Approximation Theory

Chebyshev Polynomials
Least Squares, revisited
Lecture Notes \#12

Joe Mahaffy

Department of Mathematics
San Diego State University
San Diego, CA 92182-7720
mahaffy@math.sdsu.edu
http://www-rohan.sdsu.edu/~jmahaffy

\$Id: lecture.tex,v 1.13 2007/11/15 00:06:33 mahaffy Exp \$

Approximation Theory: Chebyshev Polynomials; Least Squares, revisited - p. 1/45

The Legendre polynomials are solutions to the Legendre Differential Equation (which arises in numerous problems exhibiting spherical symmetry)

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\ell(\ell+1) y=0, \quad \ell \in \mathbb{N}
$$

or equivalently

$$
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d y}{d x}\right]+\ell(\ell+1) y=0, \quad \ell \in \mathbb{N}
$$

Applications: Celestial Mechanics (Legendre's original application), Electrodynamics, etc...

So far we have seen the use of orthogonal polynomials can help us solve the normal equations which arise in discrete and continuous least squares problems, without the need for expensive and numerically difficult matrix inversions.

The ideas and techniques we developed - i.e. Gram-Schmidt orthogonalization with respect to a weight function over any interval have applications far beyond least squares problems.

The Legendre Polynomials are orthogonal on the interval $[-1,1]$ with respect to the weight function $w(x)=1$. - One curious property of the Legendre polynomials is that their roots (all real) yield the optimal node placement for Gaussian quadrature.
"Orthogonal polynomials have very useful properties in the solution of mathematical and physical problems. [... They] provide a natural way to solve, expand, and interpret solutions to many types of important differential equations. Orthogonal polynomials are especially easy to generate using Gram-Schmidt orthonormalization."
"The roots of orthogonal polynomials possess many rather surprising and useful properties."
(http://mathworld.wolfram.com/OrthogonalPolynomials.html)

The Laguerre polynomials are solutions to the Laguerre differential equation

$$
x \frac{d^{2}}{d x^{2}}+(1-x) \frac{d y}{d x}+\lambda y=0
$$

They are associated with the radial solution to the Schrödinger equation for the Hydrogen atom's electron (Spherical Harmonics).

Approximation Theory: Chebyshev Polynomials; Least Squares, revisited - p. 5/45

Polynomial	Interval	$\mathbf{w}(\mathbf{x})$
Jacobi	$(-1,1)$	$(1-x)^{\alpha}(1+x)^{\beta}$
Chebyshev (1st)	$[-1,1]$	$1 / \sqrt{1-x^{2}}$
Chebyshev (2nd)	$[-1,1]$	$\sqrt{1-x^{2}}$
Gegenbauer	$[-1,1]$	$\left(1-x^{2}\right)^{\alpha-1 / 2}$
Legendre	$[-1,1]$	1
Laguerre	$[0, \infty)$	e^{-x}
Laguerre (assoc)	$[0, \infty)$	$x^{k} e^{-x}$
Hermite* *	$(-\infty, \infty)$	$e^{-x^{2}}$

Today we'll take a closer look at Chebyshev polynomials of the first kind.

* The is the Hermite orthogonal polynomials, not to be confused with the Hermite interpolating polynomials...

Like the Rodrigues' Formula for Legendre polynomials, there is a differential formula for obtaining the Laguerre polynomials.

$$
L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{n}\right)
$$

The first several Laguerre polynomials are:

$$
\begin{aligned}
& L_{0}(x)=1 \\
& L_{1}(x)=-x+1 \\
& L_{2}(x)=\frac{1}{2}\left(x^{2}-4 x+2\right) \\
& L_{3}(x)=\frac{1}{6}\left(-x^{3}+9 x^{2}-18 x+6\right) \\
& L_{4}(x)=\frac{1}{24}\left(x^{4}-16 x^{3}+72 x^{2}-96 x+24\right) \\
& L_{5}(x)=\frac{1}{120}\left(-x^{5}+25 x^{4}-200 x^{3}+600 x^{2}-600 x+120\right)
\end{aligned}
$$

