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Matrix Appliation - TrussTrusses are lightweight strutures apable of arrying heavy loads,e.g., roofs.
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Physis of TrussesThe truss on the previous slide has the following properties:1. Fixed at Joint 12. Slides at Joint 43. Holds a mass of 10,000 N at Joint 34. All the Joints are pin joints5. The fores of tension are indiated on the diagram
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Stati EquilibriumAt eah joint the fores must add to the zero vetor.

Joint Horizontal Fore Vertial Fore1 −F1 +
√

2
2 f1 + f2 = 0

√
2

2 f1 − F2 = 02 −
√

2
2 f1 +

√
3

2 f4 = 0 −
√

2
2 f1 − f3 − 1

2f4 = 03 −f2 + f5 = 0 f3 − 10, 000 = 04 −
√

3
2 f4 − f5 = 0 1

2f4 − F3 = 0This reates an 8 × 8 linear system with 47 zero entries and 17nonzero entries.
Sparse matrix � Solve by iterative methods
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Earlier Iterative ShemesEarlier we used iterative methods to �nd roots of equations

f(x) = 0or �xed points of

x = g(x)The latter requires |g ′(x)| < 1 for onvergene.

Want to extend to n-dimensional linear systems.
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Basi De�nitionsWe want onvergene in n-dimensions.

De�nition: � A Vector norm on Rn is a funtion ||·|| mapping
Rn → R with the following properties:(i) ||x|| ≥ 0 for all x ∈ Rn(ii) ||x|| = 0 if and only if x = 0(iii) ||αx|| = |α| ||x|| for all α ∈ R and x ∈ Rn (salar multiplia-tion)(iv) ||x + y|| ≤ ||x||+ ||y|| for all x,y ∈ Rn (triangle inequality)
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Common NormsThe l1 norm is given by

||x||1 =
n∑

i=1

|xi|

The l2 norm or Eulidean norm is given by

||x||2 =

(
n∑

i=1

x2
i

) 1
2

The l∞ norm or Max norm is given by

||x||∞ = max
1≤i≤n

|xi|The Eulidean norm represents the usual notion of distane(Pythagorean theorem for distane).
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Triangle InequalityWe need to show the triangle inequality for || · ||2.

Theorem (Cauhy-Shwarz): � For eah x,y ∈ Rn

xty =
n∑

i=1

xiyi ≤
(

n∑
i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2

= ||x||2 · ||y||2

This result gives for eah x,y ∈ Rn

||x + y||2 =
nX

i=1

(xi + yi)
2

=
nX

i=1

x2
i + 2

nX
i=1

xiyi +
nX

i=1

y2
i

≤ ||x||2 + 2||x||||y||+ ||y||2Taking the square root of the above gives the Triangle Inequality
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DistaneWe need the onept of distane in n-dimensions.

De�nition: � If x,y ∈ Rn, the l2 and l∞ distanes between

x and y is a funtion || · || mapping Rn → R with the followingproperties:are de�ned by

||x− y||2 =

(
n∑

i=1

(xi − yi)2
)1/2

||x− y||∞ = max1≤i≤n|xi − yi|
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ConvergeneAlso, we need the onept of onvergene in n-dimensions.

De�nition: � A sequene of vetors {x(k)}∞k=1 in Rn is saidto onverge to x with respet to norm || · || if given any ǫ > 0there exists an integer N(ǫ) suh that
||x(k) − x|| < ǫ for all k ≥ N(ǫ).
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Basi Theorems
Theorem: � The sequene of vetors {x(k)}∞k=1 → x in Rnwith respet to || · ||∞ if and only if

lim
k→∞

x
(k)
i = xi for each i = 1, 2, ..., n.

Theorem: � For eah x ∈ Rn

||x||∞ ≤ ||x||2 ≤
√

n||x||∞.

It an be shown that all norms on Rn are equivalent.
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Matrix NormWe need to extend our de�nitions to inlude matries.

