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Orthogonal Polynomials: A Quik SummarySo far we have seen the use of orthogonal polynomials an help us solvethe normal equations whih arise in disrete and ontinuous leastsquares problems, without the need for expensive and numeriallydi�ult matrix inversions.The ideas and tehniques we developed � i.e. Gram-Shmidt or-thogonalization with respet to a weight funtion over any intervalhave appliations far beyond least squares problems.The Legendre Polynomials are orthogonal on the interval [−1, 1]with respet to the weight funtion w(x) = 1. � One urious propertyof the Legendre polynomials is that their roots (all real) yield theoptimal node plaement for Gaussian quadrature.

Approximation Theory: Chebyshev Polynomials; Least Squares, revisited – p. 2/45

The Legendre Polynomials BakgroundThe Legendre polynomials are solutions to the Legendre Di�erentialEquation (whih arises in numerous problems exhibiting spherial sym-metry)

(1− x2)
d2y

dx2
− 2x

dy

dx
+ ℓ(ℓ + 1)y = 0, ℓ ∈ N

or equivalently

d

dx

[
(1− x2)

dy

dx

]
+ ℓ(ℓ + 1)y = 0, ℓ ∈ N

Appliations: Celestial Mehanis (Legendre's original appliation),Eletrodynamis, et...
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Other Orthogonal Polynomials Bakground�Orthogonal polynomials have very useful properties in thesolution of mathematial and physial problems. [... They℄provide a natural way to solve, expand, and interpret solutionsto many types of important di�erential equations. Orthogonalpolynomials are espeially easy to generate using Gram-Shmidtorthonormalization.�

�The roots of orthogonal polynomials possess many rathersurprising and useful properties.�

(http://mathworld.wolfram.com/OrthogonalPolynomials.html)
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The Laguerre Polynomials Bakground

The Laguerre polynomials are solutions to the Laguerre di�erentialequation

x
d2

dx2
+ (1− x)

dy

dx
+ λy = 0They are assoiated with the radial solution to the Shrödinger equa-tion for the Hydrogen atom's eletron (Spherial Harmonis).
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The Laguerre Polynomials MoreLike the Rodrigues' Formula for Legendre polynomials, there is adi�erential formula for obtaining the Laguerre polynomials.
Ln(x) =

ex

n!
dn

dxn
(e−xxn)The �rst several Laguerre polynomials are:

L0(x) = 1

L1(x) = −x + 1

L2(x) =
1
2
(x2 − 4x + 2)

L3(x) =
1
6
(−x3 + 9x2 − 18x + 6)

L4(x) =
1
24

(x4 − 16x3 + 72x2 − 96x + 24)

L5(x) =
1

120
(−x5 + 25x4 − 200x3 + 600x2 − 600x + 120)
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More Orthogonal Polynomials Bakground

Polynomial Interval w(x)Jaobi (−1, 1) (1− x)α(1 + x)βChebyshev (1st) [−1, 1] 1/
√

1− x2Chebyshev (2nd) [−1, 1]
√

1− x2Gegenbauer [−1, 1] (1− x2)α−1/2Legendre [−1, 1] 1Laguerre [0,∞) e−xLaguerre (asso) [0,∞) xke−xHermite∗ (−∞,∞) e−x2

Today we'll take a loser look at Chebyshev polynomials of the �rstkind.

∗ The is the Hermite orthogonal polynomials, not to be onfused withthe Hermite interpolating polynomials...
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Chebyshev Polynomials: The Sales Pith.

Tn(z) =
1

2πi

∮ (
1− t2

)
t−(n+1)

(1− 2tz + t2)
dt

Chebyshev Polynomials are used to minimize approximation error.We will use them to solve the following problems:[1℄ Find an optimal plaement of the interpolating points

{x0, x1, . . . , xn} to minimize the error in Lagrange interpolation.[2℄ Find a means of reduing the degree of an approximating poly-nomial with minimal loss of auray.
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Chebyshev Polynomials: De�nitions.The Chebyshev polynomials {Tn(x)} are orthogonal on the interval

(−1, 1) with respet to the weight funtion w(x) = 1/
√

1− x2, i.e.

