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Trigonometri Polynomials: Least Squares ⇒ Interpolation.Last Time: We used trigonometri polynomials, i.e. linear ombina-tions of the funtions:
Φ0(x) =

1
2

Φk(x) = cos(kx), k = 1, . . . , n

Φn+k(x) = sin(kx), k = 1, . . . , n− 1to �nd least squares approximations (where n < m) to equallyspaed data (2m points) in the interval [−π, π], at the node points

xj = −π + (jπ/m), j = 0, 1, . . . , (2m− 1).

This Time: We will �nd the interpolatory (n = m) trigonometripolynomials... and we will �gure out how to do it fast!
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Why use Interpolatory Trigonometri Polynomials?Interpolation of large amounts of equally spaed data by trigono-metri polynomials produes very good results (lose to optimal, .f.Chebyshev interpolation).Some Appliations

• Digital Filters (Lowpass, Bandpass, Highpass)

• Signal proessing/analysis

• Antenna design and analysis

• Quantum mehanis

• Optis

• Spetral methods numerial solutions of di�erential equations.
• Image proessing/analysis
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Interpolatory Trigonometri PolynomialsLet xi be 2m equally spaed node points in [−π, π], and fi = f(xi)the funtion values at these nodes. We an �nd a trigonometri poly-nomial of degree m: P (x) ∈ Tm whih interpolates the data:

Sm(x) =
a0

2
+

am

2
cos(mx) +

m−1∑
k=1

[ak cos(kx) + bk sin(kx)] ,

where

ak =
1
m

2m−1∑
j=0

fj cos(kxj) bk =
1
m

2m−1∑
j=0

fj sin(kxj).

The only di�erene in this formula ompared with the one orre-sponding to the least squares approximation, Sn(x), n < m is thedivision by two of the am oe�ient.

Where does the fator of 2 ome from???
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Finding the Fator of 2: Breakdown of the LemmaThe fator of two omes from the failure of the seond part of thelemma (whih we showed last time):

Lemma: � If the integer r is not a multiple of 2m, then

2m−1∑
j=0

cos(rxj) =
2m−1∑
j=0

sin(rxj) = 0.

Moreover, if r is not a multiple of m, then

2m−1∑
j=0

[cos(rxj)]2 =
2m−1∑
j=0

[sin(rxj)]2 = m.

Now, sine n = m, we end up with one instane (the cos(mxj)-sum)where r = m, and the lemma fails.
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Finding the Fator of 2: Computing the SumNow, sine we are interpolating, the basis funtion Φm(x) = cos(mx)is part of the set. When we ompute 〈Φm, Φm〉 we need
2m−1∑
j=0

[cos(mxj)]2 =
2m−1∑
j=0

[cos(−πm + m
jπ

m
)]2

=
2m−1∑
j=0

[cos((j −m)π)]2

=
2m−1∑
j=0

(−1)2(j−m)

=
2m−1∑
j=0

1 = 2 m.
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Historial PerspetiveMuh of the analysis was done by Jean Baptiste Joseph Fourier inthe early 1800s, but the use of the Fourier series representation wasnot pratial until 1965.Why? The straight-forward implementation requires about 4m2 op-erations in order to ompute the oe�ients ~a, and ~b.In 1965 Cooley and Tukey published a 4-page paper titled �An algo-rithm for the mahine alulation of omplex Fourier series� in thejournal Mathematis of Computation. The paper desribes analgorithm whih omputes the oe�ients using only O(m log2 m)operations.It is hard to overstate the importane of this paper!!!The algorithm is now known as the �Fast Fourier Transform� or justthe �FFT� .
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Computing the FFTInstead of generating the oe�ients ~a and ~b separately, we de�ne theomplex oe�ient ck = m(−1)k(ak + ibk) and onsider the Fouriertransforms with omplex oe�ients

Sm(x) =
1
m

2m−1∑
k=0

cke
ikx, where ck =

2m−1∑
j=0

fje
ikπj/m

The redution of the number of required operations ome from thefat that for any n ∈ Z,

einπ = cos(nπ) + i sin(nπ) = (−1)n.
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Computing the FFT, Redution of Operations 1 of 3Suppose m = 2p for some p ∈ Z+, then for k = 0, 1, . . . , (m− 1):

ck + cm+k =
2m−1∑
j=0

fj

[
eikπj/m + ei(m+k)πj/m

]

=
2m−1∑
j=0

fje
ikπj/m(1 + eiπj).

Using the fat that

1 + eiπj =

 2, if j is even

0, if j is oddonly half the terms in the sum need to be omputed, i.e

ck + cm+k = 2
m−1∑
j=0

f2je
ikπ2j/m.
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Computing the FFT, Redution of Operations 2 of 3We have

ck + cm+k = 2
m−1∑
j=0

f2je
ikπ2j/m.

