2. Slides at Joint 4
3. Holds a mass of 10,000 N at Joint 3
4. All the Joints are pin joints
5

The forces of tension are indicated on the diagram
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Static Equilibrium

At each joint the forces must add to the zero vector.

Joint Horizontal Force Vertical Force
1 —F1+§f1+f2=0 @fl_FQZO
2 —RA+i=0 —Efi-fs-1fi=0
3 —fat[fs=0 f3—10,000 =0
4 —Bfy—f5=0 2fa—F3=0

This creates an 8 x 8 linear system with 47 zero entries and 17

nonzero entries.

Sparse matrix — Solve by iterative methods
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Earlier Iterative Schemes

Earlier we used iterative methods to find roots of equations

flx)=0

or fixed points of
z = g(z)

The latter requires |g’(z)| < 1 for convergence.

Want to extend to n-dimensional linear systems.
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Basic Definitions

We want convergence in n-dimensions.

Definition: — A Vector normon R™ is a function ||-|| mapping
R™ — R with the following properties:

(i) ||x]| > 0 for all x € R™

(ii) ||x|| = 0 if and only if x =0

(iii) ||ax]|| = |a||x]| for all & € R and x € R™ (scalar multiplica-
tion)

(iv) [Ix+ ¥l < [Ix]| + |ly]| for all x,y € R™ (triangle inequality)
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Common Norms

The I1 norm is given by

n

lIxl[r =) i

i=1

The I3 norm or Euclidean norm is given by
1
n 2
2
Ixllz = { Y a3
i=1

The ls norm or Max norm is given by
[%lloo = max |z;|
1<i<n

The Euclidean norm represents the usual notion of distance

(Pythagorean theorem for distance).
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Triangle Inequality

We need to show the triangle inequality for || - ||2.
Theorem (Cauchy-Schwarz): — For each x,y € R”
x'y =Y wyi < | af You] =1l [yl
i=1 i=1 i=1

This result gives for each x,y € R"

n

x+yl? = > (wi+w)?

=1
n n n
S0 SEED o
=1 =1 =1
< I+ 21yl + llyl?

Taking the square root of the above gives the Triangle Inequality
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Distance Convergence

We need the concept of distance in n-dimensions. Also, we need the concept of convergence in n-dimensions.
Definition: — If x,y € R", the l; and I distances between Definition: — A sequence of vectors {x(®¥)}% in R" is said
x and y is a function [ - || mapping R" — R with the following to converge to x with respect to norm || - || if given any ¢ > 0
properties:are defined by there exists an integer N (€) such that

n 1/2 |[x®) —x|| <€ forall k> N(e).
vl = (Ste-u)
i=1
X =ylleo = mazicicalzi = yil
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Basic Theorems Matrix Norm
We need to extend our definitions to include matrices.
Theorem: —  The sequence of vectors {x®}2° — x in R”
with respect to || - || if and only if
* Definition: — A Matrix Norm on the set of all n x n matrices
khjgo x; = foreach i=1,2,..,n is a real-valued function || - ||, defined on this set satisfying for all
n X n matrices A and B and all real numbers «.
(i) 1Al =0
(ii) ||A]| = 0 if and only if A is O (all zero entries)
. n
Theorem: — For each x € R (iit) [|Al| = o ||Al| (scalar multiplication)
1%[loe < |1x[l2 < v/72l|%]]0o- (iv) [[A+ BJ| < [[All +[|BI] (triangle inequality)
(v) lABI| < ||A]| 1B

) The distance between n x n matrices A and B with respect to this
It can be shown that all norms on R"™ are equivalent. ) )
matrix norm is |[|A — Bl|.
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Natural Matrix Norm Matrix Action

i The natural norm describes how a matrix stretches unit vectors relative
Theorem: — If || - || is a vector norm on R", then S
to that norm. (Think eigenvalues!)
1Al = max || Ax]]
- Theorem: — If A= {a;;} is an n X n matrix, then
is a matrix norm.
n
. . . . . Al|so = max aij largest row sum
This is the natural or induced matrix norm associated with the [1Alloo 1§i§n§:1| il (larg )
]:
vector norm.

For any z # 0, x = %I is a unit vector
A
max ||Az|| = max ||A <Z>H = max [1Az]]
[lll=1 [E[Ex ||| 121120 |||
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Matrix Mapping Eigenvalues and Eigenvectors

An n X m matrix is a function that takes m-dimensional vectors into . . i .
Definition: — If A is an n x n matrix, the characteristic

n-dimensional vectors. ] . }
polynomial of A is defined by

For square matrices A, we have A : R" — R"™. p(A) = det(A — AI)

Certain vectors are parallel to Ax, so Ax = Ax or (A — A)x=0.