〈Ti(x), Tj(x)〉w(x) ≡
∫ 1

−1
Ti(x)Tj(x)∗ w(x)dx = αiδi,j .We ould use the Gram-Shmidt orthogonalization proess to �ndthem, but it is easier to give the de�nition and then hek theproperties...
De�nition: Chebyshev Polynomials � For x ∈ [−1, 1], de�ne

Tn(x) = cos(n arccos x), ∀n ≥ 0.

Note:

T0(x) = cos(0) = 1, T1(x) = x.
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Chebyshev Polynomials, Tn(x), n ≥ 2.We introdue the notation θ = arccos x, and get
Tn(θ(x)) ≡ Tn(θ) = cos(nθ), where θ ∈ [0, π].We an �nd a reurrene relation, using these observations:

Tn+1(θ) = cos((n + 1)θ) = cos(nθ) cos(θ)− sin(nθ) sin(θ)

Tn−1(θ) = cos((n− 1)θ) = cos(nθ) cos(θ) + sin(nθ) sin(θ)

Tn+1(θ) + Tn−1(θ) = 2 cos(nθ) cos(θ).Returning to the original variable x, we have
Tn+1(x) = 2x cos(n arccos x)− Tn−1(x),

or

Tn+1(x) = 2xTn(x)−Tn−1(x).
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The Chebyshev Polynomials

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

T1(x)
T2(x)
T3(x)
T4(x)
T5(x)

Approximation Theory: Chebyshev Polynomials; Least Squares, revisited – p. 11/45

Orthogonality of the Chebyshev Polynomials, I.

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =
∫ 1

−1
cos(n arccos x) cos(m arccos x)

dx√
1− x2

.

Reintroduing θ = arccos x gives,

dθ = − dx√
1− x2

,and the integral beomes

−
∫ 0

π
cos(nθ) cos(mθ) dθ =

∫ π

0
cos(nθ) cos(mθ) dθ.

Now, we use the fat that

cos(nθ) cos(mθ) =
cos(n + m)θ + cos(n−m)θ

2
.
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Orthogonality of the Chebyshev Polynomials, II.We have: ∫ π

0

cos(n + m)θ + cos(n−m)θ
2

dθ.

If m 6= n, we get[
1

2(n + m)
sin((n + m)θ) +

1
2(n−m)

sin((n−m)θ)
]π

0

= 0,

if m = n, we have[
1

2(n + m)
sin((n + m)θ) +

x

2

]π

0

=
π

2
.

Hene, the Chebyshev polynomials are orthogonal.
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Zeros and Extrema of Chebyshev Polynomials.

Theorem: � The Chebyshev polynomial of degree n ≥ 1 has
n simple zeros in [−1, 1] at

xk = cos
(

2k − 1
2n

π

)
, k = 1, . . . , n.

Moreover, Tn(x) assumes its absolute extrema at
x′k = cos

(
kπ

n

)
, with Tn(x′k) = (−1)k, k = 1, . . . , n− 1.

Payo�: No matter what the degree of the polynomial, the osilla-tions are kept under ontrol!!!
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Zeros and Extrema of Chebyshev Polynomials � Proof.Proof: Let

xk = cos
(

2k − 1
2n

π

)
, x′k = cos

(
kπ

n

)

Then

Tn(xk) = cos(n arccos(xk)) = cos
(
n arccos

(
cos

(
2k−1
2n π

)))
= cos

(
2k−1

2 π
)

= 0.
√

T ′
n(x) =

d

dx
[cos(n arccos(x))] =

n sin(n arccos(x))√
1− x2

T ′
n(x′k) =

n sin(n arccos(cos( kπ
n )))q

1−cos2( kπ
n )

= n sin(kπ)

sin( kπ
n ) = 0.

√

Tn(x′k) = cos
(
n arccos

(
cos

(
kπ
n

)))
= cos(kπ) = (−1)k. �
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Moni Chebyshev Polynomials, I.

De�nition: � A moni polynomial is a polynomial with leadingoe�ient 1.
We get the moni Chebyshev polynomials T̃n(x) by dividing Tn(x) by

2n−1, n ≥ 1. Hene,

T̃0(x) = 1, T̃n(x) =
1

2n−1
Tn(x), n ≥ 1.

