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Trigonometri
 Polynomials: Least Squares ⇒ Interpolation.Last Time: We used trigonometri
 polynomials, i.e. linear 
ombina-tions of the fun
tions:
Φ0(x) =

1
2

Φk(x) = cos(kx), k = 1, . . . , n

Φn+k(x) = sin(kx), k = 1, . . . , n− 1to �nd least squares approximations (where n < m) to equallyspa
ed data (2m points) in the interval [−π, π], at the node points

xj = −π + (jπ/m), j = 0, 1, . . . , (2m− 1).

This Time: We will �nd the interpolatory (n = m) trigonometri
polynomials... and we will �gure out how to do it fast!
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Why use Interpolatory Trigonometri
 Polynomials?Interpolation of large amounts of equally spa
ed data by trigono-metri
 polynomials produ
es very good results (
lose to optimal, 
.f.Chebyshev interpolation).Some Appli
ations

• Digital Filters (Lowpass, Bandpass, Highpass)

• Signal pro
essing/analysis

• Antenna design and analysis

• Quantum me
hani
s

• Opti
s

• Spe
tral methods numeri
al solutions of di�erential equations.
• Image pro
essing/analysis
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Interpolatory Trigonometri
 PolynomialsLet xi be 2m equally spa
ed node points in [−π, π], and fi = f(xi)the fun
tion values at these nodes. We 
an �nd a trigonometri
 poly-nomial of degree m: P (x) ∈ Tm whi
h interpolates the data:

Sm(x) =
a0

2
+

am

2
cos(mx) +

m−1∑
k=1

[ak cos(kx) + bk sin(kx)] ,

where

ak =
1
m

2m−1∑
j=0

fj cos(kxj) bk =
1
m

2m−1∑
j=0

fj sin(kxj).

The only di�eren
e in this formula 
ompared with the one 
orre-sponding to the least squares approximation, Sn(x), n < m is thedivision by two of the am 
oe�
ient.

Where does the fa
tor of 2 
ome from???
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Finding the Fa
tor of 2: Breakdown of the LemmaThe fa
tor of two 
omes from the failure of the se
ond part of thelemma (whi
h we showed last time):

Lemma: � If the integer r is not a multiple of 2m, then

2m−1∑
j=0

cos(rxj) =
2m−1∑
j=0

sin(rxj) = 0.

Moreover, if r is not a multiple of m, then

2m−1∑
j=0

[cos(rxj)]2 =
2m−1∑
j=0

[sin(rxj)]2 = m.

Now, sin
e n = m, we end up with one instan
e (the cos(mxj)-sum)where r = m, and the lemma fails.
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Finding the Fa
tor of 2: Computing the SumNow, sin
e we are interpolating, the basis fun
tion Φm(x) = cos(mx)is part of the set. When we 
ompute 〈Φm, Φm〉 we need
2m−1∑
j=0

[cos(mxj)]2 =
2m−1∑
j=0

[cos(−πm + m
jπ

m
)]2

=
2m−1∑
j=0

[cos((j −m)π)]2

=
2m−1∑
j=0

(−1)2(j−m)

=
2m−1∑
j=0

1 = 2 m.
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Histori
al Perspe
tiveMu
h of the analysis was done by Jean Baptiste Joseph Fourier inthe early 1800s, but the use of the Fourier series representation wasnot pra
ti
al until 1965.Why? The straight-forward implementation requires about 4m2 op-erations in order to 
ompute the 
oe�
ients ~a, and ~b.In 1965 Cooley and Tukey published a 4-page paper titled �An algo-rithm for the ma
hine 
al
ulation of 
omplex Fourier series� in thejournal Mathemati
s of Computation. The paper des
ribes analgorithm whi
h 
omputes the 
oe�
ients using only O(m log2 m)operations.It is hard to overstate the importan
e of this paper!!!The algorithm is now known as the �Fast Fourier Transform� or justthe �FFT� .
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Computing the FFTInstead of generating the 
oe�
ients ~a and ~b separately, we de�ne the
omplex 
oe�
ient ck = m(−1)k(ak + ibk) and 
onsider the Fouriertransforms with 
omplex 
oe�
ients

