Approximation Theory

Rational Function Approximation

Lecture Notes #13

Joe Mahaffy

Department of Mathematics

San Diego State University

San Diego, CA 92182-7720

mahaffy@math.sdsu.edu

http://www-rohan.sdsu.edu/ \sim jmahaffy

\$Id: lecture.tex,v 1.14 2007/11/26 23:22:23 mahaffy Exp \$

[1] We can approximate any continuous function on a closed interval to within arbitrary tolerance. (Weierstrass approximation theorem)

- [1] We can approximate any continuous function on a closed interval to within arbitrary tolerance. (Weierstrass approximation theorem)
- [2] Easily evaluated at arbitrary values. (e.g. Horner's method)

- [1] We can approximate any continuous function on a closed interval to within arbitrary tolerance. (Weierstrass approximation theorem)
- [2] Easily evaluated at arbitrary values. (e.g. Horner's method)
- [3] Derivatives and integrals are easily determined.

- [1] We can approximate any continuous function on a closed interval to within arbitrary tolerance. (Weierstrass approximation theorem)
- [2] Easily evaluated at arbitrary values. (e.g. Horner's method)
- [3] Derivatives and integrals are easily determined.

Disadvantage of Polynomial Approximation:

[1] Polynomials tend to be oscillatory, which causes errors. This is sometimes, but not always, fixable: — *E.g.* if we are free to select the node points we can minimize the interpolation error (*Chebyshev polynomials*), or optimize for integration (*Gaussian Quadrature*).

Moving Beyond Polynomials: Rational Approximation.

We are going to use rational functions, r(x), of the form

$$r(x) = \frac{p(x)}{q(x)} = \frac{\sum_{i=0}^{n} p_i x^i}{1 + \sum_{j=1}^{m} q_i x^i}$$

and say that the degree of such a function is N = n + m.

We are going to use rational functions, r(x), of the form

$$r(x) = \frac{p(x)}{q(x)} = \frac{\sum_{i=0}^{n} p_i x^i}{1 + \sum_{j=1}^{m} q_i x^i}$$

and say that the degree of such a function is N = n + m.

Since this is a richer class of functions than polynomials — rational functions with $q(x) \equiv 1$ are polynomials, we expect that rational approximation of degree N gives results that are at least as good as polynomial approximation of degree N.

Extension of Taylor expansion to rational functions; selecting the p_i 's and q_i 's so that $r^{(k)}(x_0) = f^{(k)}(x_0) \ \forall k = 0, 1, \dots, N$.

$$f(x) - r(x) = f(x) - \frac{p(x)}{q(x)} = \frac{f(x)q(x) - p(x)}{q(x)}$$

Extension of **Taylor expansion** to rational functions; selecting the p_i 's and q_i 's so that $r^{(k)}(x_0) = f^{(k)}(x_0) \ \forall k = 0, 1, \dots, N$.

$$f(x) - r(x) = f(x) - \frac{p(x)}{q(x)} = \frac{f(x)q(x) - p(x)}{q(x)}$$

Now, use the Taylor expansion $f(x) \sim \sum_{i=0}^{\infty} a_i (x-x_0)^i$, for simplicity $x_0 = 0$:

$$f(x) - r(x) = \frac{\sum_{i=0}^{\infty} \mathbf{a_i} \mathbf{x^i} \sum_{i=0}^{m} \mathbf{q_i} \mathbf{x^i} - \sum_{i=0}^{n} \mathbf{p_i} \mathbf{x^i}}{q(x)}.$$

Extension of **Taylor expansion** to rational functions; selecting the p_i 's and q_i 's so that $r^{(k)}(x_0) = f^{(k)}(x_0) \ \forall k = 0, 1, \dots, N$.

$$f(x) - r(x) = f(x) - \frac{p(x)}{q(x)} = \frac{f(x)q(x) - p(x)}{q(x)}$$

Now, use the Taylor expansion $f(x) \sim \sum_{i=0}^{\infty} a_i (x-x_0)^i$, for simplicity $x_0 = 0$:

$$f(x) - r(x) = \frac{\sum_{i=0}^{\infty} \mathbf{a_i} \mathbf{x^i} \sum_{i=0}^{m} \mathbf{q_i} \mathbf{x^i} - \sum_{i=0}^{n} \mathbf{p_i} \mathbf{x^i}}{q(x)}.$$

Next, we choose p_0, p_1, \ldots, p_n and q_1, q_2, \ldots, q_m so that the numerator has no terms of degree $\leq N$.