In a similar way we an get

ck − cm+k = 2eikπm
m−1∑
j=0

f2j+1eikπ2j/m.

We now need m + (m + 1) omplex multipliations for eah k =
0, 1, . . . , (m− 1) to ompute these sums, that is

m(2m + 1) = 2m2 + m operations.

Big WhoopTM: We redued the number of operations from 4m2to 2m2 + m.
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Computing the FFT, Redution of Operations 3 of 3Observation: The new sums have the same struture as the initialsum, so we an apply the same operations-reduingsheme again, whih redues the 2m2 part of theoperation ount:

2
[m

2
m

2
+

m

2

(m

2
+ 1

)]
= m2 + m.

Our total operation ount is down to m2 + 2m. After repeating thesame proedure r times we are down to

m2

2r−2
+ mr operations.

Sine m = 2p we an keep going until r = p + 1, and we have

22p

2p−1
+m(p+1) = 2m+pm+m = 3m+m log2 m = O(m log2 m)operations.
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Comparing Operation Counts 1 of 2

m 4m2 3m + m log2 m Speedup16 1,024 112 964 16,384 576 28256 262,144 2,816 931,024 4,194,304 13,312 3154,096 67,108,864 61,440 1,09216,384 1,073,741,824 278,528 3,85565,536 17,179,869,184 1,245,184 13,797262,144 274,877,906,944 5,505,024 49,9321,048,576 4,398,046,511,104 24,117,248 182,3614,194,304 70,368,744,177,664 104,857,600 671,0888,388,608 281,474,976,710,656 218,103,808 1,290,55516,777,216 1,125,899,906,842,624 452,984,832 2,485,513
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Comparing Operation Counts 2 of 2

m 4m2 3m + m log2 m Speedup1,048,576 4,398,046,511,104 24,117,248 182,3618,388,608 281,474,976,710,656 218,103,808 1,290,555

m = 8,388,608 roughly orresponds to an 8-Megapixel amera (e.g.the Sony DSC-N1 (new in Deember 2005))If a 3.8 GHz Pentium hip ould perform one addition or multiplia-tion per lok-yle (whih it an't), we ould ompute the Fourieroe�ients for the 8-Megapixel image inFFT Slow FT0.057 seonds 20.576 hoursEah �FFT seond� translates roughly to 15 �Slow-FT days.�
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Implementing the FFTAssigning implementation of the FFT falls in the ategory of rueland unusual punishment.

Matlab implements

fft the Fourier transform (data → oe�ients)
ifft the inverse Fourier transform (oe�ients → data)and the helper funtions
fftshift

ifftshift

Shifting (and unshifting the oe�ient (mostly fordisplay purposes)

The 2-dimensional version fft2, and n-dimensional fftn version ofthe FFT are also implemented.
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The Fastest Fourier Transform in the West (FFTW) 1 of 2[http://www.fftw.org/℄

FFTW is a C / Fortran subroutine library for omputing the DisreteFourier Transform (DFT) in one or more dimensions, of both real andomplex data, and of arbitrary input size. FFTW is free software,distributed under the GNU General Publi Liense. Benhmarks, per-formed on on a variety of platforms, show that FFTW's performaneis typially superior to that of other publily available FFT software.Moreover, FFTW's performane is portable: the program will performwell on most arhitetures without modi�ation.
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The Fastest Fourier Transform in the West (FFTW) 2 of 2It is di�ult to summarize in a few words all the omplexitiesthat arise when testing many programs, and there is no "best"or "fastest" program. However, FFTW appears to be the fastestprogram most of the time for in-order transforms, espeially inthe multi-dimensional and real-omplex ases. Hene the name,"FFTW," whih stands for the somewhat whimsial title of"Fastest Fourier Transform in the West." Please visit the benhFFT[http://www.fftw.org/benchfft/℄ home page for a moreextensive survey of the results.

The FFTW pakage was developed at MIT by Matteo Frigo andSteven G. Johnson
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Homework #9, Not Due Fall 2007 HW-Extra-CreditRead the matlab help for fft, ifft, fftshift, and ifftshift.[1℄ Let x=(-pi:(pi/8):(pi-0.1))’.Let f1=cos(x), f2=cos(2*x), f3=cos(7*x),

f4=cos(8*x), f4=cos(9*x), g1=sin(x), g2=sin(2*x).Compute the fft of these funtions.[2℄ Let f=1+cos(2*x). Compute fftshift(fft(f)).Let g=1+sin(3*x). Compute fftshift(fft(g)).[3℄ Use your observations from [1℄ and [2℄ to onstrut a low-pass �lter:Given a funtion f, ompute the fft(f). For a given N, keep onlythe oe�ients orresponding to the N lowest frequenies (set all theothers to zero). ifft the result.Let f=1+cos(x)+sin(2*x)+5*cos(7*x) and apply the abovewith N=4. Plot both the initial and the �ltered f.[4℄ Use the FFT to determine the trigonometri interpolating polynomialof degree 8 for f(x) = x2 cosx on [−π, π].
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FFT Appliations