Sm(x) =
1
m

2m−1∑
k=0

cke
ikx, where ck =

2m−1∑
j=0

fje
ikπj/m

The redu
tion of the number of required operations 
ome from thefa
t that for any n ∈ Z,

einπ = cos(nπ) + i sin(nπ) = (−1)n.
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Computing the FFT, Redu
tion of Operations 1 of 3Suppose m = 2p for some p ∈ Z+, then for k = 0, 1, . . . , (m− 1):

ck + cm+k =
2m−1∑
j=0

fj

[
eikπj/m + ei(m+k)πj/m

]

=
2m−1∑
j=0

fje
ikπj/m(1 + eiπj).

Using the fa
t that

1 + eiπj =

 2, if j is even

0, if j is oddonly half the terms in the sum need to be 
omputed, i.e

ck + cm+k = 2
m−1∑
j=0

f2je
ikπ2j/m.
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Computing the FFT, Redu
tion of Operations 2 of 3We have

ck + cm+k = 2
m−1∑
j=0

f2je
ikπ2j/m.

In a similar way we 
an get

ck − cm+k = 2eikπm
m−1∑
j=0

f2j+1eikπ2j/m.

We now need m + (m + 1) 
omplex multipli
ations for ea
h k =
0, 1, . . . , (m− 1) to 
ompute these sums, that is

m(2m + 1) = 2m2 + m operations.

Big WhoopTM: We redu
ed the number of operations from 4m2to 2m2 + m.
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Computing the FFT, Redu
tion of Operations 3 of 3Observation: The new sums have the same stru
ture as the initialsum, so we 
an apply the same operations-redu
ings
heme again, whi
h redu
es the 2m2 part of theoperation 
ount:

2
[m

2
m

2
+

m

2

(m

2
+ 1

)]
= m2 + m.

Our total operation 
ount is down to m2 + 2m. After repeating thesame pro
edure r times we are down to

m2

2r−2
+ mr operations.

Sin
e m = 2p we 
an keep going until r = p + 1, and we have

22p

2p−1
+m(p+1) = 2m+pm+m = 3m+m log2 m = O(m log2 m)operations.

Approximation Theory: The Fast Fourier Transform, with Applications – p. 11/40

Comparing Operation Counts 1 of 2

m 4m2 3m + m log2 m Speedup16 1,024 112 964 16,384 576 28256 262,144 2,816 931,024 4,194,304 13,312 3154,096 67,108,864 61,440 1,09216,384 1,073,741,824 278,528 3,85565,536 17,179,869,184 1,245,184 13,797262,144 274,877,906,944 5,505,024 49,9321,048,576 4,398,046,511,104 24,117,248 182,3614,194,304 70,368,744,177,664 104,857,600 671,0888,388,608 281,474,976,710,656 218,103,808 1,290,55516,777,216 1,125,899,906,842,624 452,984,832 2,485,513
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Comparing Operation Counts 2 of 2

m 4m2 3m + m log2 m Speedup1,048,576 4,398,046,511,104 24,117,248 182,3618,388,608 281,474,976,710,656 218,103,808 1,290,555

m = 8,388,608 roughly 
orresponds to an 8-Megapixel 
amera (e.g.the Sony DSC-N1 (new in De
ember 2005))If a 3.8 GHz Pentium 
hip 
ould perform one addition or multipli
a-tion per 
lo
k-
y
le (whi
h it 
an't), we 
ould 
ompute the Fourier
oe�
ients for the 8-Megapixel image inFFT Slow FT0.057 se
onds 20.576 hoursEa
h �FFT se
ond� translates roughly to 15 �Slow-FT days.�
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Implementing the FFTAssigning implementation of the FFT falls in the 
ategory of 
rueland unusual punishment.

