Approximation Theory

Trigonometric Polynomial Approximation
Lecture Notes \#14

Joe Mahaffy

Department of Mathematics
San Diego State University
San Diego, CA 92182-7720
mahaffy@math.sdsu.edu
http://www-rohan.sdsu.edu/~jmahaffy
\$Id: lecture.tex,v 1.4 2007/11/28 21:46:40 mahaffy Exp \$

$$
P(x)=\sum_{n=0}^{\infty} a_{n} \cos (n x)+i \sum_{n=0}^{\infty} a_{n} \sin (n x)
$$

1750s Jean Le Rond d'Alembert used finite sums of \sin and cos to study vibrations of a string.

17xx Use adopted by Leonhard Euler (leading mathematician at the time).
17xx Daniel Bernoulli advocates use of infinite (as above) sums of \sin and cos.
18xx Jean Baptiste Joseph Fourier used these infinite series to study heat flow. Developed theory.

Fourier Series: First Observations
For each positive integer n, the set of functions $\left\{\Phi_{0}, \Phi_{1}, \ldots, \Phi_{2 n-1}\right\}$, where

$$
\left\{\begin{aligned}
\Phi_{0}(x) & =\frac{1}{2} \\
\Phi_{k}(x) & =\cos (k x), \quad k=1, \ldots, n \\
\Phi_{n+k}(x) & =\sin (k x), \quad k=1, \ldots, n-1
\end{aligned}\right.
$$

is an orthogonal set on the interval $[-\pi, \pi]$ with respect to the weight function $w(x)=1$.

Orthogonality
Orthogonality follows from the fact that integrals over $[-\pi, \pi]$ of $\cos (k x)$ and $\sin (k x)$ are zero, and products can be rewritten as sums:

$$
\left\{\begin{aligned}
\sin \theta_{1} \sin \theta_{2} & =\frac{\cos \left(\theta_{1}-\theta_{2}\right)-\cos \left(\theta_{1}+\theta_{2}\right)}{2} \\
\cos \theta_{1} \cos \theta_{2} & =\frac{\cos \left(\theta_{1}-\theta_{2}\right)+\cos \left(\theta_{1}+\theta_{2}\right)}{2} \\
\sin \theta_{1} \cos \theta_{2} & =\frac{\sin \left(\theta_{1}-\theta_{2}\right)+\sin \left(\theta_{1}+\theta_{2}\right)}{2}
\end{aligned}\right.
$$

Let \mathcal{I}_{n} be the set of all linear combinations of the functions $\left\{\Phi_{0}, \Phi_{1}, \ldots, \Phi_{2 n-1}\right\}$; this is the set of trigonometric polynomials of degree $\leq n$.

For $f \in C[\pi, \pi]$, we seek the continuous least squares approximation by functions in \mathcal{T}_{n} of the form

$$
S_{n}(x)=\frac{a_{0}}{2}+a_{n} \cos (n x)+\sum_{k=1}^{n-1}\left(a_{k} \cos (k x)+b_{k} \sin (k x)\right)
$$

where, thanks to orthogonality

$$
\begin{aligned}
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) d x \\
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x
\end{aligned}
$$

Definition: - The limit

$$
S(x)=\lim _{n \rightarrow \infty} S_{n}(x)
$$

is called the Fourier Series of f.

We can write down $S_{n}(x)=\frac{\pi}{2}+\frac{2}{\pi} \sum_{k=1}^{n} \frac{(-1)^{k}-1}{k^{2}} \cos (k x)$

First we note that $f(x)$ and $\cos (k x)$ are even functions on $[-\pi, \pi]$ and $\sin (k x)$ are odd functions on $[-\pi, \pi]$. Hence,

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi}|x| d x=\frac{2}{\pi} \int_{0}^{\pi} x d x=\pi . \\
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi}|x| \cos (k x) d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos (k x) d x \\
& =\underbrace{\left.\frac{2}{\pi} x \frac{\sin (k x)}{k}\right|_{0} ^{\pi}-\frac{2}{k \pi} \int_{0}^{\pi} 1 \cdot \sin (k x) d x}_{0} \\
& =\underbrace{\frac{2}{\pi k^{2}}[\cos (k \pi)-\cos (0)]=\frac{2}{\pi k^{2}}\left[(-1)^{k}-1\right] .}_{\text {even } \times \text { odd }=\text { odd }} \\
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \underbrace{|x| \sin (k x)} d x=0 .
\end{aligned}
$$

The discrete Fourier transform, a.k.a. the finite Fourier transform, is a transform on samples of a function.