De�nition: � A Matrix Norm on the set of all n×n matriesis a real-valued funtion || · ||, de�ned on this set satisfying for all

n× n matries A and B and all real numbers α.(i) ||A|| ≥ 0(ii) ||A|| = 0 if and only if A is 0 (all zero entries)(iii) ||αA|| = |α| ||A|| (salar multipliation)(iv) ||A + B|| ≤ ||A||+ ||B|| (triangle inequality)(v) ||AB|| ≤ ||A|| ||B||

The distance between n × n matrices A and B with respet to thismatrix norm is ||A−B||.
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Natural Matrix Norm
Theorem: � If || · || is a vetor norm on Rn, then

||A|| = max
||x||=1

||Ax||is a matrix norm.This is the natural or indued matrix norm assoiated with thevetor norm.
For any z 6= 0, x = z

||z|| is a unit vetor

max
||x||=1

||Ax|| = max
||z||6=0

∣∣∣∣∣∣∣∣A( z
||z||

)∣∣∣∣∣∣∣∣ = max
||z||6=0

||Az||
||z||
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Matrix AtionThe natural norm desribes how a matrix strethes unit vetors relativeto that norm. (Think eigenvalues!)

Theorem: � If A = {aij} is an n× n matrix, then
||A||∞ = max

1≤i≤n

n∑
j=1

|aij | (largest row sum)
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Matrix MappingAn n×m matrix is a funtion that takes m-dimensional vetors into

n-dimensional vetors.

For square matries A, we have A : Rn → Rn.

Certain vetors are parallel to Ax, so Ax = λx or (A− λI)x = 0.

These values λ, the eigenvalues, are signi�ant for onvergene ofiterative methods.

Matrix Algebra: Norms of Vectors and MatricesEigenvalues and EigenvectorsIterative Techniques – p.15/48

Eigenvalues and Eigenvetors

De�nition: � If A is an n × n matrix, the harateristipolynomial of A is de�ned by

p(λ) = det(A− λI)

De�nition: � If p is the harateristi polynomial of the matrix

A, the zeroes of p are eigenvalues (or characteristic values) of A.If λ is an eigenvalue of A and x 6= 0 satis�es (A−λI)x = 0, then

x is an eigenvetor (or characteristic vector) of A orrespondingto the eigenvalue λ.
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Geometry of Eigenvalues and EigenvetorsIf x is an eigenvetor assoiated with λ, then Ax = λx, so the matrix

A takes the vetor x into a salar multiple of itself.

If λ is real and λ > 1, then A has the e�et of strething x by afator of λ.
If λ is real and 0 < λ < 1, then A has the e�et of shrinking x by afator of λ.

If λ < 0, the e�ets are similar, but the diretion of Ax is reversed.
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Spetral RadiusThe spetral radius, ρ(A), provides a valuable measure of the eigen-values, whih helps determine if a numerial sheme will onverge.

De�nition: � The spetral radius, ρ(A), of a matrix A isde�ned by

ρ(A) = max |λ|,where λ is an eigenvalue of A.
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Theorem for ρ(A)

Theorem: � If A is an n× n matrix,(i) ||A||2 =
(
ρ(AtA)

)1/2.(ii) ρ(A) ≤ ||A|| for any natural norm || · ||.

Proof of (ii): Let ||x|| be a unit eigenvetor or A with respet tothe eigenvalue λ

|λ| = |λ| ||x|| = ||λx|| = ||Ax|| ≤ ||A|| ||x|| = ||A||.Thus,

ρ(A) = max |λ| ≤ ||A||.

If A is symmetri, then ρ(A) = ||A||2.
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Interesting Result for ρ(A)

An interesting and useful result: For any matrix A and any

ǫ > 0, there exists a natural norm || · || with the property that

ρ(A) ≤ ||A|| < ρ(A) + ǫ.So ρ(A) is the greatest lower bound for the natural norms on A.
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Convergene of Matrix
De�nition: � An n× n matrix A is onvergent if

lim
k→∞

(Ak)ij = 0, for each i = 1, ..., n and j = 1, ..., n.

Example: Consider

A =
( 1

2 0
1
4

1
2

)
.It is easy to see that

A =
( 1

2k 0
k

2k+1
1
2k

)
→ 0.
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Convergene Theorem for Matries

Theorem: � The following statements are equivalent,(i) A is a onvergent matrix.(ii) limn→∞ ||An|| = 0 for some natural norm.(iii) limn→∞ ||An|| = 0 for all natural norms.(iv) ρ(A) < 1.(v) limn→∞Anx = 0 for every x.
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Introdution � Iterative MethodsGaussian elimination and other diret methods are best for smalldimensional systems.