Matlab implements

fft the Fourier transform (data → 
oe�
ients)
ifft the inverse Fourier transform (
oe�
ients → data)and the helper fun
tions
fftshift

ifftshift

Shifting (and unshifting the 
oe�
ient (mostly fordisplay purposes)

The 2-dimensional version fft2, and n-dimensional fftn version ofthe FFT are also implemented.
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The Fastest Fourier Transform in the West (FFTW) 1 of 2[http://www.fftw.org/℄

FFTW is a C / Fortran subroutine library for 
omputing the Dis
reteFourier Transform (DFT) in one or more dimensions, of both real and
omplex data, and of arbitrary input size. FFTW is free software,distributed under the GNU General Publi
 Li
ense. Ben
hmarks, per-formed on on a variety of platforms, show that FFTW's performan
eis typi
ally superior to that of other publi
ly available FFT software.Moreover, FFTW's performan
e is portable: the program will performwell on most ar
hite
tures without modi�
ation.
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The Fastest Fourier Transform in the West (FFTW) 2 of 2It is di�
ult to summarize in a few words all the 
omplexitiesthat arise when testing many programs, and there is no "best"or "fastest" program. However, FFTW appears to be the fastestprogram most of the time for in-order transforms, espe
ially inthe multi-dimensional and real-
omplex 
ases. Hen
e the name,"FFTW," whi
h stands for the somewhat whimsi
al title of"Fastest Fourier Transform in the West." Please visit the ben
hFFT[http://www.fftw.org/benchfft/℄ home page for a moreextensive survey of the results.

The FFTW pa
kage was developed at MIT by Matteo Frigo andSteven G. Johnson
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Homework #9, Not Due Fall 2007 HW-Extra-CreditRead the matlab help for fft, ifft, fftshift, and ifftshift.[1℄ Let x=(-pi:(pi/8):(pi-0.1))’.Let f1=cos(x), f2=cos(2*x), f3=cos(7*x),

f4=cos(8*x), f4=cos(9*x), g1=sin(x), g2=sin(2*x).Compute the fft of these fun
tions.[2℄ Let f=1+cos(2*x). Compute fftshift(fft(f)).Let g=1+sin(3*x). Compute fftshift(fft(g)).[3℄ Use your observations from [1℄ and [2℄ to 
onstru
t a low-pass �lter:Given a fun
tion f, 
ompute the fft(f). For a given N, keep onlythe 
oe�
ients 
orresponding to the N lowest frequen
ies (set all theothers to zero). ifft the result.Let f=1+cos(x)+sin(2*x)+5*cos(7*x) and apply the abovewith N=4. Plot both the initial and the �ltered f.[4℄ Use the FFT to determine the trigonometri
 interpolating polynomialof degree 8 for f(x) = x2 cosx on [−π, π].
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FFT Appli
ations

Figure: Some additional reading?
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The Fast Fourier Transform, Re
apThe Fast Fourier Transform (FFT) is an O(m log2(m)) algorithmfor 
omputing the 2m 
omplex 
oe�
ients ck in the dis
rete Fouriertransform:

Sm(x) =
1
m

2m−1∑
k=0

cke
ikx, where ck =

2m−1∑
j=0

fje
ikπj/m

whereas the straight-forward implementation of the sum would require
O(m2) operations.

We noted last time that for a problem of size 223 = 8, 388, 608 thisredu
ed the 
omputation time by a fa
tor of a 2 weeks � i.e. a
omputation 
an be done in t se
onds using the FFTs would require

∼ 2t weeks to 
omplete using the �Slow� FT.
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Notes from: mathworld.wolfram.com 1 of 2FFTs were �rst dis
ussed by Cooley and Tukey (1965), althoughGauss had a
tually des
ribed the 
riti
al fa
torization step as early as1805.
A dis
rete Fourier transform 
an be 
omputed using an FFT if thenumber of points N is a power of two.

If the number of points N is not a power of two, a transform 
an beperformed on sets of points 
orresponding to the prime fa
tors of Nwhi
h is slightly degraded in speed.

An e�
ient real Fourier transform algorithm or a fast Hartley trans-form gives a further in
rease in speed by approximately a fa
tor of two.
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Notes from: mathworld.wolfram.com 2 of 2Base-4 and base-8 fast Fourier transforms use optimized 
ode, and
an be 20-30% faster than base-2 fast Fourier transforms.

Prime fa
torization is slow when the fa
tors are large, but dis
reteFourier transforms 
an be made fast for N = 2, 3, 4, 5, 7, 8, 11, 13, 16using the Winograd transform algorithm∗.