Approximation Theory: Chebyshev Polynomials; Least Squares, revisited - p. 6/45

$$
T_{n}(z)=\frac{1}{2 \pi i} \oint \frac{\left(1-t^{2}\right) t^{-(n+1)}}{\left(1-2 t z+t^{2}\right)} d t
$$

Chebyshev Polynomials are used to minimize approximation error. We will use them to solve the following problems:
[1] Find an optimal placement of the interpolating points $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ to minimize the error in Lagrange interpolation.
[2] Find a means of reducing the degree of an approximating polynomial with minimal loss of accuracy.

The Chebyshev polynomials $\left\{T_{n}(x)\right\}$ are orthogonal on the interval $(-1,1)$ with respect to the weight function $w(x)=1 / \sqrt{1-x^{2}}$, i.e.

$$
\left\langle T_{i}(x), T_{j}(x)\right\rangle_{w(x)} \equiv \int_{-1}^{1} T_{i}(x) T_{j}(x)^{*} w(x) d x=\alpha_{i} \delta_{i, j}
$$

We could use the Gram-Schmidt orthogonalization process to find them, but it is easier to give the definition and then check the properties..

Definition: Chebyshev Polynomials - For $x \in[-1,1]$, define

$$
T_{n}(x)=\cos (n \arccos x), \quad \forall n \geq 0
$$

Note:

$$
T_{0}(x)=\cos (0)=1, \quad T_{1}(x)=x
$$

The Chebyshev Polynomials

We introduce the notation $\theta=\arccos x$, and get

$$
T_{n}(\theta(x)) \equiv T_{n}(\theta)=\cos (n \theta), \quad \text { where } \theta \in[0, \pi]
$$

We can find a recurrence relation, using these observations:

$$
\begin{aligned}
& T_{n+1}(\theta)=\cos ((n+1) \theta)=\cos (n \theta) \cos (\theta)-\sin (n \theta) \sin (\theta) \\
& T_{n-1}(\theta)=\cos ((n-1) \theta)=\cos (n \theta) \cos (\theta)+\sin (n \theta) \sin (\theta) \\
& \mathbf{T}_{\mathbf{n}+\mathbf{1}}(\theta)+\mathbf{T}_{\mathbf{n}-\mathbf{1}}(\theta)=\mathbf{2} \cos (\mathbf{n} \theta) \cos (\theta)
\end{aligned}
$$

Returning to the original variable x, we have

$$
T_{n+1}(x)=2 x \cos (n \arccos x)-T_{n-1}(x)
$$

or

$$
\mathrm{T}_{\mathrm{n}+1}(\mathrm{x})=2 \mathrm{x} \mathrm{~T}_{\mathrm{n}}(\mathrm{x})-\mathrm{T}_{\mathrm{n}-1}(\mathrm{x})
$$

Orthogonality of the Chebyshev Polynomials, I.
$\int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1-x^{2}}} d x=\int_{-1}^{1} \cos (n \arccos x) \cos (m \arccos x) \frac{d x}{\sqrt{1-x^{2}}}$.

Reintroducing $\theta=\arccos x$ gives,

$$
d \theta=-\frac{d x}{\sqrt{1-x^{2}}}
$$

and the integral becomes

$$
-\int_{\pi}^{0} \cos (n \theta) \cos (m \theta) d \theta=\int_{0}^{\pi} \cos (n \theta) \cos (m \theta) d \theta
$$

Now, we use the fact that

$$
\cos (n \theta) \cos (m \theta)=\frac{\cos (n+m) \theta+\cos (n-m) \theta}{2}
$$

We have:

$$
\int_{0}^{\pi} \frac{\cos (n+m) \theta+\cos (n-m) \theta}{2} d \theta
$$

If $m \neq n$, we get

$$
\left[\frac{1}{2(n+m)} \sin ((n+m) \theta)+\frac{1}{2(n-m)} \sin ((n-m) \theta)\right]_{0}^{\pi}=0
$$

if $m=n$, we have

$$
\left[\frac{1}{2(n+m)} \sin ((n+m) \theta)+\frac{x}{2}\right]_{0}^{\pi}=\frac{\pi}{2}
$$

Hence, the Chebyshev polynomials are orthogonal.