It, and its "cousins," are the most widely used mathematical transforms; applications include:

- Signal Processing

- Image Processing
- Audio Processing
- Data compression
- A tool for partial differential equations
- etc...

Suppose we have $2 m$ data points, $\left(x_{j}, f_{j}\right)$, where

$$
x_{j}=-\pi+\frac{j \pi}{m}, \text { and } f_{j}=f\left(x_{j}\right), \quad j=0,1, \ldots, 2 m-1
$$

The discrete least squares fit of a trigonometric polynomial $S_{n}(x) \in \mathcal{T}_{n}$ minimizes

$$
E\left(S_{n}\right)=\sum_{j=0}^{2 m-1}\left[S_{n}\left(x_{j}\right)-f_{j}\right]^{2}
$$

We know that the basis functions

$$
\left\{\begin{aligned}
\Phi_{0}(x) & =\frac{1}{2} \\
\Phi_{k}(x) & =\cos (k x), \quad k=1, \ldots, n \\
\Phi_{n+k}(x) & =\sin (k x), \quad k=1, \ldots, n-1
\end{aligned}\right.
$$

are orthogonal with respect to integration over the interval.

The Big Question: Are they orthogonal in the discrete case? Is the following true:

$$
\sum_{j=0}^{2 m-1} \Phi_{k}\left(x_{j}\right) \Phi_{l}\left(x_{j}\right)=\alpha_{k} \delta_{k, l} \quad ? ? ?
$$

Recalling long-forgotten (or quite possible never seen) facts from

Complex Analysis - Euler's Formula:

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

Thus,
$\sum_{j=0}^{2 m-1} \cos \left(r x_{j}\right)+i \sum_{j=0}^{2 m-1} \sin \left(r x_{j}\right)=\sum_{j=0}^{2 m-1}\left[\cos \left(r x_{j}\right)+i \sin \left(r x_{j}\right)\right]=\sum_{j=0}^{2 m-1} e^{i r x_{j}}$.
Since

$$
e^{i r x_{j}}=e^{i r(-\pi+j \pi / m)}=e^{-i r \pi} e^{i r j \pi / m}
$$

we get

$$
\sum_{j=0}^{2 m-1} \cos \left(r x_{j}\right)+i \sum_{j=0}^{2 m-1} \sin \left(r x_{j}\right)=e^{-i r \pi} \sum_{j=0}^{2 m-1} e^{i r j \pi / m} .
$$

Since $\sum_{j=0}^{2 m-1} e^{i r j \pi / m}$ is a geometric series with first term 1 , and ratio $e^{i r \pi / m} \neq 1$, we get

$$
\sum_{j=0}^{2 m-1} e^{i r j \pi / m}=\frac{1-\left(e^{i r \pi / m}\right)^{2 m}}{1-e^{i r \pi / m}}=\frac{1-e^{2 i r \pi}}{1-e^{i r \pi / m}}
$$

This is zero since

$$
1-e^{2 i r \pi}=1-\cos (2 r \pi)-i \sin (2 r \pi)=1-1-i \cdot 0=0
$$

This shows the first part of the lemma:

$$
\sum_{j=0}^{2 m-1} \cos \left(r x_{j}\right)=\sum_{j=0}^{2 m-1} \sin \left(r x_{j}\right)=0
$$

If r is not a multiple of m, then

$$
\sum_{j=0}^{2 m-1}\left[\cos \left(r x_{j}\right)\right]^{2}=\sum_{j=0}^{2 m-1} \frac{1+\cos \left(2 r x_{j}\right)}{2}=\sum_{j=0}^{2 m-1} \frac{1}{2}=m
$$

Similarly (use $\cos ^{2} \theta+\sin ^{2} \theta=1$)

$$
\sum_{j=0}^{2 m-1}\left[\sin \left(r x_{j}\right)\right]^{2}=m
$$

This proves the second part of the lemma.

We are now ready to show that the basis functions are orthogonal.