For simplicity we (sometimes) define the "indexing-out-of-bounds" coefficients:

$$\begin{cases} p_{n+1} = p_{n+2} = \dots = p_N = 0 \\ q_{m+1} = q_{m+2} = \dots = q_N = 0, \end{cases}$$

so we can express the coefficients of x^k in

$$\sum_{i=0}^{\infty} a_i x^i \sum_{i=0}^{m} q_i x^i - \sum_{i=0}^{n} p_i x^i = 0, \quad k = 0, 1, \dots, N$$

as

$$\sum_{i=0}^{k} a_i q_{k-i} = p_k, \quad k = 0, 1, \dots, N.$$

Find the Padé approximation of f(x) of degree 5, where $f(x) \sim a_0 + a_1 x + \dots a_5 x^5$ is the Taylor expansion of f(x) about the point $x_0 = 0$.

The corresponding equations are:

x^0	a_0	_	p_0	=	0
x^1	$a_0q_1 + a_1$	_	p_1	=	0
x^2	$a_0q_2 + a_1q_1 + a_2$ $a_0q_3 + a_1q_2 + a_2q_1 + a_3$	_	p_2	=	0
x^3	$a_0q_3 + a_1q_2 + a_2q_1 + a_3$	_	p_3	=	0
x^4	$a_0q_4 + a_1q_3 + a_2q_2 + a_3q_1 + a_4$ $a_0q_5 + a_1q_4 + a_2q_3 + a_3q_2 + a_4q_1 + a_5$	_	p_4	=	0
x^5	$a_0q_5 + a_1q_4 + a_2q_3 + a_3q_2 + a_4q_1 + a_5$	_	p_5	=	0

Note: $p_0 = a_0!!!$ (This reduces the number of unknowns and equations by one (1).)

$$\begin{bmatrix} a_0 & & & & & \\ a_1 & a_0 & & & & \\ a_2 & a_1 & a_0 & & & \\ a_3 & a_2 & a_1 & a_0 & & \\ a_4 & a_3 & a_2 & a_1 & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{bmatrix} - \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

$$\begin{bmatrix} a_0 & & & & & \\ a_1 & a_0 & & & & \\ a_2 & a_1 & a_0 & & & \\ a_3 & a_2 & a_1 & a_0 & & \\ a_4 & a_3 & a_2 & a_1 & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{bmatrix} - \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

$$\begin{bmatrix} a_0 & -\mathbf{1} \\ a_1 & a_0 \\ a_2 & a_1 & \mathbf{0} \\ a_3 & a_2 & \mathbf{0} & a_0 \\ a_4 & a_3 & \mathbf{0} & a_1 & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ \mathbf{p_1} \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} \mathbf{0} \\ p_2 \\ p_3 \\ 0 \\ 0 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

$$\begin{bmatrix} a_0 & -1 & \\ a_1 & a_0 & -1 \\ a_2 & a_1 & 0 \\ a_3 & a_2 & 0 & 0 \\ a_4 & a_3 & 0 & 0 & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p_1 \\ p_2 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ p_3 \\ 0 \\ 0 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

$$\begin{bmatrix} a_0 & -1 & & \\ a_1 & a_0 & -1 & \\ a_2 & a_1 & 0 & -1 \\ a_3 & a_2 & 0 & 0 \\ a_4 & a_3 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p_1 \\ p_2 \\ \mathbf{p_3} \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

$$\begin{bmatrix} a_0 & & & & & \\ a_1 & a_0 & & & & \\ a_2 & a_1 & a_0 & & & \\ a_3 & a_2 & a_1 & a_0 & & \\ a_4 & a_3 & a_2 & a_1 & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{bmatrix} - \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

$$\begin{bmatrix} a_0 & 0 & -1 & & \\ a_1 & a_0 & 0 & -1 & & \\ a_2 & a_1 & 0 & 0 & -1 & \\ a_3 & a_2 & 0 & 0 & 0 \\ a_4 & a_3 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

The Taylor series expansion for e^{-x} about $x_0 = 0$ is $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k$, hence $\{a_0, a_1, a_2, a_3, a_4, a_5\} = \{1, -1, \frac{1}{2}, \frac{-1}{6}, \frac{1}{24}, \frac{-1}{120}\}$.

