## Approximation Theory

## Discrete Least Squares Approximation

 and Orthogonal PolynomialsLecture Notes \#11

## Joe Mahaffy

Department of Mathematics
San Diego State University
San Diego, CA 92182-7720
mahaffy@math.sdsu.edu
http://www-rohan.sdsu.edu/~jmahaffy

## \$Id: lecture.tex,v 1.9 2007/11/11 22:15:09 mahaffy Exp \$

Approximation Theory: Discrete Least Squares Approximationand Orthogonal Polynomials - p. 1/27

Last time we showed that the normal equations can be found with purely a Linear Algebra argument. Given the data points, and the model (here $p_{4}(x)$ ), we write down the over-determined system:

$$
\left\{\begin{array}{rcc}
a_{0}+a_{1} x_{0}+a_{2} x_{0}^{2}+a_{3} x_{0}^{3}+a_{4} x_{0}^{4} & =f_{0} \\
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+a_{3} x_{1}^{3}+a_{4} x_{1}^{4} & =f_{1} \\
a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+a_{3} x_{2}^{3}+a_{4} x_{2}^{4} & =f_{2} \\
& \vdots & \\
& & f_{n}
\end{array}\right.
$$

We can write this as a matrix-vector problem:

$$
X \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{f}}
$$

where the Vandermonde matrix $X$ is tall and skinny. By multiplying both the left- and right-hand-sides by $X^{T}$ (the transpose of $X$ ), we get a "square" system - we recover the normal equations:

$$
X^{T} X \overrightarrow{\mathbf{a}}=X^{T} \overrightarrow{\mathbf{f}}
$$

The Idea: Given the data set $(\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{f}})$, where $\overrightarrow{\mathbf{x}}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}^{T}$ and $\overrightarrow{\mathbf{f}}=\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}^{T}$ we want to fit a simple model (usually a low degree polynomial, $p_{m}(x)$ ) to this data.

We seek the polynomial, of degree $m$, which minimizes the residual:

$$
r(\overrightarrow{\mathbf{x}})=\sum_{i=0}^{n}\left[p_{m}\left(x_{i}\right)-f\left(x_{i}\right)\right]^{2}
$$

We find the polynomial by differentiating the sum with respect to the coefficients of $p_{m}(x)$. - If we are fitting a fourth degree polynomial $p_{4}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}$, we must compute the partial derivatives wrt. $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$.

In order to achieve a minimum, we must set all these partial derivatives to zero. - In this case we get 5 equations, for the 5 unknowns; the system is known as the normal equations.

Given the data set $(\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{f}})$, where $\overrightarrow{\mathbf{x}}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ and $\overrightarrow{\mathbf{f}}=\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}$, we can quickly find the best polynomial fit for any specified polynomial degree!

Notation: Let $\overrightarrow{\mathbf{x}}^{j}$ be the vector $\left\{x_{0}^{j}, x_{1}^{j}, \ldots, x_{n}^{j}\right\}$.
E.g. to compute the best fitting polynomial of degree 2 , $p_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}$, define:

$$
X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\overrightarrow{\mathbf{1}} & \overrightarrow{\mathbf{x}} & \overrightarrow{\mathbf{x}}^{2} \\
\mid & \mid & \mid
\end{array}\right], \quad \text { and compute } \quad \overrightarrow{\mathbf{a}}=\underbrace{\left(X^{T} X\right)^{-1}\left(X^{T} \overrightarrow{\mathbf{f}}\right)}_{\begin{array}{c}
\text { Not like this! } \\
\text { See math } 543!
\end{array}}
$$

Figure: We revisit the example from last time; and fit polynomials up to degree four to the given data. The figure shows the best $p_{0}(x), p_{1}(x)$, and $p_{2}(x)$ fits. Below: the errors give us clues when to stop.

| Model | Sum-of-squares-error |
| :--- | ---: |
| $p_{0}(x)$ | 205.45 |
| $p_{1}(x)$ | 52.38 |
| $p_{2}(x)$ | 51.79 |
| $p_{3}(x)$ | 51.79 |
| $p_{4}(x)$ | 51.79 |

Approximation Theory: Discrete Least Squares Approximationand Orthogonal Polynomials - p. 5/27

Introduction: Defining the Problem.
Up until now: Discrete Least Squares Approximation applied to a collection of data.