∗ this fa
t, among others, are used in the Fastest Fourier Transformin the West (FFTW).
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Example: CD-Audio

CD-quality musi
 re
ording is 
reated bysampling the sound 44,100 times per se
-ond and storing ea
h sample as a 16-bitbinary number (twi
e as mu
h for a stereore
ording).
One hour of stereo musi
 is equivalent to

3, 600 ∗ 44, 100 ∗ 2 = 317, 520, 000 samples or 635, 040, 000 bytes.That's over half a gigabyte�whi
h is more or less the 
apa
ity of astandard (red-book) CD.

Let us think about this example some more: ...
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Example: CD-AudioAs the data-stream is read o� the CD, we have 88,200 samples/se
ond(assuming 1x sampling, i.e. no over-sampling).In order to �lter and re-
onstitute the signal, some signal pro
essing mustbe done...If we base this on the SlowFT we must perform on the order of31,116,960,000 operations/se
ond. Basi
ally we would need 10 Pentium-IV
hips at 3.0 GHz to play a CD.If, on the other hand the signal pro
essing in based on the FFT we needapproximately 1,713,593 operations/se
ond. � A 
ouple of $5-o�-the-shelf
hips satisfy all our signal pro
essing needs!Dis
laimer: Here we have assumed that we need exa
tly one 88,200-sizedFFT/se
ond. This is not ne
essarily an a

urate des
ription of what goesin inside a CD player, but it gives us a feeling for how the FFT algorithmenables us to pro
ess large quantities of data using 
heap te
hnology.
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Example: 1080p High-Def VideoA full 1080p HD-frame has 1920x1080 (2,073,600) pixels. At abit-depth of 24 bits/pixel, 30 frames/se
ond, 3600 se
onds/hour, and2 hours/movie, that puts us at1,343,692,800,000 bytes/movie = 1,3TB/movie

The dueling HD-DVD and Blu-ray formats have the following storage
apa
ities: HD-DVD Blu-rayCapa
ity/layer 15GB 25GB#Layers 2 2Total 
apa
ity 30GB 50GBMinimum 
ompression 1/43 1/26

�Some� pro
essing is required.
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Communi
ations From: www.spd.eee.strath.ac.uk 1 of 4In 
ommuni
ations theory the signal is usually a voltage or a 
urrent,and Fourier theory is essential to understanding how the signal willbehave when it passes through �lters, ampli�ers and 
ommuni
ations
hannels.
Even dis
rete digital 
ommuni
ations whi
h use 0's or 1's to sendinformation still have frequen
y 
ontents. This is perhaps easiest tograsp in the 
ase of trying to send a single square pulse down a 
hannel.

The �eld of 
ommuni
ations over a vast range of appli
ations fromhigh level network management down to sending individual bits downa 
hannel. The Fourier transform is usually asso
iated with these lowlevel aspe
ts of 
ommuni
ations.
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Communi
ations From: www.spd.eee.strath.ac.uk 2 of 4If we take simple digital pulse that is to be sent down a telephone line,it will ideally look like this:

If we take the Fourier transform of this to show what frequen
ies makeup this signal we get something like:
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Communi
ations From: www.spd.eee.strath.ac.uk 3 of 4This means that the square pulse is a sum of in�nite frequen
ies.However if the telephone line only has a bandwidth of 10MHz thenonly the frequen
ies below 10MHz will get through the 
hannel. Thiswill 
ause the digital pulse to be distorted e.g.

This fa
t has to be 
onsidered when trying to send large amounts ofdata down a 
hannel, be
ause if too mu
h is sent then the data willbe 
orrupted by the 
hannel and will be unusable.
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Communi
ations From: www.spd.eee.strath.ac.uk 4 of 4Extending the example of the telephone line, whenever you dial anumber on a " tou
h-tone" phone you hear a series of di�erent tones.Ea
h of these tones is 
omposed of two di�erent frequen
ies that addtogether to produ
e the sound you hear.

The Fourier transform is an ideal method to illustrate this, as it showsthese two frequen
ies e.g.
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Side S
an Sonar From: www.spd.eee.strath.ac.uk 1 of 3Another use of DSP te
hniques (in
luding DFT/FFT) is in sonar.The example given here is side-s
an sonar whi
h is a little di�erentfrom the normal idea of sonar.