The Taylor series expansion for e^{-x} about $x_0 = 0$ is $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k$, hence $\{a_0, a_1, a_2, a_3, a_4, a_5\} = \{1, -1, \frac{1}{2}, \frac{-1}{6}, \frac{1}{24}, \frac{-1}{120}\}$.

$$\begin{bmatrix} 1 & 0 & -1 & & \\ -1 & 1 & 0 & -1 & \\ 1/2 & -1 & 0 & 0 & -1 \\ -1/6 & 1/2 & 0 & 0 & 0 \\ 1/24 & -1/6 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = - \begin{bmatrix} -1 \\ 1/2 \\ -1/6 \\ 1/24 \\ -1/120 \end{bmatrix},$$

which gives $\{q_1, q_2, p_1, p_2, p_3\} = \{2/5, 1/20, -3/5, 3/20, -1/60\}$

The Taylor series expansion for e^{-x} about $x_0 = 0$ is $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k$, hence $\{a_0, a_1, a_2, a_3, a_4, a_5\} = \{1, -1, \frac{1}{2}, \frac{-1}{6}, \frac{1}{24}, \frac{-1}{120}\}$.

$$\begin{bmatrix} 1 & 0 & -1 & & \\ -1 & 1 & 0 & -1 & \\ 1/2 & -1 & 0 & 0 & -1 \\ -1/6 & 1/2 & 0 & 0 & 0 \\ 1/24 & -1/6 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = - \begin{bmatrix} -1 \\ 1/2 \\ -1/6 \\ 1/24 \\ -1/120 \end{bmatrix},$$

which gives $\{q_1, q_2, p_1, p_2, p_3\} = \{2/5, 1/20, -3/5, 3/20, -1/60\}$, *i.e.*

$$r_{3,2}(x) = \frac{1 - \frac{3}{5}x + \frac{3}{20}x^2 - \frac{1}{60}x^3}{1 + \frac{2}{5}x + \frac{1}{20}x^2}$$

All the possible Padé approximations of degree 5 are:

$$r_{5,0}(x) = 1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{24}x^4 - \frac{1}{120}x^5$$

$$r_{4,1}(x) = \frac{1 - \frac{4}{5}x + \frac{3}{10}x^2 - \frac{1}{15}x^3 + \frac{1}{120}x^4}{1 + \frac{1}{5}x}$$

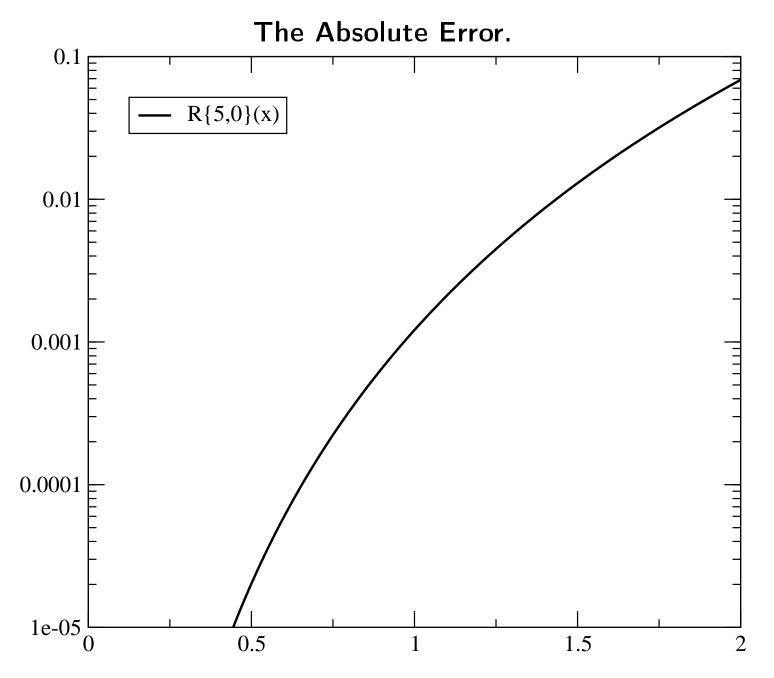
$$r_{3,2}(x) = \frac{1 - \frac{3}{5}x + \frac{3}{20}x^2 - \frac{1}{60}x^3}{1 + \frac{2}{5}x + \frac{1}{20}x^2}$$