Jaobi and Gauss-Seidel iterative methods were developed in late 18thentury to solve

Ax = bby iteration.
Iterative methods are more e�ient for large sparse matrix systems,both in omputer storage and omputation.

Common examples inlude eletri iruits, strutural mehanis, andpartial di�erential equations.
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Basi Idea � Iterative ShemeThe iterative sheme starts with an initial guess, x(0) to the linearsystem
Ax = bTransform this system into the form

x = Tx + cThe iterative sheme beomes

xk = Txk−1 + c
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Illustrative Example (1 of 4)Consider the following linear system Ax = b

10x1 − x2 + 2x3 = 6

−x1 + 11x2 − x3 + 3x4 = 25

2x1 − x2 + 10x3 − x4 = −11

3x2 − x3 + 8x4 = 15This has the unique solution x = (1, 2,−1, 1)T .
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Illustrative Example (2 of 4)The previous system is easily onverted to the form
x = Tx + cby solving for eah xi.

x1 = 1
10x2 − 1

5x3 + 3
5

x2 = 1
11x1 + 1

11x3 − 3
11x4 + 25

11

x3 = −1
5x1 + 1

10x2 + 1
10x4 − 11

10

x4 = − 3
8x2 + 1

8x3 + 15
8
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Illustrative Example (3 of 4)Thus, the system Ax = b beomes

x = Tx + cwith

T =



0 1
10 −1

5 0

1
11 0 1

11 − 3
11

−1
5

1
10 0 1

10

0 −3
8

1
8 0


and c =



3
5

25
11

−11
10

15
8
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Illustrative Example (4 of 4)The iterative sheme beomes

x
(k)
1 = 1

10
x
(k−1)
2 − 1

5
x
(k−1)
3 + 3

5

x
(k)
2 = 1

11
x
(k−1)
1 + 1

11
x
(k−1)
3 − 3

11
x
(k−1)
4 + 25

11

x
(k)
3 = − 1

5
x
(k−1)
1 + 1

10
x
(k−1)
2 + 1

10
x
(k−1)
4 − 11

10

x
(k)
4 = − 3

8
x
(k−1)
2 + 1

8
x
(k−1)
3 + 15

8With an initial guess of x = (0, 0, 0, 0)T , we have

x
(1)
1 = 1

10
x
(0)
2 − 1

5
x
(0)
3 + 3

5
= 0.6000

x
(1)
2 = 1

11
x
(0)
1 + 1

11
x
(0)
3 − 3

11
x
(0)
4 + 25

11
= 2.2727

x
(1)
3 = − 1

5
x
(0)
1 + 1

10
x
(0)
2 + 1

10
x
(0)
4 − 11

10
= −1.1000

x
(1)
4 = − 3

8
x
(0)
2 + 1

8
x
(0)
3 + 15

8
= 1.8750

It takes 10 iterations to onverge to a tolerane of 10−3. Error is givenby ||x(k)−x(k−1)||∞
||x(k)||∞
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Jaobi IterationThe example above illustrates the Jaobi iterative method.

To solve the linear system

Ax = bFind xi (for aii 6= 0) by iterating

x
(k)
i =

n∑
j=1

j 6=i

(
−aijx

(k−1)
j

aii

)
+

bi

aii
for i = 1, ..., n
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Jaobi Iteration � Matrix Form (1 of 2)If A is given by

A =


a11 a12 . . . a1n

a21 a22 . . . a2n... ... ...
an1 an2 . . . ann



Split this into266666664

a11 0 . . . 0

0 a22

. . . ...... . . . . . . 0

0 . . . 0 ann

377777775
−

266666664

0 . . . . . . 0

−a21
. . . ...... . . . . . . ...

−an1 . . . −an,n−1 0

377777775
−

266666664

0 −a12 . . . −a1n... . . . . . . ...... . . . −an−1,n

0 . . . . . . 0

377777775

or

A = D − L− U
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Jaobi Iteration � Matrix Form (2 of 2)We are solving Ax = b with A = D − L− U from above.