Definition: — If p is the characteristic polynomial of the matrix
These values ), the eigenvalues, are significant for convergence of A, the zeroes of p are eigenvalues (or characteristic values) of A.
fterative methods. If Xis an eigenvalue of A and x # O satisfies (A — AI)x = 0, then
x is an eigenvector (or characteristic vector) of A corresponding

to the eigenvalue \.
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Geometry of Eigenvalues and Eigenvectors

If x is an eigenvector associated with ), then Ax = \x, so the matrix

A takes the vector x into a scalar multiple of itself.

If Xis real and A > 1, then A has the effect of stretching x by a
factor of \.

If Xisreal and 0 < A < 1, then A has the effect of shrinking x by a
factor of \.

If A <0, the effects are similar, but the direction of Ax is reversed.
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Spectral Radius

The spectral radius, p(A), provides a valuable measure of the eigen-

values, which helps determine if a numerical scheme will converge.

Definition: — The spectral radius, p(A), of a matrix A is
defined by

p(A) = max|[A[,
where )\ is an eigenvalue of A.
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Theorem for p(A)

Theorem: — If Ais an n X n matrix,
() l14]l2 = (p(A*4))"".
(ii) p(A) < |4]| for any natural norm || - ||.

Proof of (ii): Let ||x|| be a unit eigenvector or A with respect to

the eigenvalue A
Al = (AL = [[Ax]] = [[Ax]| < [|A[[ ][] = [[All

Thus,
p(A) = max A| < [|A]|.

If A is symmetric, then p(A) = ||A]|2.
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Interesting Result for p(A)

An interesting and useful result: For any matrix A and any

€ > 0, there exists a natural norm || - || with the property that
p(A) < JIA]] < p(4) +e.

So p(A) is the greatest lower bound for the natural norms on A.
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Convergence of Matrix

Definition: — An n x n matrix A is convergent if

klim (Ak)ij =0, foreach i=1,...,nandj=1,..,n.
—00

Example: Consider

1
5 0

_ (2

e (d ).
i 2
It is easy to see that

1

= 0

k

A:< 2k L)—>O.
2k+1 2k
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Convergence Theorem for Matrices

Theorem: — The following statements are equivalent,
(i) Ais a convergent matrix.

(i) limp— o0 ||A™|| = O for some natural norm.

(iii) lim,—o0 ||A™|| = O for all natural norms.

(iv) p(4) < 1.

(v) limy, o0 A™x = 0 for every x.
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Introduction — Iterative Methods

Gaussian elimination and other direct methods are best for small

dimensional systems.

Jacobi and Gauss-Seidel iterative methods were developed in late 18"

century to solve
Ax=Db

by iteration.

Iterative methods are more efficient for large sparse matrix systems,

both in computer storage and computation.

Common examples include electric circuits, structural mechanics, and

partial differential equations.
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Basic Idea — Iterative Scheme

The iterative scheme starts with an initial guess, x( to the linear

system
Ax=Db

Transform this system into the form
x=Tx+c
The iterative scheme becomes

xF=7TxF14¢
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Illustrative Example (1 of 4) lllustrative Example (2 of 4)
Consider the following linear system Ax = b The previous system is easily converted to the form
10x1 — xro + 2x3 = 6 x=Tx+c
—r1 + s — w3 + 3w = 2 by solving for each ;.
201 — ro + 1023 — x4 = -—11 . ) 5
rn = 002 — 53 + =
3ry — r3 + 8xy = 15 10 5 5
1 1 3 25
. i . To = =T + =x3 — =4 + 5
This has the unique solution x = (1,2, —1,1)7. 1 B 1 =
1 1 1 11
T3 —5T1 + {15%2 + {54 0
3 1 15
Ty = - gr2 + g3 + ¥
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lllustrative Example (3 of 4) lllustrative Example (4 of 4)
Thus, the system Ax = b becomes The iterative scheme becomes
(k) _ 1 ,.(k=1) 1,.(k=1) 3
x=Tx+c Z1 = 072 - 5% + 3
(k) _ 1. (k=1) 1 ,.(k=1) 3 (k—1) 25
th T2 = % To1i%3 T 1% Ton
wit
(k) _ 1,.(k=1) 1, (k=1) 1 ,.(k=1) 11
~ - _ - T3 = TE + g% 1% - T
1 1 3
= —_= 2 k ‘ k—1 kE—1
0 Y 5 i = - fa T 4 e + 7
1 1 3 25 . I
7 0 7 -5 N With an initial guess of x = (0,0,0,0), we have
T= and c=
_1 1 1 _u A 10 1,0 + 2 = 06000
5 15 0 1 ) 1 1072 573 5
1 _ 1,..(0) 1..(0) 3 .(0) 25 _
0 3 1 0 15 Ty = 1121 + 1i1%3 2] —+ T = 2.2727
0 s 0] |5 R R A L
o ~ 22” + + L = 18750
It takes 10 iterations to converge to a tolerance of 1073, Error is given
by [x*) —x* 1|
[1x()]] o
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Jacobi Iteration