$$r_{2,3}(x) = \frac{1 - \frac{2}{5}x + \frac{1}{20}x^2}{1 + \frac{3}{5}x + \frac{3}{20}x^2 + \frac{1}{60}x^3}$$

$$r_{1,4}(x) = \frac{1 - \frac{1}{5}x}{1 + \frac{4}{5}x + \frac{3}{10}x^2 + \frac{1}{15}x^3 + \frac{1}{120}x^4}$$

$$r_{0,5}(x) = \frac{1}{1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5}$$

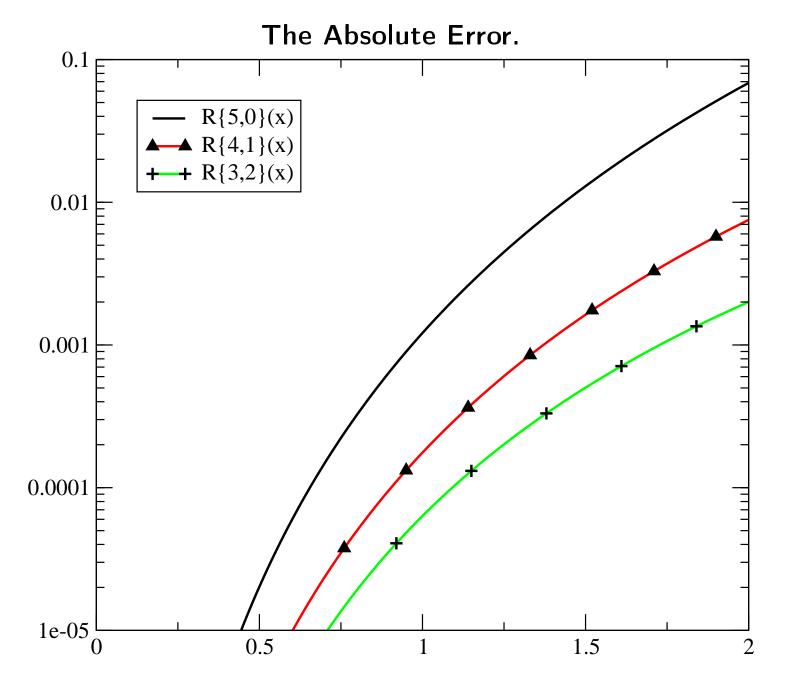
Note: $r_{5,0}(x)$ is the Taylor polynomial of degree 5.



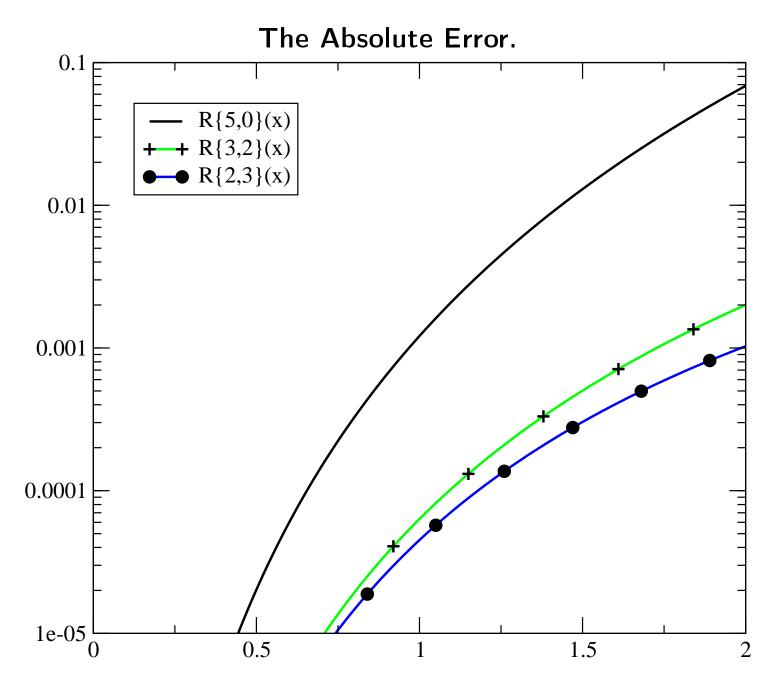
Approximation Theory: Rational Function Approximation - p. 10/20