It follows that:

Dx = (L + U)x + bor

x = D−1(L + U)x + D−1bThe Jaobi iteration method beomes

x = Tjx + cjwhere Tj = D−1(L + U) and cj = D−1b.
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Notes on Solving Ax = bIf any of the aii = 0 and the matrix A is nonsingular, then theequations an be reordered so that all aii 6= 0.

Convergene (if possible) is aelerated by taking the aii as large aspossible.
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Gauss-Seidel IterationOne possible improvement is that x(k−1) are used to ompute x
(k)
i .

However, for i > 1, the values of x
(k)
1 , ...x

(k)
i−1 are already omputedand should be improved values.

If we use these updated values in the algorithm we obtain:

x
(k)
i = −

i−1∑
j=1

(
aijx

(k)
j

aii

)
−

n∑
j=i+1

(
aijx

(k−1)
j

aii

)
+

bi

aii
for i = 1, ..., n

This modi�ation is alled the Gauss-Seidel iterative method.
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Return to Illustrative ExampleThe Gauss-Seidel iterative sheme beomes

x
(k)
1 = 1

10
x
(k−1)
2 − 1

5
x
(k−1)
3 + 3

5

x
(k)
2 = 1

11
x
(k)
1 + 1

11
x
(k−1)
3 − 3

11
x
(k−1)
4 + 25

11

x
(k)
3 = − 1

5
x
(k)
1 + 1

10
x
(k)
2 + 1

10
x
(k−1)
4 − 11

10

x
(k)
4 = − 3

8
x
(k)
2 + 1

8
x
(k)
3 + 15

8With an initial guess of x = (0, 0, 0, 0)T , it takes 5 iterations toonverge to a tolerane of 10−3.

Again the error is given by
||x(k) − x(k−1)||∞

||x(k)||∞
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Gauss-Seidel Iteration � Matrix FormWith the same de�nitions as before, A = D − L − U , we an writethe equation Ax = b as

(D − L)x(k) = Ux(k−1) + bThe Gauss-Seidel iterative method beomes

x(k) = (D − L)−1U︸ ︷︷ ︸
Tg

x(k−1) + (D − L)−1b︸ ︷︷ ︸
cgor

x(k) = Tgx(k−1) + cg

The matrix D − L is nonsingular if and only if aii 6= 0 for eah

i = 1, ..., n.
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ConvergeneUsually the Gauss-Seidel iterative method onverges faster than theJaobi method.
Examples do exist where the Jaobi method onverges and theGauss-Seidel method fails to onverge.

Also, examples exist where the Gauss-Seidel method onverges andthe Jaobi method fails to onverge.
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Convergene Theorems (1 of 3)We want onvergene riterion for the general iteration sheme of theform

x(k) = Tx(k−1) + c, k = 1, 2, ...Lemma: � If the spetral radius, ρ(T ) satis�es ρ(T ) < 1, then

(I − T )−1 exists and

(I − T )−1 = I + T + T 2 + ... =
∞∑

j=0

T j
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Convergene Theorems (2 of 3)The previous lemma is important in proving the main onvergenetheorem.
Theorem: � For any x(0) ∈ Rn, the sequene {x(k)}∞k=0 de-�ned by

x(k) = Tx(k−1) + c, k = 1, 2, ...onverges to the unique solution of
x = Tx + cif and only if ρ(T ) < 1.
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Convergene Theorems (3 of 3)The proof of the theorem helps establish error bounds from theiterative methods.
Corollary: � If ||T || < 1 for any natural matrix norm and c isa given vetor, then the sequene {x(k)}∞k=0 de�ned by

x(k) = Tx(k−1) + c, k = 1, 2, ...overges for any x(0) ∈ Rn to a vetor x ∈ Rn and the followingerror bounds hold:(i) ||x− x(k)|| ≤ ||T ||k||x− x(0)||

(ii) ||x− x(k)|| ≤ ||T ||k
1− ||T ||k ||x

(1) − x(0)||
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Convergene of Jaobi and Gauss-SeidelThe Jaobi method is given by:

x(k) = Tjx(k−1) + cj ,where Tj = D−1(L + U).

The Gauss-Seidel method is given by:

x(k) = Tgx(k−1) + cg,where Tj = (D − L)−1U .