They satisfy the following reurrene relations

T̃2(x) = xT̃1(x)− 1
2 T̃0(x)

T̃n+1(x) = xT̃n(x)− 1
4 T̃n−1(x).

Approximation Theory: Chebyshev Polynomials; Least Squares, revisited – p. 16/45



Moni Chebyshev Polynomials, II.The loation of the zeros and extrema of T̃n(x) oinides with thoseof Tn(x), however the extreme values are

T̃n(x′k) =
(−1)k

2n−1
, k = 1, . . . , n− 1.

De�nition: � Let P̃n denote the set of all moni polynomialsof degree n.
Theorem: Min-Max �The moni Chebyshev polynomials T̃n(x), have the property that

1
2n−1

= max
x∈[−1,1]

|T̃n(x)| ≤ max
x∈[−1,1]

|Pn(x)|, ∀Pn(x) ∈ P̃n.

Moreover, equality an only our if Pn(x) ≡ T̃n(x).
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The Moni Chebyshev Polynomials
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Optimal Node Plaement in Lagrange Interpolation, I.If x0, x1, . . . , xn are distint points in the interval [−1, 1] and f ∈
Cn+1[−1, 1], and P (x) the nth degree interpolating Lagrange poly-nomial, then ∀x ∈ [−1, 1] ∃ξ(x) ∈ (−1, 1) so that

f(x)− P (x) =
f (n+1)(ξ(x))

(n + 1)!

n∏
k=0

(x− xk).

We have no ontrol over f (n+1)(ξ(x)), but we an plae the nodes ina lever way as to minimize the maximum of ∏n
k=0(x− xk).

Sine ∏n
k=0(x−xk) is a moni polynomial of degree (n+1), we knowthe min-max is obtained when the nodes are hosen so that

n∏
k=0

(x− xk) = T̃n+1(x), i.e. xk = cos
(

2k + 1
2(n + 1)

π

)
.
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Optimal Node Plaement in Lagrange Interpolation, II.

Theorem: � If P (x) is the interpolating polynomial of degreeat most n with nodes at the roots of Tn+1(x), then

max
x∈[−1,1]

|f(x)− P (x)| ≤ 1
2n(n + 1)!

max
x∈[−1,1]

|f (n+1)(x)|,

∀f ∈ Cn+1[−1, 1].

Extending to any interval: The transformation

x̃ =
1
2

[(b− a)x + (a + b)]transforms the nodes xk in [−1, 1] into the orresponding nodes x̃k in

[a, b].
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Example: Interpolating f(x) = x2 ex.
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Example: Interpolating f(x) = x2 ex � The Error.
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Example: Interpolating f(x) = x2 ex � The Error.
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Least Squares: Revisited IntrodutionBefore we move on to new and exiting orthogonal polynomials withexoti names... Let's take a moment (or two) and look at the usageof Least Squares Approximation.

This leture is a �how-to� with quite a few applied example of leastsquares approximation...
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Example #1 � Warm-up 1 of 3First we onsider the problem of �tting 1st, 2nd, and 3rd degreepolynomials to the following data:

x = [1.0 1.1 1.3 1.5 1.9 2.1]’

y = [1.84 1.90 2.31 2.65 2.74 3.18]’

matlab» [First we define the matrices ]

A1 = [ones(size(x)) x];

A2 = [A1 x.*x];

A3 = [A2 x.*x.*x ];

[Then we solve the Normal Equations ]

pcoef1 = A1\y;
pcoef2 = A2\y;
pcoef3 = A3\y;Note: The matries A1, A2, and A3 are �tall and skinny.� Normallywe would ompute (An′ · An)−1(An′ · y), however when matlab en-ounters An\y it automatially gives us a solution in the least squaressense.
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Example #1 � Warm-up 2 of 3We now have the oe�ients for the polynomials, let's plot:
matlab» xv = 1.0:0.01:2.1;

p1 = polyval(flipud(pcoef1),xv);

p2 = polyval(flipud(pcoef2),xv);

p3 = polyval(flipud(pcoef3),xv);