With this method a 6.5-kHz sound pulse is transmitted into the o
eantoward the sea �oor at an oblique angle. Be
ause the signal is trans-mitted at an oblique angle rather than straight down, the re�e
ted sig-nal provides information about the in
lination of the sea �oor, surfa
eroughness, and a
ousti
 impedan
e of the sea �oor. It also highlightsany small stru
tures on the sea �oor, folds, and any fault lines thatmay be present.
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Side S
an Sonar From: www.spd.eee.strath.ac.uk 2 of 3
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Side S
an Sonar From: www.spd.eee.strath.ac.uk 3 of 3The image on the previous slide 
ame from the United States Geo-logi
al Survey (USGS) whi
h is using geophysi
al Long Range ASDIC(GLORIA) sides
an sonar system to obtain a plan view of the sea�oor of the Ex
lusive E
onomi
 Zone (EEZ). The pi
ture element(pixel) resolution is approximately 50 meters. The data are digitallymosai
ed into image maps whi
h are at a s
ale of 1:500,000. Thesemosai
s provide the equivalent of "aerial photographs" that revealmany physiographi
 and geologi
 features of the sea �oor.

To date the proje
t has 
overed approximately 2 million square nauti
almiles of sea �oor seaward of the shelf edge around the 30 
oastalStates. Mapping is 
ontinuing around the Ameri
an Flag Islands ofthe 
entral and western Pa
i�
 O
ean.
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Astronomy From: www.spd.eee.strath.ac.uk 1 of 3Venus is Earth's 
losest 
ompanion, and is 
omparable in it's sizeand diameter and yet s
ientists knew virtually nothing about it, asit is perpetually 
overed with a 
loud layer whi
h normal opti
alteles
opes 
an't penetrate, so Magellan (a satellite) had radar andadvan
ed Digital Signal Pro
essing that was designed to "see"through this 
loud layer. It's mission was map 70% of the planetwith radar and to reveal surfa
e features as small as 250 meters a
ross.

The bla
k and white pi
tures that it sent ba
k were strips of theplanets surfa
e, about 20km wide, from the north pole to the southpole.
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Astronomy From: www.spd.eee.strath.ac.uk 2 of 3

Figure: One example image of a surface feature called "Pandora Corona."If you look

at the image, you will see a two black lines through the picture. This is just a mismatch

between the strips sent back by Magellan. It also gives you an idea of the scale of the

image as each strip is 20km wide.
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Astronomy From: www.spd.eee.strath.ac.uk 3 of 3

Figure: A global map showing emissivity of the Venus’s surface.
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Other Appli
ation Areas

Filtering and Signal Analysis —

Seismic

Optics

Acoustics
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Example: Image Pro
essing 1 of 5

−100 −50 0 50 100

−150

−100

−50

0

50

100

150Figure: John Tukey, and his Fourier transform. The 
oe�
ients 
orre-sponding to the low frequen
ies are in the 
enter of the plot, and theones 
orresponding to the high frequen
ies are toward the edges.
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Example: Image Pro
essing � 25% Compression 2 of 5

−100 −50 0 50 100

−150

−100

−50

0

50

100

150Figure: Here, we �lter out ∼ 75% of the Fourier 
oe�
ients, andre
onstru
t the image.
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Example: Image Pro
essing � 25% Compression 3 of 5

−100 −50 0 50 100

−150

−100

−50

0

50

100

150Figure: Here, we �lter the∼ 25% of the Fourier 
oe�
ients with highestenergy (largest value in the absolute sense), and re
onstru
t the image.
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Example: Image Pro
essing � Highpass Filtering 4 of 5

−100 −50 0 50 100

−150

−100

−50

0

50

100

150Figure: Example of high-pass �ltering the image. We have �ltered outthe Fourier 
oe�
ients 
orresponding to the lowest frequen
ies.
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Example: Image Pro
essing � Lowpass Filtering 5 of 5

−100 −50 0 50 100

−150

−100

−50

0

50

100

150Figure: Example of low-pass �ltering the image. We have �ltered outthe Fourier 
oe�
ients 
orresponding to the highest frequen
ies.[See movies℄
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