Showing Orthogonality of the Basis Functions

Recall

$$
\left\{\begin{aligned}
\sin \theta_{1} \sin \theta_{2} & =\frac{\cos \left(\theta_{1}-\theta_{2}\right)-\cos \left(\theta_{1}+\theta_{2}\right)}{2} \\
\cos \theta_{1} \cos \theta_{2} & =\frac{\cos \left(\theta_{1}-\theta_{2}\right)+\cos \left(\theta_{1}+\theta_{2}\right)}{2} \\
\sin \theta_{1} \cos \theta_{2} & =\frac{\sin \left(\theta_{1}-\theta_{2}\right)+\sin \left(\theta_{1}+\theta_{2}\right)}{2}
\end{aligned}\right.
$$

Thus for any pair $k \neq l$

$$
\sum_{j=0}^{2 m-1} \Phi_{k}\left(x_{j}\right) \Phi_{l}\left(x_{j}\right)
$$

is a zero-sum of \sin or \cos, and when $k=l$, the sum is m.

Finally: The Trigonometric Least Squares Solution

Using

[1] Our standard framework for deriving the least squares solution - set the partial derivatives with respect to all parameters equal to zero.
[2] The orthogonality of the basis functions.

We find the coefficients in the summation

$$
S_{n}(x)=\frac{a_{0}}{2}+a_{n} \cos (n x)+\sum_{k=1}^{n-1}\left(a_{k} \cos (k x)+b_{k} \sin (k x)\right):
$$

$$
a_{k}=\frac{1}{m} \sum_{j=0}^{2 m-1} f_{j} \cos \left(k x_{j}\right), \quad b_{k}=\frac{1}{m} \sum_{j=0}^{2 m-1} f_{j} \sin \left(k x_{j}\right)
$$

Let $f(x)=x^{3}-2 x^{2}+x+1 /(x-4)$ for $x \in[-\pi, \pi]$.
Let $x_{j}=-\pi+j \pi / 5, j=0,1, \ldots, 9$., i.e.

j	x_{j}	f_{j}
0	-3.14159	-54.02710
1	-2.51327	-31.17511
2	-1.88495	-15.85835
3	-1.25663	-6.58954
4	-0.62831	-1.88199
5	0	-0.25
6	0.62831	-0.20978
7	1.25663	-0.28175
8	1.88495	1.00339
9	2.51327	5.08277

We get the following coefficients:

$$
\begin{gathered}
a_{0}=-20.837, \quad a_{1}=15.1322, \quad a_{2}=-9.0819, \quad a_{3}=7.9803 \\
b_{1}=8.8661, \quad b_{2}=-7.8193, \quad b_{3}=4.4910 .
\end{gathered}
$$

Notes:

[1] The approximation get better as $n \rightarrow \infty$.
[2] Since all the $S_{n}(x)$ are 2π-periodic, we will always have a problem when $f(-\pi) \neq f(\pi)$. [Fix: Periodic extension.] On the following two slides we see the performance for a 2π-periodic f.
[3] It seems like we need $\mathcal{O}\left(m^{2}\right)$ operations to compute $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ - m sums, with m additions and multiplications. There is however a fast $\mathcal{O}\left(m \log _{2}(m)\right)$ algorithm that finds these coefficients. We will talk about this Fast Fourier Transform next time.

Example(2): Discrete Least Squares Approximation
Let $f(x)=2 x^{2}+\cos (3 x)+\sin (2 x) x \in[-\pi, \pi]$.
Let $x_{j}=-\pi+j \pi / 5, j=0,1, \ldots, 9$., i.e.

j	x_{j}	f_{j}
0	-3.14159	18.7392
1	-2.51327	13.8932
2	-1.88495	8.5029
3	-1.25663	1.7615
4	-0.62831	-0.4705
5	0	1.0000
6	0.62831	1.4316
7	1.25663	2.9370
8	1.88495	7.3273
9	2.51327	11.9911

We get the following coefficients:
$a_{0}=-8.2685, \quad a_{1}=2.2853, \quad a_{2}=-0.2064, \quad a_{3}=0.8729$
$b_{1}=0, \quad b_{2}=1, \quad b_{3}=0$.

Approximation Theory: Trigonometric Polynomial Approximation - p. 21/21