Theorem: - The Chebyshev polynomial of degree $n \geq 1$ has n simple zeros in $[-1,1]$ at

$$
x_{k}=\cos \left(\frac{2 k-1}{2 n} \pi\right), \quad k=1, \ldots, n .
$$

Moreover, $T_{n}(x)$ assumes its absolute extrema at

$$
x_{k}^{\prime}=\cos \left(\frac{k \pi}{n}\right), \quad \text { with } \quad T_{n}\left(x_{k}^{\prime}\right)=(-1)^{k}, \quad k=1, \ldots, n-1
$$

Payoff: No matter what the degree of the polynomial, the oscillations are kept under control!!!

Proof: Let

$$
x_{k}=\cos \left(\frac{2 k-1}{2 n} \pi\right), \quad x_{k}^{\prime}=\cos \left(\frac{k \pi}{n}\right)
$$

Then

$$
\begin{aligned}
T_{n}\left(x_{k}\right) & =\cos \left(n \arccos \left(x_{k}\right)\right)=\cos \left(n \arccos \left(\cos \left(\frac{2 k-1}{2 n} \pi\right)\right)\right) \\
& =\cos \left(\frac{2 k-1}{2} \pi\right)=0 . \sqrt{ } \\
T_{n}^{\prime}(x) & =\frac{d}{d x}[\cos (n \arccos (x))]=\frac{n \sin (n \arccos (x))}{\sqrt{1-x^{2}}} \\
T_{n}^{\prime}\left(x_{k}^{\prime}\right) & =\frac{n \sin \left(n \arccos \left(\cos \left(\frac{k \pi}{n}\right)\right)\right)}{\sqrt{1-\cos ^{2}\left(\frac{k \pi}{n}\right)}}=\frac{n \sin (k \pi)}{\sin \left(\frac{k \pi}{n}\right)}=0 . \quad \sqrt{ } \\
T_{n}\left(x_{k}^{\prime}\right) & =\cos \left(n \arccos \left(\cos \left(\frac{k \pi}{n}\right)\right)\right)=\cos (k \pi)=(-1)^{k}
\end{aligned}
$$

Monic Chebyshev Polynomials, I.

> Definition: - A monic polynomial is a polynomial with leading coefficient 1.

We get the monic Chebyshev polynomials $\tilde{T}_{n}(x)$ by dividing $T_{n}(x)$ by $2^{n-1}, n \geq 1$. Hence,

$$
\tilde{T}_{0}(x)=1, \quad \tilde{T}_{n}(x)=\frac{1}{2^{n-1}} T_{n}(x), \quad n \geq 1
$$

They satisfy the following recurrence relations

$$
\begin{aligned}
\tilde{T}_{2}(x) & =x \tilde{T}_{1}(x)-\frac{1}{2} \tilde{T}_{0}(x) \\
\tilde{T}_{n+1}(x) & =x \tilde{T}_{n}(x)-\frac{1}{4} \tilde{T}_{n-1}(x)
\end{aligned}
$$

The location of the zeros and extrema of $\tilde{T}_{n}(x)$ coincides with those of $T_{n}(x)$, however the extreme values are

$$
\tilde{T}_{n}\left(x_{k}^{\prime}\right)=\frac{(-1)^{k}}{2^{n-1}}, \quad k=1, \ldots, n-1
$$

Definition: - Let $\tilde{\mathcal{P}}_{n}$ denote the set of all monic polynomials of degree n.