Now: Least Squares Approximation of Functions.

## We consider problems of this type: -

Suppose $f \in C[a, b]$ and we have the class $\mathcal{P}_{n}$ which is the set of all polynomials of degree at most $n$. Find the $p(x) \in \mathcal{P}_{n}$ which minimizes

$$
\int_{a}^{b}[p(x)-f(x)]^{2} d x
$$

Fitting an exponential model $g(x)=b e^{c x}$ to the given data $\overrightarrow{\mathbf{d}}$, is quite straight-forward. (Note: The model in non-linear in the parameters.)
First, re-cast the problem as a set of linear equations. We have:

$$
b e^{c x_{i}}=d_{i}
$$

compute the natural logarithm on both sides:

$$
\underbrace{\ln b}_{a_{0}}+\underbrace{c}_{a_{1}} x_{i}=\underbrace{\ln d_{i}}_{f_{i}}
$$

Now, we can apply a polynomial least squares fit to the problem, and once we have $\left(a_{0}, a_{1}\right), b=e^{a_{0}}$ and $c=a_{1}$.

Note: This does not give the least squares fit to the original problem!!! - It is however, a pretty good approximation... (most of the time)
Approximation Theory: Discrete Least Squares Approximationand Orthogonal Polynomials - p. 6/27

Finding the Normal Equations...
If $p(x) \in \mathcal{P}_{n}$ we write $p(x)=\sum_{k=0}^{n} a_{k} x^{k}$. The sum-of-squares-error, as function of the coefficients, $\overrightarrow{\mathbf{a}}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ is

$$
E(\overrightarrow{\mathbf{a}})=\int_{a}^{b}\left[\sum_{k=0}^{n} a_{k} x^{k}-f(x)\right]^{2} d x
$$

Differentiating with respect to $a_{j}(j=\{0,1, \ldots, n\})$ gives

$$
\frac{\partial E(\overrightarrow{\mathbf{a}})}{\partial a_{j}}=2 \sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{j+k} d x-2 \int_{a}^{b} x^{j} f(x) d x
$$

At the minimum, we require $\frac{\partial E(\overrightarrow{\mathbf{a}})}{\partial a_{j}}=0$, which gives us a system of equations for the coefficients $a_{k}$, the normal equations.

The $(n+1)$-by- $(n+1)$ system of equations is:

$$
\sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{j+k} d x=\int_{a}^{b} x^{j} f(x) d x, \quad j=0,1, \ldots, n
$$

Some notation, let:

$$
\langle f(x), g(x)\rangle=\int_{a}^{b} f(x) g(x)^{*} d x
$$

where $g(x)^{*}$ is the complex conjugate of $g(x)$ (everything we do in this class is real, so it has no effect...)

This is known as an inner product on the interval $[a, b]$. (But, if you want, you can think of it as a notational shorthand for the integral...)

In inner product notation, our normal equations:

$$
\sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{j+k} d x=\int_{a}^{b} x^{j} f(x) d x, \quad j=0,1, \ldots, n
$$

become:

$$
\sum_{k=0}^{n} a_{k}\left\langle x^{j}, x^{k}\right\rangle=\left\langle x^{j}, f(x)\right\rangle, \quad j=0,1, \ldots, n
$$

Recall the Discrete Normal Equations:

$$
\sum_{k=0}^{n}\left[a_{k} \sum_{i=0}^{N} x_{i}^{j+k}\right]=\sum_{i=0}^{N} x_{i}^{j} f_{i}, \quad j=0,1, \ldots, n
$$

Hmmm, looks quite similar!