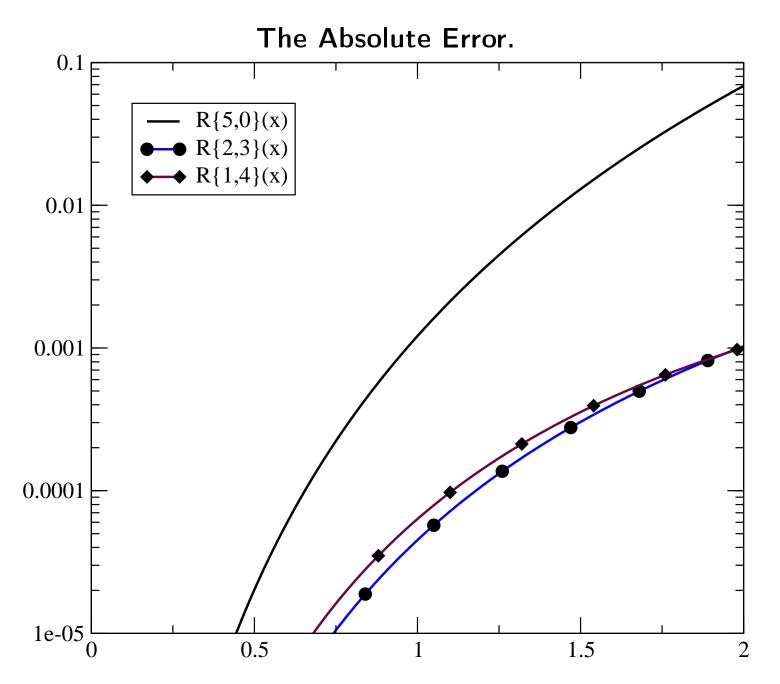
Approximation Theory: Rational Function Approximation - p. 10/20



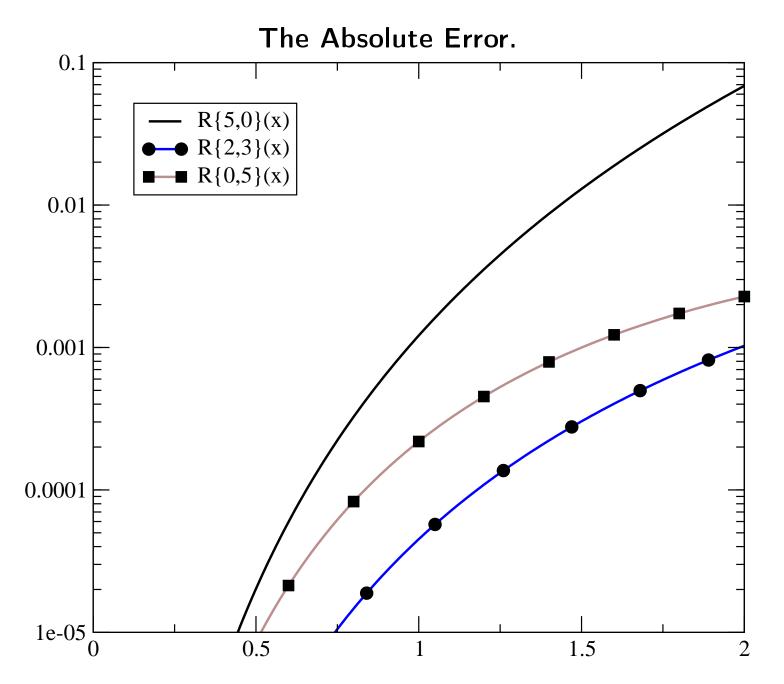
Approximation Theory: Rational Function Approximation – p. 10/20