Theorem: Min-Max -

The monic Chebyshev polynomials $\tilde{T}_{n}(x)$, have the property that

$$
\frac{1}{2^{n-1}}=\max _{x \in[-1,1]}\left|\tilde{T}_{n}(x)\right| \leq \max _{x \in[-1,1]}\left|P_{n}(x)\right|, \quad \forall P_{n}(x) \in \tilde{\mathcal{P}}_{n} .
$$

If $x_{0}, x_{1}, \ldots, x_{n}$ are distinct points in the interval $[-1,1]$ and $f \in$ $C^{n+1}[-1,1]$, and $P(x)$ the $n^{\text {th }}$ degree interpolating Lagrange polynomial, then $\forall x \in[-1,1] \exists \xi(x) \in(-1,1)$ so that

$$
f(x)-P(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{k=0}^{n}\left(x-x_{k}\right) .
$$

We have no control over $f^{(n+1)}(\xi(x))$, but we can place the nodes in a clever way as to minimize the maximum of $\prod_{k=0}^{n}\left(x-x_{k}\right)$.

Since $\prod_{k=0}^{n}\left(x-x_{k}\right)$ is a monic polynomial of degree $(n+1)$, we know the min-max is obtained when the nodes are chosen so that

$$
\prod_{k=0}^{n}\left(x-x_{k}\right)=\tilde{T}_{n+1}(x), \quad \text { i.e. } \quad x_{k}=\cos \left(\frac{2 k+1}{2(n+1)} \pi\right)
$$

Theorem: - If $P(x)$ is the interpolating polynomial of degree at most n with nodes at the roots of $T_{n+1}(x)$, then

$$
\begin{gathered}
\max _{x \in[-1,1]}|f(x)-P(x)| \leq \frac{1}{2^{n}(n+1)!} \max _{x \in[-1,1]}\left|f^{(n+1)}(x)\right|, \\
\forall f \in C^{n+1}[-1,1] .
\end{gathered}
$$

Extending to any interval: The transformation

$$
\tilde{x}=\frac{1}{2}[(b-a) x+(a+b)]
$$

transforms the nodes x_{k} in $[-1,1]$ into the corresponding nodes \tilde{x}_{k} in $[a, b]$.

Approximation Theory: Chebyshev Polynomials; Least Squares, revisited - p. 21/45

Example: Interpolating $f(x)=x^{2} e^{x}$ - The Error.

Least Squares: Revisited
Before we move on to new and exciting orthogonal polynomials with exotic names... Let's take a moment (or two) and look at the usage of Least Squares Approximation.

This lecture is a "how-to" with quite a few applied example of least squares approximation..

Approximation Theory: Chebyshev Polynomials; Least Squares, revisited - p. 23/45

First we consider the problem of fitting 1st, 2nd, and 3rd degree polynomials to the following data:

$$
\begin{gathered}
x=\left[\begin{array}{lllllllll}
1.0 & 1.1 & 1.3 & 1.5 & 1.9 & 2.1
\end{array}\right]^{\prime} \\
y=\left[\begin{array}{lllllll}
1.84 & 1.90 & 2.31 & 2.65 & 2.74 & 3.18
\end{array}\right]
\end{gathered}
$$

matlab» [First we define the matrices]

$$
\begin{aligned}
& \text { A1 }=[\text { ones (size }(x)) \mathrm{x}] \\
& \text { A2 }=[\text { A1 } \mathrm{x} . * \mathrm{x}] \\
& \text { A3 }=[\text { A2 } \mathrm{x} . * \mathrm{x} . * \mathrm{x}]
\end{aligned}
$$

[Then we solve the Normal Equations]

$$
\begin{aligned}
\text { pcoef1 } & =\mathrm{A} 1 \backslash \mathrm{y} ; \\
\text { pcoef2 } & =\mathrm{A} 2 \backslash \mathrm{y} ; \\
\text { pcoef3 } & =\mathrm{A} 3 \backslash \mathrm{y} ;
\end{aligned}
$$

Note: The matrices A1, A2, and A3 are "tall and skinny." Normally we would compute $\left(A n^{\prime} \cdot A n\right)^{-1}\left(A n^{\prime} \cdot y\right)$, however when matlab encounters $\mathbf{A n} \backslash \mathbf{y}$ it automatically gives us a solution in the least squares sense.