The example above illustrates the Jacobi iterative method.

To solve the linear system
Ax=Db

Find x; (for a; # 0) by iterating

n (k=1)
(k) — i, b; .
x, = _— |+ — fori=1,...,n
! jz::l aji aji ’
i
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Jacobi Iteration — Matrix Form (10of 2)
If Ais given by
ail a2 ... Qinp
asr a2 ... QAa2n
A =
apl Ap2 ... QAapp
Split this into
a1 0 ... 0 0o ... 0] 0 —ai2 ... —ain
0 ax : | a2 _
0 : . . —Qn—1,n
0 0  ann —an1 ... —Gnn-1 0 | 0 0
or
A=D-L-U
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Jacobi Iteration — Matrix Form (2 of 2)

We are solving Ax = b with A= D — L — U from above.

It follows that:
Dx=(L+U)x+b

or
x=DHL+U)x+D'b
The Jacobi iteration method becomes
x=T;x+cj

where Tj = D~Y(L +U) and ¢c; = D~ 'b.
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Notes on Solving Ax = b

If any of the a;; = 0 and the matrix A is nonsingular, then the
equations can be reordered so that all a;; # 0.

Convergence (if possible) is accelerated by taking the a;; as large as
possible.

Matrix Algebra: Norms of Vectors and MatricesEigenvalues and Eigenvectorslterative Techniques — p.32/48




Gauss-Seidel lteration

One possible improvement is that x(*~1) are used to compute xgk).

However, for 4 > 1, the values of xgk) ...xl(-li)l are already computed

)

and should be improved values.

If we use these updated values in the algorithm we obtain:

i—1 (k) (k=1)
® [ i — [ aijz; bi ,
z) =— E — |- E — | 4+ — fori=1,...,n
o\ i S @i @i

This modification is called the Gauss-Seidel iterative method.
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Return to lllustrative Example

The Gauss-Seidel iterative scheme becomes

4 = D et o
Ccék) _ ﬁxgw n ﬁxék—l) _ %ng—l) 2
xék) = —%x(lm + %x(zk) + Tloa:gkfl) %
- LB B Lo

With an initial guess of x = (0,0,0,0)7, it takes 5 iterations to
converge to a tolerance of 1073.

Again the error is given by

Hx(k) _ X(k—l)HOQ

1]
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Gauss-Seidel Iteration — Matrix Form

With the same definitions as before, A = D — L — U, we can write
the equation Ax = b as

(D — L)x® =yx* 1 4+ p
The Gauss-Seidel iterative method becomes

x® = (D-L)"'Ux* Y+ (D-L)'b
——— —
Ty Cg
or

x®) = Tgx(k_l) +c4

The matrix D — L is nonsingular if and only if a;; # 0 for each

i1=1,..,n.
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Convergence

Usually the Gauss-Seidel iterative method converges faster than the
Jacobi method.

Examples do exist where the Jacobi method converges and the

Gauss-Seidel method fails to converge.

Also, examples exist where the Gauss-Seidel method converges and

the Jacobi method fails to converge.
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Convergence Theorems (1 of 3) Convergence Theorems (2 of 3)

We want convergence criterion for the general iteration scheme of the The previous lemma is important in proving the main convergence
form theorem.
xF) = px(=1) 4 c, k=1,2,..

Theorem: — For any x(©) € R", the sequence {x(k')}zoz0 de-

Lemma: — If the spectral radius, p(T') satisfies p(T') < 1, then ]
fined by

(I —T)~! exists and
xF) = x4 c, k=1,2,..