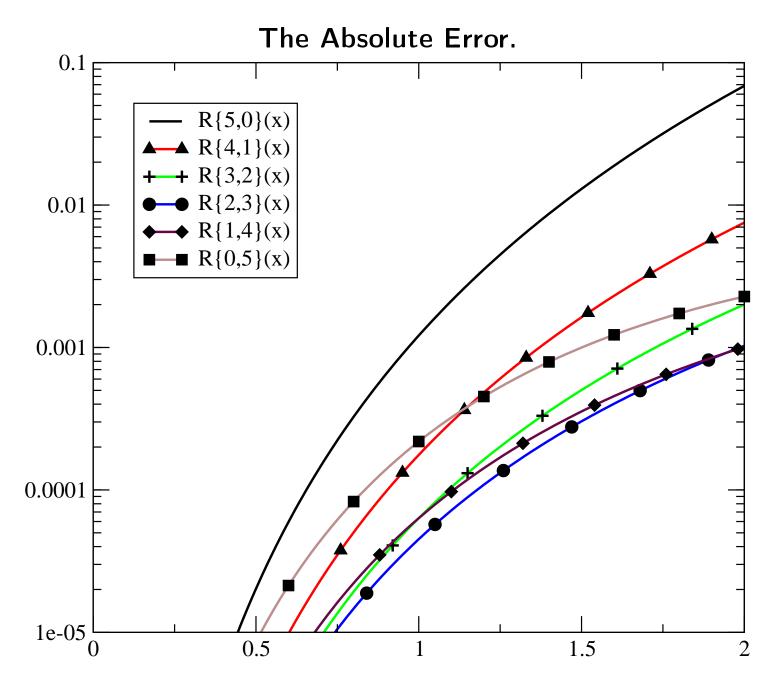
Approximation Theory: Rational Function Approximation - p. 10/20



Approximation Theory: Rational Function Approximation - p. 10/20



Approximation Theory: Rational Function Approximation - p. 10/20



Approximation Theory: Rational Function Approximation - p. 10/20

The algorithm in the book looks very frightening! If we think in term of the matrix problem defined earlier, it is easier to figure out what is going on:

```
% The Taylor Coefficients, a_0, a_1, a_2, a_3, a_4, a_5
a = \begin{bmatrix} 1 & -1 & 1/2 & -1/6 & 1/24 & -1/120 \end{bmatrix}';
N = length(a); A = zeros(N-1,N-1);
% m is the degree of q(x), and n the degree of p(x)
m = 3; n = N-1-m;
% Set up the columns which multiply q_1 through q_m
for i=1:m
  A(i:(N-1),i) = a(1:(N-i));
end
% Set up the columns that multiply p_1 through p_n
A(1:n,m+(1:n)) = -eye(n)
% Set up the right-hand-side
b = - a(2:N);
% Solve
c = A b;
Q = [1 ; c(1:m)]; % Select q_0 through q_m
P = [a_0 ; c((m+1):(m+n))]; % Select p_0 through p_n
```

	One Point	Optimal Points
Polynomials	Taylor	Chebyshev
Rational Functions	Padé	???

From the example e^{-x} we can see that Padé approximations suffer from the *same problem* as Taylor polynomials – they are very accurate near *one point*, but away from that point the approximation degrades.

"Chebyshev-placement" of interpolating points for polynomials gave us an optimal (uniform) error bound over the interval.

Can we do something similar for rational approximations???

Chebyshev Basis for the Padé Approximation!

We use the **same** idea — instead of expanding in terms of the basis functions x^k , we will use the **Chebyshev polynomials**, $T_k(x)$, as our basis, *i.e.*

$$r_{n,m}(x) = \frac{\sum_{k=0}^{n} p_k T_k(x)}{\sum_{k=0}^{m} q_k T_k(x)}$$

where N = n + m, and $q_0 = 1$.

We use the **same** idea — instead of expanding in terms of the basis functions x^k , we will use the **Chebyshev polynomials**, $T_k(x)$, as our basis, *i.e.*

$$r_{n,m}(x) = \frac{\sum_{k=0}^{n} p_k T_k(x)}{\sum_{k=0}^{m} q_k T_k(x)}$$

where N = n + m, and $q_0 = 1$.