Finally, we compute the error

```
matlab> plerr = polyval(flipud(pcoef1),x) - y;
    p2err = polyval(flipud(pcoef2),x) - y;
    p3err = polyval(flipud(pcoef3),x) - y;
    disp([sum(p1err.*p1err) sum(p2err.*p2err)
    sum(p3err.*p3err)])
```

Which gives us the fitting errors

$$
P_{1}^{\mathrm{Err}}=0.0877, \quad P_{2}^{\mathrm{Err}}=0.0699, \quad P_{3}^{\mathrm{Err}}=0.0447
$$

We now have the coefficients for the polynomials, let's plot:
matlab» xv = 1.0:0.01:2.1;
p1 = polyval (flipud (pcoef1), xv);
p2 $=$ polyval (flipud (pcoef2), xv);
p3 $=$ polyval (flipud (pcoef3), xv);
plot (xv,p3,'k-','linewidth', 3); hold on;
plot ($x, y,{ }^{\prime} k o^{\prime}, '$ linewidth', 3) ; hold off

Figure: The least squares polynomials $p_{1}(x), p_{2}(x)$, and $p_{3}(x)$.

Consider the same data:

$$
\begin{gathered}
x=\left[\begin{array}{llllllll}
1.0 & 1.1 & 1.3 & 1.5 & 1.9 & 2.1
\end{array}\right]^{\prime} \\
y=\left[\begin{array}{lllllll}
1.84 & 1.90 & 2.31 & 2.65 & 2.74 & 3.18
\end{array}\right]
\end{gathered}
$$

But let's find the best fit of the form $a+b \sqrt{x}$ to this data! Notice that this expression is linear in its parameters a, b, so we can solve the corresponding least squares problem!
matlab> $A=[$ ones(size(x)) sqrt(x)];
pcoef $=\mathbf{A} \backslash \mathbf{y}$;
$\mathrm{xv}=1.0: 0.01: 2.1$;
$\mathrm{fv}=\mathrm{pcoef}(1)+$ pcoef(2) *sqrt (xv);
plot (xv,fv,'k-','linewidth', 3); hold on;
plot(x,y,'ko','linewidth', 3); hold off;

Figure: The best fit of the form $a+b \sqrt{x}$.
We compute the fitting error:

matlab» ferr $=$ pcoef(1) + pcoef(2)*sqrt (x) - y; disp(sum (ferr.*ferr))

Which gives us

$$
P_{\{a+b \sqrt{x}\}}^{\mathrm{Err}}=0.0749
$$

Approximation Theory: Chebyshev Polynomials; Least Squares, revisited - p. 29/45

The optimal approximation of this form is

$$
16.4133-0.9970 x^{3 / 2}-\frac{11.0059}{\sqrt{x}}-1.1332 e^{\sin (x)}
$$

As long as the model is linear in its parameters, we can solve the least squares problem.

Non-linear dependence will have to wait until Math 693a.

We can fit this model:

$$
M_{1}(a, b, c, d)=a+b x^{3 / 2}+c / \sqrt{x}+d e^{\sin (x)}
$$

Just define the matrix

```
matlab> A = [ones(size(x)) x.^(3/2) 1./sqrt(x)
    exp(sin(x))];
```

and compute the coefficients
matlab» coef $=\mathbf{A} \backslash \mathbf{y}$;
etc...

Approximation Theory: Chebyshev Polynomials; Least Squares, revisited - p. 30/45

Getting Multi-Dimensional
It seems quite unlikely the model

$$
M_{1}(a, b, c, d)=a+b x^{3 / 2}+c / \sqrt{x}+d e^{\sin (x)}
$$

will ever be useful.

However, we have forgotten about one important aspect of the problem - so far our models have depended on only one variable, x.