Discrete Normal Equations in $\sum$ Notation:

$$
\sum_{k=0}^{n}\left[a_{k} \sum_{i=0}^{n} x_{i}^{j+k}\right]=\sum_{i=0}^{n} x_{i}^{j} f_{i}, \quad j=0,1, \ldots, n
$$

Discrete Normal Equations, in Inner Product Notation:

$$
\sum_{k=0}^{n} a_{k}\left[\overrightarrow{\mathbf{x}}^{j}, \overrightarrow{\mathbf{x}}^{k}\right]=\left[\overrightarrow{\mathbf{x}}^{j}, \overrightarrow{\mathbf{f}}\right], \quad j=0,1, \ldots, n
$$

Continuous Normal Equations in Inner Product Notation:

$$
\sum_{k=0}^{n} a_{k}\left\langle x^{j}, x^{k}\right\rangle=\left\langle x^{j}, f(x)\right\rangle, \quad j=0,1, \ldots, n
$$

Hey! It's really the same problem!!! The only thing that changed is the inner product - we went from summation to integration!

Normal Equations for the Continuous Problem: Matrices.
The bottom line is that the polynomial $p(x)$ that minimizes

$$
\int_{a}^{b}[p(x)-f(x)]^{2} d x
$$

is given by the solution of the linear system $A x=b$, where

$$
A_{i, j}=\left\langle x^{i}, x^{j}\right\rangle, \quad b_{i}=\left\langle x^{i}, f(x)\right\rangle
$$

We can compute $\left\langle x^{i}, x^{j}\right\rangle=\frac{b^{i+j+1}-a^{i+j+1}}{i+j+1}$ explicitly.

A matrix with these entries is known as a Hilbert Matrix. Hilbert matrices are classical examples for demonstrating how numerical solutions run into difficulties due to propagation of roundoff errors.

- We need some new language, and tools!

The condition number of a matrix is the ratio of the largest eigenvalue and the smallest eigenvalue:

If $A$ is an $n \times n$ matrix, and its eigenvalues are $\left|\lambda_{1}\right| \leq\left|\lambda_{2}\right| \leq \ldots \leq$ $\left|\lambda_{n}\right|$, then the condition number is

$$
\operatorname{cond}(\mathbf{A})=\frac{\left|\lambda_{n}\right|}{\left|\lambda_{1}\right|}
$$

The condition number is one important factor determining the growth of the numerical (roundoff) error in a computation.

We can interpret the condition number as a separation of scales.
If we compute with sixteen digits of precision $\epsilon_{\text {mach }} \approx 10^{-16}$, the best we can expect from our computations (even if we do everything right), is accuracy $\sim \operatorname{cond}(\mathbf{A}) \cdot \epsilon_{\text {mach }}$.

The Condition Number for Our Example


Figure: Ponder, yet again, the example of fitting polynomials to the data (Right). The plot on the left shows the condition numbers for 0th, through 4th degree polynomial problems. Note

Linearly Independent Functions.

Definition: - The set of functions $\left\{\Phi_{0}(x), \Phi_{1}(x), \ldots, \Phi_{n}(x)\right\}$ is said to be linearly independent on $[a, b]$ if, whenever

$$
\sum_{i=0}^{n} c_{i} \Phi_{i}(x)=0, \quad \forall x \in[a, b]
$$

then $c_{i}=0, \forall i=0,1, \ldots, n$. Otherwise the set is said to be linearly dependent.

Theorem: - If $\Phi_{j}(x)$ is a polynomial of degree $j$, then the set $\left\{\Phi_{0}(x), \Phi_{1}(x), \ldots, \Phi_{n}(x)\right\}$ is linearly independent on any interval $[a, b]$. that for the 5 -by- 5 system (Hilbert matrix) corresponding to the 4th degree problem the condition number is already $\sim 10^{7}$.