Figure: Some additional reading?
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The Fast Fourier Transform, ReapThe Fast Fourier Transform (FFT) is an O(m log2(m)) algorithmfor omputing the 2m omplex oe�ients ck in the disrete Fouriertransform:

Sm(x) =
1
m

2m−1∑
k=0

cke
ikx, where ck =

2m−1∑
j=0

fje
ikπj/m

whereas the straight-forward implementation of the sum would require
O(m2) operations.

We noted last time that for a problem of size 223 = 8, 388, 608 thisredued the omputation time by a fator of a 2 weeks � i.e. aomputation an be done in t seonds using the FFTs would require

∼ 2t weeks to omplete using the �Slow� FT.
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Notes from: mathworld.wolfram.com 1 of 2FFTs were �rst disussed by Cooley and Tukey (1965), althoughGauss had atually desribed the ritial fatorization step as early as1805.
A disrete Fourier transform an be omputed using an FFT if thenumber of points N is a power of two.

If the number of points N is not a power of two, a transform an beperformed on sets of points orresponding to the prime fators of Nwhih is slightly degraded in speed.

An e�ient real Fourier transform algorithm or a fast Hartley trans-form gives a further inrease in speed by approximately a fator of two.
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Notes from: mathworld.wolfram.com 2 of 2Base-4 and base-8 fast Fourier transforms use optimized ode, andan be 20-30% faster than base-2 fast Fourier transforms.

Prime fatorization is slow when the fators are large, but disreteFourier transforms an be made fast for N = 2, 3, 4, 5, 7, 8, 11, 13, 16using the Winograd transform algorithm∗.

∗ this fat, among others, are used in the Fastest Fourier Transformin the West (FFTW).
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Example: CD-Audio

CD-quality musi reording is reated bysampling the sound 44,100 times per se-ond and storing eah sample as a 16-bitbinary number (twie as muh for a stereoreording).
One hour of stereo musi is equivalent to

3, 600 ∗ 44, 100 ∗ 2 = 317, 520, 000 samples or 635, 040, 000 bytes.That's over half a gigabyte�whih is more or less the apaity of astandard (red-book) CD.

Let us think about this example some more: ...
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Example: CD-AudioAs the data-stream is read o� the CD, we have 88,200 samples/seond(assuming 1x sampling, i.e. no over-sampling).In order to �lter and re-onstitute the signal, some signal proessing mustbe done...If we base this on the SlowFT we must perform on the order of31,116,960,000 operations/seond. Basially we would need 10 Pentium-IVhips at 3.0 GHz to play a CD.If, on the other hand the signal proessing in based on the FFT we needapproximately 1,713,593 operations/seond. � A ouple of $5-o�-the-shelfhips satisfy all our signal proessing needs!Dislaimer: Here we have assumed that we need exatly one 88,200-sizedFFT/seond. This is not neessarily an aurate desription of what goesin inside a CD player, but it gives us a feeling for how the FFT algorithmenables us to proess large quantities of data using heap tehnology.
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Example: 1080p High-Def VideoA full 1080p HD-frame has 1920x1080 (2,073,600) pixels. At abit-depth of 24 bits/pixel, 30 frames/seond, 3600 seonds/hour, and2 hours/movie, that puts us at1,343,692,800,000 bytes/movie = 1,3TB/movie

The dueling HD-DVD and Blu-ray formats have the following storageapaities: HD-DVD Blu-rayCapaity/layer 15GB 25GB#Layers 2 2Total apaity 30GB 50GBMinimum ompression 1/43 1/26

�Some� proessing is required.
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Communiations From: www.spd.eee.strath.ac.uk 1 of 4In ommuniations theory the signal is usually a voltage or a urrent,and Fourier theory is essential to understanding how the signal willbehave when it passes through �lters, ampli�ers and ommuniationshannels.
Even disrete digital ommuniations whih use 0's or 1's to sendinformation still have frequeny ontents. This is perhaps easiest tograsp in the ase of trying to send a single square pulse down a hannel.

The �eld of ommuniations over a vast range of appliations fromhigh level network management down to sending individual bits downa hannel. The Fourier transform is usually assoiated with these lowlevel aspets of ommuniations.
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Communiations From: www.spd.eee.strath.ac.uk 2 of 4If we take simple digital pulse that is to be sent down a telephone line,it will ideally look like this:

If we take the Fourier transform of this to show what frequenies makeup this signal we get something like:
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Communiations From: www.spd.eee.strath.ac.uk 3 of 4This means that the square pulse is a sum of in�nite frequenies.However if the telephone line only has a bandwidth of 10MHz thenonly the frequenies below 10MHz will get through the hannel. Thiswill ause the digital pulse to be distorted e.g.