How do we go about fitting multi-dimensional data?
matlab» $x=1: 0.25: 5$;
$\mathrm{y}=1: 0.25: 5 ;$
$[\mathrm{X}, \mathrm{Y}]=$ meshgrid ($\mathrm{x}, \mathrm{y})$;
Fxy=1+sqrt (X) + Y. ${ }^{\wedge} 3+0.05 *$ randn (size (X));
$\operatorname{surf}(x, y, F x y)$

Figure: 2D-data set, the vertexes on the surface are our data points.

Figure: The optimal model fit, and the fitting error for the least squares best-fit in the model space $M(a, b, c)=a+b x+$ cy. Here, the total LSQ-error is 42,282 .

Lets try to fit a simple 3-parameter model to this data

```
\[
M(a, b, c)=a+b x+c y
\]
matlab» sz = size(X);
\[
\mathrm{Bm} \quad=\operatorname{reshape}(\mathrm{X}, \operatorname{prod}(\mathrm{sz}), 1) ;
\]
\[
\mathrm{Cm} \quad=\operatorname{reshape}(Y, \operatorname{prod}(s z), 1) ;
\]
\[
\text { Am } \quad=\text { ones }(\text { size }(\mathrm{Bm}))
\]
\[
\text { RHS }=\operatorname{reshape}(F x y, \operatorname{prod}(s z), 1) ;
\]
\[
A \quad=[\mathrm{Am} \mathrm{Bm} \mathrm{Cm}] ;
\]
\[
\text { coef }=\mathbf{A} \backslash \text { RHS; }
\]
\[
\text { fit }=\operatorname{coef}(1)+\operatorname{coef}(2) * X+\operatorname{coef}(3) * Y
\]
\[
\text { fitError }=\text { Fxy }-f i t
\]
\[
\operatorname{surf}(x, y, f i t E r r o r)
\]
```

Lets try to fit a simple 4-parameter (bi-linear) model to this data

$$
M(a, b, c)=a+b x+c y+d x y
$$

matlab»sz = size(X);
$\mathrm{Bm} \quad=\operatorname{reshape}(\mathrm{X}, \operatorname{prod}(\mathrm{sz}), 1)$;
$\mathrm{Cm}=\operatorname{reshape}(\mathrm{Y}, \operatorname{prod}(\mathrm{sz}), 1)$;
$\mathrm{Dm}=$ reshape $(\mathrm{X} . * \mathrm{Y}, \operatorname{prod}(\mathrm{sz}), 1)$;
Am $=$ ones (size (Bm));
RHS $=$ reshape (Fxy, prod (sz), 1);
$\mathrm{A}=[\mathrm{Am} \mathrm{Bm} \mathrm{Cm} \mathrm{Dm];}$
coef $=\mathbf{A} \backslash$ RHS;
fit $=\operatorname{coef}(1)+\operatorname{coef}(2) * X+\operatorname{coef}(3) * Y+$
coef (4) *X. *Y;
fitError = Fxy - fit;
surf (x,y,fitError)

Figure: The fitting error for the least squares best-fit in the model space $M(a, b, c)=a+b x+c y+d x y$. - Still a pretty bad fit. Here, the total LSQ-error is still 42,282 .

Example: Going 2D
7 of 10

Figure: The fitting error for the least squares best-fit in the model space $M(a, b, c)=a+b x+c y+d y^{2}$. - We see a significant drop in the error (one order of magnitude); and the total LSQ-error has dropped to 578.8.

Since the main problem is in the y-direction, we fit try a 4-parameter model with a quadratic term in y

```
\[
M(a, b, c)=a+b x+c y+d y^{2}
\]
\[
\text { matlab» sz }=\text { size (X) ; }
\]
\[
\mathrm{Bm}=\operatorname{reshape}(X, \operatorname{prod}(s z), 1) ;
\]
\[
\mathrm{Cm} \quad=\operatorname{reshape}(Y, \operatorname{prod}(s z), 1) ;
\]
\[
\mathrm{Dm} \quad=\operatorname{reshape}(Y . * Y, \operatorname{prod}(s z), 1) ;
\]
\[
A m \quad=\text { ones }(\text { size }(\mathrm{Bm})) ;
\]
\[
\text { RHS }=\text { reshape }(F x y, \operatorname{prod}(s z), 1) ;
\]
\[
A \quad=[\mathrm{Am} \mathrm{Bm} \mathrm{Cm} \mathrm{Dm}] ;
\]
\[
\text { coef }=\mathbf{A} \backslash \text { RHS; }
\]
\[
\text { fit }=\operatorname{coef}(1)+\operatorname{coef}(2) * X+\operatorname{coef}(3) * Y+
\]
coef (4) *Y. *Y;
\[
\text { fitError }=\text { Fxy - fit; }
\]
surf (x,y,fitError)
```

