Approximation Theory

Rational Function Approximation
Lecture Notes \#13

Joe Mahaffy

Department of Mathematics
San Diego State University
San Diego, CA 92182-7720
mahaffy@math.sdsu.edu
http://www-rohan.sdsu.edu/~jmahaffy
\$Id: lecture.tex,v 1.14 2007/11/26 23:22:23 mahaffy Exp \$

Advantages of Polynomial Approximation:
[1] We can approximate any continuous function on a closed interval to within arbitrary tolerance. (Weierstrass approximation theorem)
[2] Easily evaluated at arbitrary values. (e.g. Horner's method)
[3] Derivatives and integrals are easily determined

Disadvantage of Polynomial Approximation:
[1] Polynomials tend to be oscillatory, which causes errors. This is sometimes, but not always, fixable: - E.g. if we are free to select the node points we can minimize the interpolation error (Chebyshev polynomials), or optimize for integration (Gaussian Quadrature).

Padé Approximation
Extension of Taylor expansion to rational functions; selecting the p_{i} 's and q_{i} 's so that $r^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right) \forall k=0,1, \ldots, N$.

$$
f(x)-r(x)=f(x)-\frac{p(x)}{q(x)}=\frac{f(x) q(x)-p(x)}{q(x)}
$$

Now, use the Taylor expansion $f(x) \sim \sum_{i=0}^{\infty} a_{i}\left(x-x_{0}\right)^{i}$, for simplicity $x_{0}=0$:

$$
f(x)-r(x)=\frac{\sum_{i=0}^{\infty} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \sum_{\mathrm{i}=0}^{\mathrm{m}} \mathrm{q}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}-\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}}{q(x)} .
$$

Next, we choose $p_{0}, p_{1}, \ldots, p_{n}$ and $q_{1}, q_{2}, \ldots, q_{m}$ so that the numerator has no terms of degree $\leq N$.

For simplicity we (sometimes) define the "indexing-out-of-bounds" coefficients:

$$
\left\{\begin{array}{l}
p_{n+1}=p_{n+2}=\ldots=p_{N}=0 \\
q_{m+1}=q_{m+2}=\ldots=q_{N}=0
\end{array}\right.
$$

so we can express the coefficients of x^{k} in

$$
\sum_{i=0}^{\infty} a_{i} x^{i} \sum_{i=0}^{m} q_{i} x^{i}-\sum_{i=0}^{n} p_{i} x^{i}=0, \quad k=0,1, \ldots, N
$$

as

$$
\sum_{i=0}^{k} a_{i} q_{k-i}=p_{k}, \quad k=0,1, \ldots, N
$$

We get a linear system for $p_{1}, p_{2}, \ldots, p_{N}$ and $q_{1}, q_{2}, \ldots, q_{N}$:

$$
\left[\begin{array}{ccccc}
a_{0} & & & & \\
a_{1} & a_{0} & & & \\
a_{2} & a_{1} & a_{0} & \\
a_{3} & a_{2} & a_{1} & a_{0} & \\
a_{4} & a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4} \\
q_{5}
\end{array}\right]-\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5}
\end{array}\right]=-\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]
$$

If we want $n=3, m=2$:

$$
\left[\begin{array}{rrrrr}
a_{0} & 0 & -1 & & \\
a_{1} & a_{0} & 0 & -1 & \\
a_{2} & a_{1} & 0 & 0 & -1 \\
a_{3} & a_{2} & 0 & 0 & 0 \\
a_{4} & a_{3} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]=-\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]
$$

Find the Padé approximation of $f(x)$ of degree 5 , where $f(x) \sim$ $a_{0}+a_{1} x+\ldots a_{5} x^{5}$ is the Taylor expansion of $f(x)$ about the point $x_{0}=0$.