Theorem: - If $\Phi_{j}(x)$ is a polynomial of degree $j$, then the set $\left\{\Phi_{0}(x), \Phi_{1}(x), \ldots, \Phi_{n}(x)\right\}$ is linearly independent on any interval $[a, b]$.

Proof: Suppose $c_{i} \in \mathbb{R}, i=0,1, \ldots, n$, and $P(x)=\sum_{i=0}^{n} c_{i} \Phi_{i}(x)=$ $0 \forall x \in[a, b]$. Since $P(x)$ vanishes on $[a, b]$ it must be the zeropolynomial, i.e. the coefficients of all the powers of $x$ must be zero. In particular, the coefficient of $x^{n}$ is zero. $\Rightarrow c_{n}=0$, hence $P(x)=$ $\sum_{i=0}^{\mathrm{n}-1} c_{i} \Phi_{i}(x)$. By repeating the same argument, we find $c_{i}=0$, $i=0,1, \ldots, n . \Rightarrow\left\{\Phi_{0}(x), \Phi_{1}(x), \ldots, \Phi_{n}(x)\right\}$ is linearly independent. $\square$

Theorem: - If $\left\{\Phi_{0}(x), \Phi_{1}(x), \ldots, \Phi_{n}(x)\right\}$ is a collection of linearly independent polynomials in $\mathcal{P}_{n}$, then any $p(x) \in \mathcal{P}_{n}$ can be written uniquely as a linear combination of $\left\{\Phi_{0}(x), \Phi_{1}(x), \ldots, \Phi_{n}(x)\right\}$.

Definition: - An integrable function $w$ is called a weight function on the interval $[a, b]$ if $w(x) \geq 0 \forall x \in[a, b]$, but $w(x) \not \equiv 0$ on any subinterval of $[a, b]$.

A weight function will allow us to assign different degrees of importance to different parts of the interval. E.g. with $w(x)=1 / \sqrt{1-x^{2}}$ on $[-1,1]$ we are assigning more weight away from the center of the interval.

## Inner Product, with a weight function:

$$
\langle f(x), g(x)\rangle_{w(x)}=\int_{a}^{b} f(x) g(x)^{*} w(x) d x
$$

Suppose $\left\{\Phi_{0}(x), \Phi_{1}(x), \ldots, \Phi_{n}(x)\right\}$ is a set of linearly independent functions on $[a, b], w(x)$ a weight function on $[a, b]$, and $f(x) \in C[a, b]$.

We are now looking for the linear combination

$$
p(x)=\sum_{k=0}^{n} a_{k} \Phi_{k}(x)
$$

which minimizes the sum-of-squares-error

$$
E(\overrightarrow{\mathbf{a}})=\int_{a}^{b}[p(x)-f(x)]^{2} w(x) d x
$$

When we differentiate with respect to $a_{k}, w(x)$ is a constant, so the system of normal equations can be written...

$$
\sum_{k=0}^{n} a_{k}\left\langle\Phi_{k}(x), \Phi_{j}(x)\right\rangle_{w(x)}=\left\langle f(x), \Phi_{j}(x)\right\rangle_{w(x)}, \quad j=0,1, \ldots, n
$$

What has changed?

$$
\left\{\begin{array}{lll}
x^{k} & \rightarrow \Phi_{k}(x) & \text { New basis functions. } \\
\langle\circ, \circ\rangle & \rightarrow\langle\circ, \circ\rangle_{w(x)} & \text { New inner product. }
\end{array}\right.
$$

Why are we doing this?

We are going to select the basis functions $\Phi_{k}(x)$ so that the normal equations are easy to solve!

Definition: - $\left\{\Phi_{0}(x), \Phi_{1}(x), \ldots, \Phi_{n}(x)\right\}$ is said to be an orthogonal set of functions on $[a, b]$ with respect to the weight function $w(x)$ if

$$
\left\langle\Phi_{i}(x), \Phi_{j}(x)\right\rangle_{w(x)}= \begin{cases}0, & \text { when } i \neq j \\ a_{i}, & \text { when } i=j\end{cases}
$$

If in addition $a_{i}=1, i=0,1, \ldots, n$ the set is said to be orthonormal.