This fat has to be onsidered when trying to send large amounts ofdata down a hannel, beause if too muh is sent then the data willbe orrupted by the hannel and will be unusable.
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Communiations From: www.spd.eee.strath.ac.uk 4 of 4Extending the example of the telephone line, whenever you dial anumber on a " touh-tone" phone you hear a series of di�erent tones.Eah of these tones is omposed of two di�erent frequenies that addtogether to produe the sound you hear.

The Fourier transform is an ideal method to illustrate this, as it showsthese two frequenies e.g.
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Side San Sonar From: www.spd.eee.strath.ac.uk 1 of 3Another use of DSP tehniques (inluding DFT/FFT) is in sonar.The example given here is side-san sonar whih is a little di�erentfrom the normal idea of sonar.

With this method a 6.5-kHz sound pulse is transmitted into the oeantoward the sea �oor at an oblique angle. Beause the signal is trans-mitted at an oblique angle rather than straight down, the re�eted sig-nal provides information about the inlination of the sea �oor, surfaeroughness, and aousti impedane of the sea �oor. It also highlightsany small strutures on the sea �oor, folds, and any fault lines thatmay be present.
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Side San Sonar From: www.spd.eee.strath.ac.uk 2 of 3
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Side San Sonar From: www.spd.eee.strath.ac.uk 3 of 3The image on the previous slide ame from the United States Geo-logial Survey (USGS) whih is using geophysial Long Range ASDIC(GLORIA) sidesan sonar system to obtain a plan view of the sea�oor of the Exlusive Eonomi Zone (EEZ). The piture element(pixel) resolution is approximately 50 meters. The data are digitallymosaied into image maps whih are at a sale of 1:500,000. Thesemosais provide the equivalent of "aerial photographs" that revealmany physiographi and geologi features of the sea �oor.

To date the projet has overed approximately 2 million square nautialmiles of sea �oor seaward of the shelf edge around the 30 oastalStates. Mapping is ontinuing around the Amerian Flag Islands ofthe entral and western Pai� Oean.
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Astronomy From: www.spd.eee.strath.ac.uk 1 of 3Venus is Earth's losest ompanion, and is omparable in it's sizeand diameter and yet sientists knew virtually nothing about it, asit is perpetually overed with a loud layer whih normal optialtelesopes an't penetrate, so Magellan (a satellite) had radar andadvaned Digital Signal Proessing that was designed to "see"through this loud layer. It's mission was map 70% of the planetwith radar and to reveal surfae features as small as 250 meters aross.

The blak and white pitures that it sent bak were strips of theplanets surfae, about 20km wide, from the north pole to the southpole.
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Astronomy From: www.spd.eee.strath.ac.uk 2 of 3

Figure: One example image of a surface feature called "Pandora Corona."If you look

at the image, you will see a two black lines through the picture. This is just a mismatch

between the strips sent back by Magellan. It also gives you an idea of the scale of the

image as each strip is 20km wide.
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Astronomy From: www.spd.eee.strath.ac.uk 3 of 3

Figure: A global map showing emissivity of the Venus’s surface.
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Other Appliation Areas

Filtering and Signal Analysis —

Seismic

Optics

Acoustics
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Example: Image Proessing 1 of 5
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−100

−50
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100

150Figure: John Tukey, and his Fourier transform. The oe�ients orre-sponding to the low frequenies are in the enter of the plot, and theones orresponding to the high frequenies are toward the edges.
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Example: Image Proessing � 25% Compression 2 of 5

−100 −50 0 50 100

−150

−100

−50

0

50

100

150Figure: Here, we �lter out ∼ 75% of the Fourier oe�ients, andreonstrut the image.
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Example: Image Proessing � 25% Compression 3 of 5

−100 −50 0 50 100

−150

−100

−50

0

50

100

150Figure: Here, we �lter the∼ 25% of the Fourier oe�ients with highestenergy (largest value in the absolute sense), and reonstrut the image.
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Example: Image Proessing � Highpass Filtering 4 of 5
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−150
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150Figure: Example of high-pass �ltering the image. We have �ltered outthe Fourier oe�ients orresponding to the lowest frequenies.
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Example: Image Proessing � Lowpass Filtering 5 of 5

−100 −50 0 50 100

−150

−100

−50

0

50

100

150Figure: Example of low-pass �ltering the image. We have �ltered outthe Fourier oe�ients orresponding to the highest frequenies.[See movies℄
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