We also need to expand f(x) in a series of Chebyshev polynomials:

$$f(x) = \sum_{k=0}^{\infty} a_k T_k(x),$$

so that

$$f(x) - r_{n,m}(x) = \frac{\sum_{k=0}^{\infty} a_k T_k(x) \sum_{k=0}^{m} q_k T_k(x) - \sum_{k=0}^{n} p_k T_k(x)}{\sum_{k=0}^{m} q_k T_k(x)}.$$

Again, the coefficients p_0, p_1, \ldots, p_n and q_1, q_2, \ldots, q_m are chosen so that the numerator has zero coefficients for $T_k(x)$, $k=0,1,\ldots,N$, i.e.

$$\sum_{k=0}^{\infty} a_k T_k(x) \sum_{k=0}^{m} q_k T_k(x) - \sum_{k=0}^{n} p_k T_k(x) = \sum_{\mathbf{k}=\mathbf{N}+1}^{\infty} \gamma_k T_k(x).$$

We will need the following relationship:

$$T_i(x)T_j(x) = \frac{1}{2} [T_{i+j}(x) + T_{|i-j|}(x)].$$

Also, we must compute (usually numerically)

$$a_0 = \frac{1}{\pi} \int_{-1}^1 \frac{f(x)}{\sqrt{1 - x^2}} dx$$
 and $a_k = \frac{2}{\pi} \int_{-1}^1 \frac{f(x)T_k(x)}{\sqrt{1 - x^2}} dx$, $k \ge 1$.

Example: Revisiting e^{-x} with Chebyshev-Padé Approximation 1/5

The 8th order Chebyshev-expansion (ALL PRAISE MAPLE) for e^{-x} is

$$P_8^{\mathsf{CT}}(x) = 1.266065878 \, T_0(x) - 1.130318208 \, T_1(x) + 0.2714953396 \, T_2(x)$$
$$-0.04433684985 \, T_3(x) + 0.005474240442 \, T_4(x)$$
$$-0.0005429263119 \, T_5(x) + 0.00004497732296 \, T_6(x)$$
$$-0.000003198436462 \, T_7(x) + 0.0000001992124807 \, T_8(x)$$

and using the same strategy — building a matrix and right-hand-side utilizing the coefficients in this expansion, we can solve for the Chebyshev-Padé polynomials of degree $(n+2m) \leq 8$: —

Next slide shows the matrix set-up for the $r_{3,2}^{\sf CP}(x)$ approximation.

Note: Due to the "folding", $T_i(x)T_j(x)=\frac{1}{2}\left[T_{i+j}(x)+T_{|i-j|}(x)\right]$, we need n+2m Chebyshev-expansion coefficients. (Burden-Faires do not mention this, but it is "obvious" from algorithm 8.2; Example 2 (p. 519) is broken, – it needs $\tilde{P}_7(x)$.)

Example: Revisiting e^{-x} with Chebyshev-Padé Approximation 2/5

Example: Revisiting e^{-x} with Chebyshev-Padé Approximation 3/5

$$\mathbf{R_{4,1}^{CP}(x)} =$$

$$\frac{1.155054 T_0(x) - 0.8549674 T_1(x) + 0.1561297 T_2(x) - 0.01713502 T_3(x) + 0.001066492 T_4(x)}{T_0(x) + 0.1964246628 T_1(x)}$$

$$\mathbf{R_{3,2}^{CP}(x)} =$$

$$\frac{1.050531166\,T_0(x) - 0.6016362122\,T_1(x) + 0.07417897149\,T_2(x) - 0.004109558353\,T_3(x)}{T_0(x) + 0.3870509565\,T_1(x) + 0.02365167312\,T_2(x)}$$