We notice something interesting: the addition of the $x y$-term to the model did not produce a drop in the LSQ-error. However, the y^{2} allowed us to capture a lot more of the action.

The change in the LSQ-error as a function of an added term is one way to decide what is a useful addition to the model.

Why not add both the $x y$ and y^{2} always?

	$x y$	y^{2}	Both
$\kappa(A)$	86.2	107.3	170.5
$\kappa\left(A^{T} A\right)$	7,422	11,515	29,066

Table: Condition numbers for the A-matrices (and associated Normal Equations) for the different models.

We fit a 5-parameter model with a quadratic term in y

$$
M(a, b, c)=a+b x+c y+d y^{2}+e y^{3}
$$

```
matlab> sz = size(X);
    Bm = reshape (X,prod (sz), 1);
    Cm = reshape (Y,prod (sz),1);
    Dm = reshape(Y.*Y,prod(sz),1);
    Em = reshape(Y.*Y.*Y,prod(sz),1);
    Am = ones(size(Bm));
    RHS = reshape(Fxy,prod(sz),1);
    A = [Am Bm Cm Dm];
coef = A\ RHS;
fit = coef(1) + coef(2)*X + coef(3)*Y +
coef(4)*Y.*Y + coef(5)*Y.^ 3;
fitError = Fxy - fit;
surf(x,y,fitError)
```

Approximation Theory: Chebyshev Polynomials; Least Squares, revisited - p. 41/45

Model	LSQ-error	$\kappa\left(A^{T} A\right)$
$a+b x+c y$	42,282	278
$a+b x+c y+d x y$	42,282	7,422
$a+b x+c y+d y^{2}$	578.8	11,515
$a+b x+c y+d y^{2}+e y^{3}$	0.9864	$1,873,124$

Table: Summary of LSQ-error and conditioning of the Normal Equations for the various models. We notice that additional columns in the A-matrix (additional model parameters) have a severe effect on the conditioning of the Normal Equations.

Figure: The fitting error for the least squares best-fit in the model space $M(a, b, c)=a+b x+c y+d y^{2}+e y^{3}$. - We now have a pretty good fit. The LSQ-error is now down to 0.9864 .

Moving to Even Higher Dimensions
At this point we can state the Linear Least Squares fitting problem in any number of dimensions, and we can use exotic models if we want to.

In 3D we need 10 parameters to fit a model with all linear, and second order terms

$$
\begin{aligned}
& M(a, b, c, d, e, f, g, h, i, j)= \\
& \quad a+b x+c y+d z+e x^{2}+f y^{2}+g z^{2}+h x y+i x z+j y z
\end{aligned}
$$

With n_{x}, n_{y}, and n_{z} data points in the $x-, y$-, and z-directions (respectively) we end up with a matrix A of dimension $\left(n_{x} \cdot n_{y} \cdot n_{z}\right) \times 10$.

Needless(?) to say, the normal equations can be quite ill-conditioned in this case. The ill-conditioning can be eased by searching for a set of orthogonal functions with respect to the inner product

$$
\langle f(x), g(x)\rangle=\int_{x_{a}}^{x_{b}} \int_{y_{a}}^{y_{b}} \int_{z_{a}}^{z_{b}} f(x, y, z) g(x, y, z)^{*} d x d y d z
$$

We'll leave that as an exercise for a dark and stormy night...