plot(xv,p3,’k-’,’linewidth’,3); hold on;

plot(x,y,’ko’,’linewidth’,3); hold off
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Figure: The least squares polynomials p1(x), p2(x), and p3(x).
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Example #1 � Warm-up 3 of 3Finally, we ompute the error

matlab» p1err = polyval(flipud(pcoef1),x) - y;

p2err = polyval(flipud(pcoef2),x) - y;

p3err = polyval(flipud(pcoef3),x) - y;

disp([sum(p1err.*p1err) sum(p2err.*p2err)

sum(p3err.*p3err)])Whih gives us the �tting errors

PErr
1 = 0.0877, PErr

2 = 0.0699, PErr
3 = 0.0447
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Example #2 � Something More Exoti 1 of 2Consider the same data:

x = [1.0 1.1 1.3 1.5 1.9 2.1]’

y = [1.84 1.90 2.31 2.65 2.74 3.18]’

But let's �nd the best �t of the form a + b
√

x to this data! Notiethat this expression is linear in its parameters a, b, so we an solvethe orresponding least squares problem!

matlab» A = [ones(size(x)) sqrt(x)];

pcoef = A\y;
xv = 1.0:0.01:2.1;

fv = pcoef(1) + pcoef(2)*sqrt(xv);

plot(xv,fv,’k-’,’linewidth’,3); hold on;

plot(x,y,’ko’,’linewidth’,3); hold off;
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Example #2 � Something More Exoti 2 of 2
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Figure: The best fit of the form a + b
√

x.We ompute the �tting error:

matlab» ferr = pcoef(1) + pcoef(2)*sqrt(x) - y;

disp(sum(ferr.*ferr))Whih gives us

P Err
{a+b

√
x} = 0.0749
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Getting Even More Exoti? 1 of 2As long as the model is linear in its parameters, we an solve theleast squares problem.

Non-linear dependene will have to wait until Math693a.

We an �t this model:

M1(a, b, c, d) = a + bx3/2 + c/
√

x + desin(x)

Just de�ne the matrix

matlab» A = [ones(size(x)) x.∧(3/2) 1./sqrt(x)

exp(sin(x))];and ompute the oe�ients
matlab» coef = A\y;et...
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Getting Even More Exoti? 2 of 2
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16.4133− 0.9970x3/2 − 11.0059√

x
− 1.1332esin(x)
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Getting Multi-DimensionalIt seems quite unlikely the model

M1(a, b, c, d) = a + bx3/2 + c/
√

x + desin(x)

will ever be useful.

However, we have forgotten about one important aspet of theproblem � so far our models have depended on only one variable, x.

How do we go about �tting multi-dimensional data?
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Example: Going 2D 1 of 10

matlab» x=1:0.25:5;

y=1:0.25:5;

[X,Y]=meshgrid(x,y);

Fxy=1+sqrt(X)+Y.∧3+0.05*randn(size(X));

surf(x,y,Fxy)
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Figure: 2D-data set, the vertexes on the surface are our data points.
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Example: Going 2D 2 of 10Lets try to �t a simple 3-parameter model to this data
M(a, b, c) = a + bx + cy

matlab» sz = size(X);

Bm = reshape(X,prod(sz),1);

Cm = reshape(Y,prod(sz),1);

Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm];

coef = A \ RHS;

fit = coef(1) + coef(2)*X + coef(3)*Y;

fitError = Fxy - fit;

surf(x,y,fitError)
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Example: Going 2D 3 of 10
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Figure: The optimal model �t, and the �tting error for theleast squares best-�t in the model spae M(a, b, c) = a+ bx+
cy. Here, the total LSQ-error is 42,282.
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Example: Going 2D 4 of 10Lets try to �t a simple 4-parameter (bi-linear) model to this data

M(a, b, c) = a + bx + cy + dxy

matlab» sz = size(X);

Bm = reshape(X,prod(sz),1);

Cm = reshape(Y,prod(sz),1);

Dm = reshape(X.*Y,prod(sz),1);

Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm Dm];

coef = A \ RHS;

fit = coef(1) + coef(2)*X + coef(3)*Y +

coef(4)*X.*Y;

fitError = Fxy - fit;

surf(x,y,fitError)
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Example: Going 2D 5 of 10
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Figure: The �tting error for the least squares best-�t in themodel spae M(a, b, c) = a + bx + cy + dxy. � Still a prettybad �t. Here, the total LSQ-error is still 42,282.
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Example: Going 2D 6 of 10Sine the main problem is in the y-diretion, we �t try a 4-parametermodel with a quadrati term in y

M(a, b, c) = a + bx + cy + dy2

matlab» sz = size(X);

Bm = reshape(X,prod(sz),1);

Cm = reshape(Y,prod(sz),1);

Dm = reshape(Y.*Y,prod(sz),1);

Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm Dm];

coef = A \ RHS;

fit = coef(1) + coef(2)*X + coef(3)*Y +

coef(4)*Y.*Y;

fitError = Fxy - fit;

surf(x,y,fitError)
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Example: Going 2D 7 of 10
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Figure: The �tting error for the least squares best-�t in themodel spae M(a, b, c) = a + bx + cy + dy2. � We see asigni�ant drop in the error (one order of magnitude); and thetotal LSQ-error has dropped to 578.8.
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Example: Going 2D 7 1
2

of 10We notie something interesting: the addition of the xy-term to themodel did not produe a drop in the LSQ-error. However, the y2allowed us to apture a lot more of the ation.The hange in the LSQ-error as a funtion of an added term is oneway to deide what is a useful addition to the model.Why not add both the xy and y2 always?

xy y2 Both

κ(A) 86.2 107.3 170.5

κ(AT A) 7,422 11,515 29,066Table: Condition numbers for the A-matries (and as-soiated Normal Equations) for the di�erent models.
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Example: Going 2D 8 of 10We �t a 5-parameter model with a quadrati term in y

M(a, b, c) = a + bx + cy + dy2 + ey3

matlab» sz = size(X);

Bm = reshape(X,prod(sz),1);

Cm = reshape(Y,prod(sz),1);

Dm = reshape(Y.*Y,prod(sz),1);

Em = reshape(Y.*Y.*Y,prod(sz),1);

Am = ones(size(Bm));

RHS = reshape(Fxy,prod(sz),1);

A = [Am Bm Cm Dm];

coef = A \ RHS;

fit = coef(1) + coef(2)*X + coef(3)*Y +

coef(4)*Y.*Y + coef(5)*Y.∧3;
fitError = Fxy - fit;

surf(x,y,fitError)
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Example: Going 2D 9 of 10
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Figure: The �tting error for the least squares best-�t in themodel spae M(a, b, c) = a+ bx+ cy+dy2 + ey3. � We nowhave a pretty good �t. The LSQ-error is now down to 0.9864.
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Example: Going 2D 10 of 10

Model LSQ-error κ(AT A)

a + bx + cy 42,282 278

a + bx + cy + dxy 42,282 7,422

a + bx + cy + dy2 578.8 11,515
a + bx + cy + dy2 + ey3 0.9864 1,873,124Table: Summary of LSQ-error and onditioning of the NormalEquations for the various models. We notie that additionalolumns in the A-matrix (additional model parameters) have asevere e�et on the onditioning of the Normal Equations.
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Moving to Even Higher DimensionsAt this point we an state the Linear Least Squares �tting problem inany number of dimensions, and we an use exoti models if we want to.

In 3D we need 10 parameters to �t a model with all linear, and seondorder terms

M(a, b, c, d, e, f, g, h, i, j) =

a + bx + cy + dz + ex2 + fy2 + gz2 + hxy + ixz + jyzWith nx, ny, and nz data points in the x-, y-, and z-diretions (re-spetively) we end up with a matrix A of dimension (nx ·ny ·nz)×10.
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Ill-onditioning of the Normal EquationsNeedless(?) to say, the normal equations an be quite ill-onditionedin this ase. The ill-onditioning an be eased by searhing for a setof orthogonal funtions with respet to the inner produt

〈f(x), g(x)〉 =
∫ xb

xa

∫ yb

ya

∫ zb

za

f(x, y, z)g(x, y, z)∗ dx dy dz

We'll leave that as an exerise for a dark and stormy night...
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