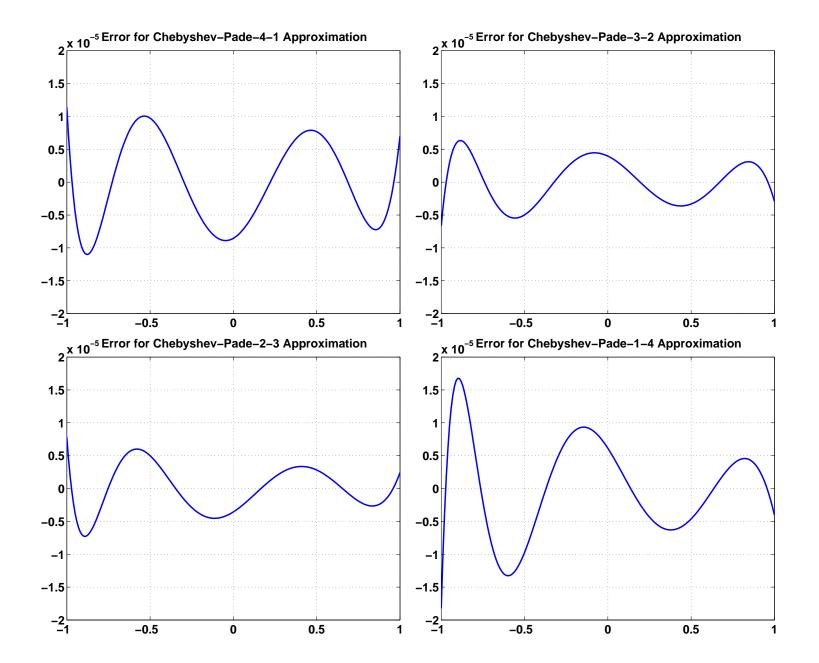
$$\mathbf{R_{2,3}^{CP}(x)} =$$

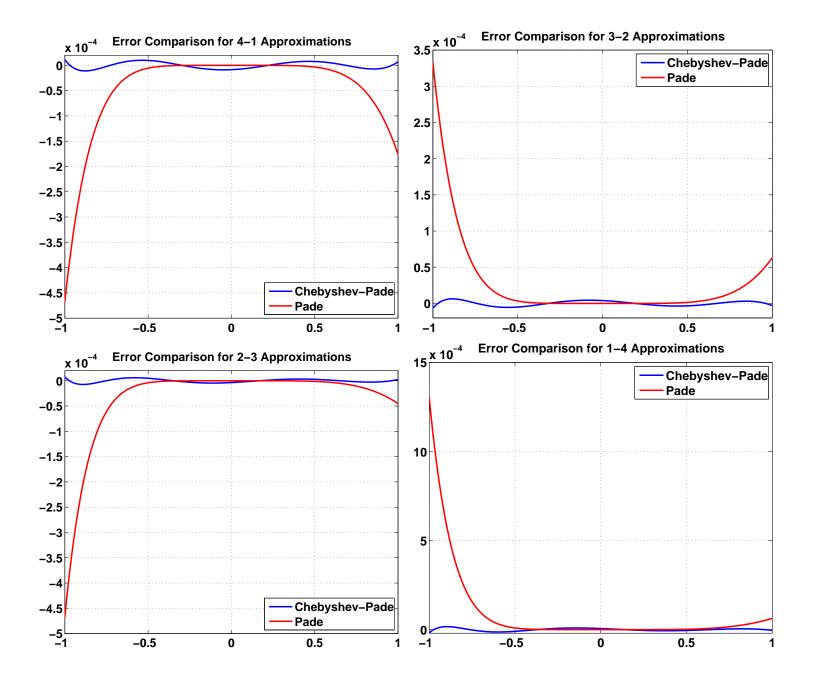
$$\frac{0.9541897238 \, T_0(x) - 0.3737556255 \, T_1(x) + 0.02331049609 \, T_2(x)}{T_0(x) + 0.5682932066 \, T_1(x) + 0.06911746318 \, T_2(x) + 0.003726440404 \, T_3(x)}$$

$$\mathbf{R_{1,4}^{CP}}(\mathbf{x}) =$$

$$0.8671327116 T_0(x) - 0.1731320271 T_1(x)$$

$$\overline{T_0(x) + 0.73743710 T_1(x) + 0.13373746 T_2(x) + 0.014470654 T_3(x) + 0.00086486509 T_4(x)}$$





The Chebyshev basis does not give an optimal (in the min-max sense) rational approximation. However, the result can be used as a starting point for the second Remez algorithm. It is an iterative scheme which converges to the best approximation.

A discussion of how and why (and why not) you may want to use the second Remez' algorithm can be found in *Numerical Recipes in C:*The Art of Scientific Computing (Section 5.13). [You can read it for free on the web — just Google for it!]