(o)
I-T)'=1+T+T?+..= ZTj converges to the unique solution of
§=0

x=Tx+c

if and only if p(T) < 1.
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Convergence Theorems (3 of 3) Convergence of Jacobi and Gauss-Seidel
The proof of the theorem helps establish error bounds from the The Jacobi method is given by:

iterative methods.
X(k) = TjX(kil) + ¢y,

where T; = D~YL + U).
Corollary: — If ||T|| < 1 for any natural matrix norm and c is

a given vector, then the sequence {x(¥)} = defined by The Gauss-Seidel method is given by:

xF) = px(k=1) 4 c, k=1,2,.. x(*F) = Tgx(k_l) + ¢y,

coverges for any x(0) € R™ to a vector x € R” and the following where Tj = (D — L)-1U.
error bounds hold:
(i) |]x — x| < |7 %] |x — x| These iterative schemes converge if
Jeal p(T;) <1 or  p(T,) <1.

(i) 1 —x ¥ < <

WHX(U — x|
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More on Convergence of Jacobi and Gauss-Seidel

Definition: — The n x n matrix A is said to be strictly diag-
onally dominant when

n
|aiil > ) laijl
J

i=1

i

holds for each i = 1,2, ...n.

Theorem: — If A is strictly diagonally dominant, then for any
choice of x(©, both the Jacobi and Gauss-Seidel methods give a

sequence {x(¥)}2 ' that converge to the unique solution of

Ax =b.
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Rate of Convergence

The rapidity of convergence is seen from previous Corollary:

[1x* —x|| ~ p(1)*[[x” —x]|
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Theorem for Some Matrices

Theorem (Stein-Rosenberg): — If a;, < 0 for each i # k
and ay; > 0 for each i = 1,...n, then one and only one of the
following hold:

Part a implies that when one method converges, then both converge
with the Gauss-Seidel method converging faster.

Part b implies that when one method diverges, then both diverge with

the Gauss-Seidel divergence being more pronounced.
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Residuals

Definition: — Suppose that x € R" is an approximation to the
solution of the linear system, Ax = b. The residual vector for x

with respect to this system isr = b — AX.

We want residuals to converge as rapidly as possible to 0.

The Gauss-Seidel method chooses xgi)l so that the i*" component of
r*) is zero
it+1 -

Making one coordinate zero is often not the optimal way to reduce

k)

. (
the norm of the residual, T
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Modify Gauss-Seidel Iteration

The Gauss-Seidel method satisfies:

i—1 n
1 _
IZ(-k) =— b, — E aijzg»k) — E aijl';k 2 fori=1,...,n
@ii j=1 j=i+1

which can be written:

z, =z —
Qi

We modify this to
25 :xz(kfl) +ld
Qi

where certain choices of w > 0 reduce the norm of the residual vector

and consequently improve the rate of convergence.
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SOR Method

The method from previous slide are called relaxation methods.

When 0 < w < 1, the procedures are called under-relaxation
methods and can be used to obtain convergence of systems that fail
to converge by the Gauss-Seidel method.

For choices of w > 1, the procedures are called over-relaxation

methods, abbreviated SOR for Successive Over-Relaxation meth-
ods, which can accelerate convergence.

The SOR Method is given by:

i—1 n
k k—1 w k k—1
1’5 ) = (]_ — w)xg ) + a—“ b; — E 1 aijac; ) ' 2+1 aijx§ )
j= j=i
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Matrix Form of SOR

Rearranging the SOR Method:

i—1 n
k k k-1 k-1
aiixz(- ) +wZaijx§. ) = (1- w)aiiazg — Z aijxg- ) 4 wb;
j=1 j=itl

In vector form this is
(D —wL)x® =[(1 —w)D + wUx* Y + wb
or
x®) = (D —wL)™Y[(1 = w)D + wUx* Y 4 w(D —wL)™'b

Let T, = (D —wL) (1 —w)D + wU] and ¢, = w(D — wL)™!b,
then

xF) = wa(k_l) + c,,.
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SOR Theorems

Theorem (Kahan): — |If a;; # 0 for each ¢ = 1,...,n, then
T) 2 w—1].
This implies that the SOR method can converge only if 0 < w < 2.

Theorem (Ostrowski-Reich): — If A is a positive definite ma-
trixand 0 < w < 2, then the SOR method converges for any choice
of initial approximate vector, x(©)

Theorem: — If A is positive definite and tridiagonal, then

p(T,) = [p(T;)]*> < 1 and the optimal choice of w for the SOR
method is

2
TN ViS e

with this choice of w, we have p(T,) = w — 1.
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