The corresponding equations are:

x^{0}	a_{0}	$-p_{0}=0$
x^{1}	$a_{0} q_{1}+a_{1}$	$-p_{1}=0$
x^{2}	$a_{0} q_{2}+a_{1} q_{1}+a_{2}$	$-p_{2}=0$
x^{3}	$a_{0} q_{3}+a_{1} q_{2}+a_{2} q_{1}+a_{3}$	$-p_{3}=0$
x^{4}	$a_{0} q_{4}+a_{1} q_{3}+a_{2} q_{2}+a_{3} q_{1}+a_{4}$	$-p_{4}=0$
x^{5}	$a_{0} q_{5}+a_{1} q_{4}+a_{2} q_{3}+a_{3} q_{2}+a_{4} q_{1}+a_{5}-p_{5}=0$	

Note: $\quad p_{0}=a_{0}$!!! (This reduces the number of unknowns and equations by one (1).)

The Taylor series expansion for e^{-x} about $x_{0}=0$ is $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} x^{k}$, hence $\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}=\left\{1,-1, \frac{1}{2}, \frac{-1}{6}, \frac{1}{24}, \frac{-1}{120}\right\}$.

$$
\left[\begin{array}{rrrrr}
1 & 0 & -1 & & \\
-1 & 1 & 0 & -1 & \\
1 / 2 & -1 & 0 & 0 & -1 \\
-1 / 6 & 1 / 2 & 0 & 0 & 0 \\
1 / 24 & -1 / 6 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]=-\left[\begin{array}{r}
-1 \\
1 / 2 \\
-1 / 6 \\
1 / 24 \\
-1 / 120
\end{array}\right]
$$

which gives $\left\{q_{1}, q_{2}, p_{1}, p_{2}, p_{3}\right\}=\{2 / 5,1 / 20,-3 / 5,3 / 20,-1 / 60\}$, i.e.

$$
r_{3,2}(x)=\frac{1-\frac{3}{5} x+\frac{3}{20} x^{2}-\frac{1}{60} x^{3}}{1+\frac{2}{5} x+\frac{1}{20} x^{2}}
$$

All the possible Padé approximations of degree 5 are:

$$
\begin{aligned}
& r_{5,0}(x)=1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5} \\
& r_{4,1}(x)=\frac{1-\frac{4}{5} x+\frac{3}{10} x^{2}-\frac{1}{15} x^{3}+\frac{1}{120} x^{4}}{1+\frac{1}{5} x} \\
& r_{3,2}(x)=\frac{1-\frac{3}{5} x+\frac{3}{20} x^{2}-\frac{1}{60} x^{3}}{1+\frac{2}{5} x+\frac{1}{20} x^{2}} \\
& r_{2,3}(x)=\frac{1-\frac{2}{5} x+\frac{1}{20} x^{2}}{1+\frac{3}{5} x+\frac{3}{20} x^{2}+\frac{1}{60} x^{3}} \\
& r_{1,4}(x)=\frac{1-\frac{1}{5} x}{1+\frac{4}{5} x+\frac{3}{10} x^{2}+\frac{1}{15} x^{3}+\frac{1}{120} x^{4}} \\
& r_{0,5}(x)=\frac{1}{1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}}
\end{aligned}
$$

Note: $r_{5,0}(x)$ is the Taylor polynomial of degree 5 .

Padé Approximation: Matlab Code.

The algorithm in the book looks very frightening! If we think in term of the matrix problem defined earlier, it is easier to figure out what is going on:
\% The Taylor Coefficients, $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$
$\mathrm{a}=\left[\begin{array}{lllll}1 & -1 & 1 / 2 & -1 / 6 & 1 / 24 \\ -1 / 120\end{array}\right]^{\prime}$;
$\mathrm{N}=$ length (a); $\mathrm{A}=\operatorname{zeros}(\mathrm{N}-1, \mathrm{~N}-1)$;
$\% \mathrm{~m}$ is the degree of $\mathrm{q}(\mathrm{x})$, and n the degree of $\mathrm{p}(\mathrm{x})$
$m=3$; $n=N-1-m$;
\% Set up the columns which multiply q_{1} through q_{m} for $i=1: m$

```
    A(i:(N-1),i) = a(1:(N-i));
```

end
\% Set up the columns that multiply p_{1} through p_{n}
A(1:n,m+(1:n)) = -eye(n)
\% Set up the right-hand-side
$\mathrm{b}=-\mathrm{a}(2: \mathrm{N})$;
\% Solve
$\mathrm{c}=\mathrm{A} \backslash \mathrm{b}$;
$\mathrm{Q}=[1 ; \mathrm{c}(1: \mathrm{m})] ;$ \% Select q_{0} through q_{m}
$\mathrm{P}=\left[a_{0} ; \mathrm{c}((\mathrm{m}+1):(\mathrm{m}+\mathrm{n}))\right]$; Select p_{0} through p_{n}

The Absolute Error.