These iterative shemes onverge if

ρ(Tj) < 1 or ρ(Tg) < 1.
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More on Convergene of Jaobi and Gauss-Seidel

De�nition: � The n× n matrix A is said to be stritly diag-onally dominant when

|aii| >
n∑

j=1

j 6=i

|aij |

holds for eah i = 1, 2, ...n.

Theorem: � If A is stritly diagonally dominant, then for anyhoie of x(0), both the Jaobi and Gauss-Seidel methods give asequene {x(k)}∞k=0 that onverge to the unique solution of

Ax = b.
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Rate of ConvergeneThe rapidity of onvergene is seen from previous Corollary:
||x(k) − x|| ≈ ρ(T )k||x(0) − x||
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Theorem for Some Matries

Theorem (Stein-Rosenberg): � If aik < 0 for eah i 6= kand aii > 0 for eah i = 1, ...n, then one and only one of thefollowing hold:(a) 0 ≤ ρ(Tg) < ρ(Tj) < 1,(b) 1 < ρ(Tj) < ρ(Tg),() ρ(Tj) = ρ(Tg) = 0,(d) ρ(Tj) = ρ(Tg) = 1.

Part a implies that when one method onverges, then both onvergewith the Gauss-Seidel method onverging faster.

Part b implies that when one method diverges, then both diverge withthe Gauss-Seidel divergene being more pronouned.
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Residuals
De�nition: � Suppose that x̃ ∈ Rn is an approximation to thesolution of the linear system, Ax = b. The residual vetor for x̃with respet to this system is r = b−Ax̃.

We want residuals to onverge as rapidly as possible to 0.

The Gauss-Seidel method hooses x(k)
i+1 so that the ith omponent of

r(k)
i+1 is zero.

Making one oordinate zero is often not the optimal way to reduethe norm of the residual, r(k)
i+1.

Matrix Algebra: Norms of Vectors and MatricesEigenvalues and EigenvectorsIterative Techniques – p.44/48



Modify Gauss-Seidel IterationThe Gauss-Seidel method satis�es:

x
(k)
i =

1
aii

bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

 for i = 1, ..., n

whih an be written:

x
(k)
i = x

(k−1)
i +

rii

aiiWe modify this to

x
(k)
i = x

(k−1)
i + ω

rii

aiiwhere ertain hoies of ω > 0 redue the norm of the residual vetorand onsequently improve the rate of onvergene.
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SOR MethodThe method from previous slide are alled relaxation methods.

When 0 < ω < 1, the proedures are alled under-relaxationmethods and an be used to obtain onvergene of systems that failto onverge by the Gauss-Seidel method.

For hoies of ω > 1, the proedures are alled over-relaxationmethods, abbreviated SOR for Suessive Over-Relaxation meth-ods, whih an aelerate onvergene.

The SOR Method is given by:
x

(k)
i = (1− ω)x(k−1)

i +
ω

aii

bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j
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Matrix Form of SORRearranging the SOR Method:

aiix
(k)
i + ω

i−1∑
j=1

aijx
(k)
j = (1− ω)aiix

(k−1)
i − ω

n∑
j=i+1

aijx
(k−1)
j + ωbi

In vetor form this is

(D − ωL)x(k) = [(1− ω)D + ωU ]x(k−1) + ωbor

x(k) = (D − ωL)−1[(1− ω)D + ωU ]x(k−1) + ω(D − ωL)−1bLet Tω = (D − ωL)−1[(1 − ω)D + ωU ] and cω = ω(D − ωL)−1b,then

x(k) = Tωx(k−1) + cω.
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SOR Theorems
Theorem (Kahan): � If aii 6= 0 for eah i = 1, ..., n, then

ρ(Tω) ≥ |ω − 1|.This implies that the SOR method an onverge only if 0 < ω < 2.

Theorem (Ostrowski-Reih): � If A is a positive de�nite ma-trix and 0 < ω < 2, then the SOR method onverges for any hoieof initial approximate vetor, x(0)

Theorem: � If A is positive de�nite and tridiagonal, then

ρ(Tg) = [ρ(Tj)]2 < 1 and the optimal hoie of ω for the SORmethod is

ω =
2

1 +
√

1− [ρ(Tj)]2
.with this hoie of ω, we have ρ(Tω) = ω − 1.
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