Theorem: - If $\left\{\Phi_{0}(x), \Phi_{1}(x), \ldots, \Phi_{n}(x)\right\}$ is a set of orthogonal functions on an interval $[a, b]$, with respect to the weight function $w(x)$, then the least squares approximation to $f(x)$ on $[a, b]$ with respect to $w(x)$ is

$$
p(x)=\sum_{k=0}^{n} a_{k} \Phi_{k}(x)
$$

where, for each $k=0,1, \ldots, n$,

$$
a_{k}=\frac{\left\langle\Phi_{k}(x), f(x)\right\rangle_{w(x)}}{\left\langle\Phi_{k}(x), \Phi_{k}(x)\right\rangle_{w(x)}}
$$

We can find the coefficients without solving $A^{T} A x=A^{T} b!!!$
Where do we get a set of orthogonal functions??? (Costco???)
Approximation Theory: Discrete Least Squares Approximationand Orthogonal Polynomials - p. 22/27

The set of Legendre Polynomials $\left\{P_{n}(x)\right\}$ is orthogonal on $[-1,1]$ with respect to the weight function $w(x)=1$.

$$
P_{0}(x)=1, \quad P_{1}(x)=\left(x-b_{1}\right) \circ 1
$$

where

$$
b_{1}=\frac{\int_{-1}^{1} x d x}{\int_{-1}^{1} d x}=0
$$

i.e. $\mathbf{P}_{\mathbf{1}}(\mathrm{x})=\mathrm{x}$.

$$
b_{2}=\frac{\int_{-1}^{1} x^{3} d x}{\int_{-1}^{1} x^{2} d x}=0, \quad c_{2}=\frac{\int_{-1}^{1} x^{2} d x}{\int_{-1}^{1} 1 d x}=1 / 3
$$

i.e. $\mathrm{P}_{2}(\mathrm{x})=\mathrm{x}^{2}-1 / 3$.

The first six Legendre Polynomials are

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=x^{2}-1 / 3 \\
& P_{3}(x)=x^{3}-3 x / 5 \\
& P_{4}(x)=x^{4}-6 x^{2} / 7+3 / 35 \\
& P_{5}(x)=x^{5}-10 x^{3} / 9+5 x / 21
\end{aligned}
$$

We encountered the Legendre polynomials in the context of numerical integration. It turns out that the roots of the Legendre polynomials are used as the nodes in Gaussian quadrature.

Now we have the machinery to manufacture Legendre polynomials of any degree.

The Gram-Schmidt procedure is one way to obtain the Legendre polynomials, as seen in the previous slide, but can be tedious.

An alternate method for finding Legendre polynomials uses techniques from differential equations and the Rodrigues' formula:

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

## Example: Laguerre Polynomials

The set of Laguerre Polynomials $\left\{L_{n}(x)\right\}$ is orthogonal on $(0, \infty)$ with respect to the weight function $w(x)=e^{-x}$.
$L_{0}(x)=1$,

$$
b_{1}=\frac{\langle x, 1\rangle_{e^{-x}}}{\langle 1,1\rangle_{e^{-x}}}=1
$$

$\mathrm{L}_{1}(\mathrm{x})=\mathrm{x}-1$,

$$
b_{2}=\frac{\langle x(x-1), x-1\rangle_{e^{-x}}}{\langle x-1, x-1\rangle_{e^{-x}}}=3, \quad c_{2}=\frac{\langle x(x-1), 1\rangle_{e^{-x}}}{\langle 1,1\rangle_{e^{-x}}}=1,
$$

$\mathrm{L}_{2}(\mathrm{x})=(\mathrm{x}-3)(\mathrm{x}-1)-1=\mathrm{x}^{2}-4 \mathrm{x}+2$.