Approximation Theory: Rational Function Approximation - p. 10/20

Optimal Padé Approximation?

	One Point	Optimal Points
Polynomials	Taylor	Chebyshev
Rational Functions	Padé	???

From the example e^{-x} we can see that Padé approximations suffer from the same problem as Taylor polynomials - they are very accurate near one point, but away from that point the approximation degrades.
"Chebyshev-placement" of interpolating points for polynomials gave us an optimal (uniform) error bound over the interval.

Can we do something similar for rational approximations???

We use the same idea - instead of expanding in terms of the basis functions x^{k}, we will use the Chebyshev polynomials, $T_{k}(x)$, as our basis, i.e.

$$
r_{n, m}(x)=\frac{\sum_{k=0}^{n} p_{k} T_{k}(x)}{\sum_{k=0}^{m} q_{k} T_{k}(x)}
$$

where $N=n+m$, and $q_{0}=1$.
We also need to expand $f(x)$ in a series of Chebyshev polynomials:

$$
f(x)=\sum_{k=0}^{\infty} a_{k} T_{k}(x)
$$

so that

$$
f(x)-r_{n, m}(x)=\frac{\sum_{k=0}^{\infty} a_{k} T_{k}(x) \sum_{k=0}^{m} q_{k} T_{k}(x)-\sum_{k=0}^{n} p_{k} T_{k}(x)}{\sum_{k=0}^{m} q_{k} T_{k}(x)}
$$

Again, the coefficients $p_{0}, p_{1}, \ldots, p_{n}$ and $q_{1}, q_{2}, \ldots, q_{m}$ are chosen so that the numerator has zero coefficients for $T_{k}(x), k=0,1, \ldots, N$, i.e.

$$
\sum_{k=0}^{\infty} a_{k} T_{k}(x) \sum_{k=0}^{m} q_{k} T_{k}(x)-\sum_{k=0}^{n} p_{k} T_{k}(x)=\sum_{\mathrm{k}=\mathrm{N}+\mathbf{1}}^{\infty} \gamma_{k} T_{k}(x)
$$

We will need the following relationship:

$$
T_{i}(x) T_{j}(x)=\frac{1}{2}\left[T_{i+j}(x)+T_{|i-j|}(x)\right]
$$

Also, we must compute (usually numerically)
$a_{0}=\frac{1}{\pi} \int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x \quad$ and $\quad a_{k}=\frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_{k}(x)}{\sqrt{1-x^{2}}} d x, \quad k \geq 1$.

Example: Revisiting e^{-x} with Chebyshev-Padé Approximation $1 / 5$

The $8^{\text {th }}$ order Chebyshev-expansion (All Praise Maple) for e^{-x} is

$$
\begin{aligned}
P_{8}^{\mathrm{CT}}(x)= & 1.266065878 T_{0}(x)-1.130318208 T_{1}(x)+0.2714953396 T_{2}(x) \\
& -0.04433684985 T_{3}(x)+0.005474240442 T_{4}(x) \\
& -0.0005429263119 T_{5}(x)+0.00004497732296 T_{6}(x) \\
& -0.000003198436462 T_{7}(x)+0.0000001992124807 T_{8}(x)
\end{aligned}
$$

and using the same strategy - building a matrix and right-handside utilizing the coefficients in this expansion, we can solve for the Chebyshev-Padé polynomials of degree $(n+2 m) \leq 8$: -

Next slide shows the matrix set-up for the $r_{3,2}^{\mathrm{CP}}(x)$ approximation.
Note: Due to the "folding", $T_{i}(x) T_{j}(x)=\frac{1}{2}\left[T_{i+j}(x)+T_{|i-j|}(x)\right]$, we need $n+2 m$ Chebyshev-expansion coefficients. (BurdenFaires do not mention this, but it is "obvious" from algorithm 8.2; Example 2 (p. 519) is broken, - it needs $\tilde{P}_{7}(x)$.)

Example: Revisiting e^{-x} with Chebyshev-Padé Approximation 2/5

$$
\begin{aligned}
& T_{0}(x): \frac{1}{2}\left[\begin{array}{ccccc}
a_{1} q_{1} & + & a_{2} q_{2} & -2 p_{0} & =2 a_{0}
\end{array}\right] \\
& T_{1}(x): \frac{1}{2}\left[\left(2 a_{0}+a_{2}\right) q_{1}+\left(a_{1}+a_{3}\right) q_{2}-2 p_{1}=2 a_{1}\right] \\
& T_{2}(x): \frac{1}{2}\left[\left(a_{1}+a_{3}\right) q_{1}+\left(2 a_{0}+a_{4}\right) q_{2}-2 p_{2}=2 a_{2}\right] \\
& T_{3}(x): \frac{1}{2}\left[\left(a_{2}+a_{4}\right) q_{1}+\left(a_{1}+a_{5}\right) q_{2}-2 p_{3}=2 a_{3}\right] \\
& T_{4}(x): \frac{1}{2}\left[\begin{array}{llll}
\left(a_{3}+a_{5}\right) q_{1} & +\left(a_{2}+a_{6}\right) q_{2} & -0 & =2 a_{4}
\end{array}\right] \\
& T_{5}(x): \frac{1}{2}\left[\begin{array}{lll}
\left(a_{4}+a_{6}\right) q_{1} & +\left(a_{3}+a_{7}\right) q_{2} & -0
\end{array}\right]
\end{aligned}
$$

$\mathbf{R}_{4, \mathbf{1}}^{C P}(\mathbf{x})=$
$\underline{1.155054 T_{0}(x)-0.8549674 T_{1}(x)+0.1561297 T_{2}(x)-0.01713502 T_{3}(x)+0.001066492 T_{4}(x)}$ $T_{0}(x)+0.1964246628 T_{1}(x)$
$\mathbf{R}_{3, \mathbf{2}}^{C P}(\mathbf{x})=$
$\frac{1.050531166 T_{0}(x)-0.6016362122 T_{1}(x)+0.07417897149 T_{2}(x)-0.004109558353 T_{3}(x)}{T_{0}(x)+0.3870509565 T_{1}(x)+0.02365167312 T_{2}(x)}$ $T_{0}(x)+0.3870509565 T_{1}(x)+0.02365167312 T_{2}(x)$
$\mathbf{R}_{2, \mathbf{3}}^{\mathrm{CP}}(\mathbf{x})=$

$$
\frac{0.95418972381_{0}(x)-0.3737556255 T_{1}(x)+0.02331049609 T_{2}(x)}{T_{0}(x)+0.5682932066 T_{1}(x)+0.06911746318 T_{2}(x)+0.003726440404 T_{3}(x)}
$$

$\mathbf{R}_{1,4}^{C P}(\mathbf{x})=$

$$
0.8671327116 T_{0}(x)-0.1731320271 T_{1}(x)
$$

$\overline{T_{0}(x)+0.73743710 T_{1}(x)+0.13373746 T_{2}(x)+0.014470654 T_{3}(x)+0.00086486509 T_{4}(x)}$

Example: Revisiting e^{-x} with Chebyshev-Padé Approximation 5/5

Example: Revisiting e^{-x} with Chebyshev-Padé Approximation 4/5

Approximation Theory: Rational Function Approximation - p. 18/20

The Bad News - It's Not Optimal!
The Chebyshev basis does not give an optimal (in the min-max sense) rational approximation. However, the result can be used as a starting point for the second Remez algorithm. It is an iterative scheme which converges to the best approximation.

A discussion of how and why (and why not) you may want to use the second Remez' algorithm can be found in Numerical Recipes in C: The Art of Scientific Computing (Section 5.13). [You can read it for free on the web - just Google for it!]

