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Piking Up Where We Left O�... Disrete Least SquaresThe Idea: Given the data set (~x,~f), where ~x = {x0, x1, . . . , xn}Tand ~f = {f0, f1, . . . , fn}T we want to �t a simplemodel (usually a low degree polynomial, pm(x)) to thisdata.We seek the polynomial, of degree m, whih minimizes the residual:

r(~x) =
n∑

i=0

[pm(xi)− f(xi)]
2

We �nd the polynomial by di�erentiating the sum with respet to theoe�ients of pm(x). � If we are �tting a fourth degree polynomial

p4(x) = a0 +a1x+a2x
2 +a3x

3 +a4x
4, we must ompute the partialderivatives wrt. a0, a1, a2, a3, a4.In order to ahieve a minimum, we must set all these partial derivativesto zero. � In this ase we get 5 equations, for the 5 unknowns; thesystem is known as the normal equations.
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The Normal Equations � Seond DerivationLast time we showed that the normal equations an be found with purelya Linear Algebra argument. Given the data points, and the model (here
p4(x)), we write down the over-determined system:

a0 + a1x0 + a2x
2
0 + a3x

3
0 + a4x

4
0 = f0

a0 + a1x1 + a2x
2
1 + a3x

3
1 + a4x

4
1 = f1

a0 + a1x2 + a2x
2
2 + a3x

3
2 + a4x

4
2 = f2...

a0 + a1xn + a2x
2
n + a3x

3
n + a4x

4
n = fnWe an write this as a matrix-vetor problem:

X~a = ~fwhere the Vandermonde matrix X is tall and skinny. By multiplying boththe left- and right-hand-sides by XT (the transpose of X), we get a �square�system � we reover the normal equations:
XT X~a = XT~f
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Disrete Least Squares: A Simple, Powerful Method.Given the data set (~x,~f), where ~x = {x0, x1, . . . , xn} and

~f = {f0, f1, . . . , fn}, we an quikly �nd the best polynomial�t for any spei�ed polynomial degree!

Notation: Let ~xj be the vetor {xj
0, x

j
1, . . . , x

j
n}.

E.g. to ompute the best �tting polynomial of degree 2,

p2(x) = a0 + a1x + a2x
2, de�ne:

X =


| | |
| | |
~1 ~x ~x2

| | |
| | |

 , and ompute ~a = (XT X)−1(XT~f)︸ ︷︷ ︸Not like this!See math543! .
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Example: Fitting pi(x), i = 0, 1, 2, 3, 4 Models.

Figure: We revisit the ex-ample from last time; and�t polynomials up to de-gree four to the given data.The �gure shows the best

p0(x), p1(x), and p2(x)�ts. Below: the errors giveus lues when to stop. 0 1 2 3 4 5

0
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6

8

Underlying function f(x) = 1 + x + x^2/25
Measured Data
Average
Linear Best Fit
Quadratic Best Fit

Model Sum-of-squares-error

p0(x) 205.45

p1(x) 52.38

p2(x) 51.79

p3(x) 51.79

p4(x) 51.79

Table: Clearly in this example thereis very little to gain in terms of theleast-squares-error by going beyond1st or 2nd degree models.
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Nonlinear Models: � Fitting non-polynomials [Review℄Fitting an exponential model g(x) = becx to the given data ~d,is quite straight-forward. (Note: The model in non-linear in theparameters.)First, re-ast the problem as a set of linear equations. We have:
becxi = diompute the natural logarithm on both sides:

ln b︸︷︷︸
a0

+ c︸︷︷︸
a1

xi = ln di︸︷︷︸
fi

.

Now, we an apply a polynomial least squares �t to the problem, andone we have (a0, a1), b = ea0 and c = a1.Note: This does not give the least squares �t to the original prob-lem!!! � It is however, a pretty good approximation... (mostof the time)
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Introdution: De�ning the Problem.Up until now: Disrete Least Squares Approximation applied toa olletion of data.

Now: Least Squares Approximation of Funtions.

We onsider problems of this type: �Suppose f ∈ C[a, b] and we have the lass Pn whihis the set of all polynomials of degree at most n. Findthe p(x) ∈ Pn whih minimizes∫ b

a
[p(x)− f(x)]2 dx.
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Finding the Normal Equations...If p(x) ∈ Pn we write p(x) =
∑n

k=0 akx
k. The sum-of-squares-error,as funtion of the oe�ients, ~a = {a0, a1, . . . , an} is

E(~a) =
∫ b

a

[
n∑

k=0

akx
k − f(x)

]2

dx.

Di�erentiating with respet to aj (j = {0, 1, . . . , n}) gives

∂E(~a)
∂aj

= 2
n∑

k=0

ak

∫ b

a
xj+k dx− 2

∫ b

a
xjf(x) dx.

At the minimum, we require ∂E(~a)
∂aj

= 0, whih gives us a system ofequations for the oe�ients ak, the normal equations.
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The Normal Equations.The (n + 1)-by-(n + 1) system of equations is:

n∑
k=0

ak

∫ b

a
xj+k dx =

∫ b

a
xjf(x) dx, j = 0, 1, . . . , n.

Some notation, let:

〈f(x), g(x)〉 =
∫ b

a
f(x)g(x)∗ dx,where g(x)∗ is the omplex onjugate of g(x) (everything we do inthis lass is real, so it has no e�et...)

This is known as an inner produt on the interval [a, b]. (But, if youwant, you an think of it as a notational shorthand for the integral...)
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The Normal Equations: Inner Produt Notation, I.In inner produt notation, our normal equations:

n∑
k=0

ak

∫ b

a
xj+k dx =

∫ b

a
xjf(x) dx, j = 0, 1, . . . , n.

beome:

n∑
k=0

ak〈xj , xk〉 = 〈xj , f(x)〉, j = 0, 1, . . . , n.

Reall the Disrete Normal Equations:
n∑

k=0

[
ak

N∑
i=0

xj+k
i

]
=

N∑
i=0

xj
ifi, j = 0, 1, . . . , n.

Hmmm, looks quite similar!
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More Notation, De�ning the Disrete Inner Produt.If we have two vetors

~v = {v0, v1, . . . , vN}
~w = {w0, w1, . . . , wN},we an de�ne the disrete inner produt

[v, w] =
N∑

i=0

viw
∗
i ,

where, again w∗
i is the omplex onjugate of wi.

Equipped with this notation, we revisit the Normal Equations...
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The Normal Equations: Inner Produt Notation, II.Disrete Normal Equations in ∑ Notation:

n∑
k=0

[
ak

n∑
i=0

xj+k
i

]
=

n∑
i=0

xj
ifi, j = 0, 1, . . . , n.

Disrete Normal Equations, in Inner Produt Notation:

n∑
k=0

ak

[
~xj , ~xk

]
=

[
~xj , ~f

]
, j = 0, 1, . . . , n.

Continuous Normal Equations in Inner Produt Notation:

n∑
k=0

ak〈xj , xk〉 = 〈xj , f(x)〉, j = 0, 1, . . . , n.

Hey! It's really the same problem!!! The only thing that hangedis the inner produt � we went from summation to integration!
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Normal Equations for the Continuous Problem: Matries.The bottom line is that the polynomial p(x) that minimizes∫ b

a
[p(x)− f(x)]2 dx

is given by the solution of the linear system Ax = b, where

Ai,j = 〈xi, xj〉, bi = 〈xi, f(x)〉.

We an ompute 〈xi, xj〉 =
bi+j+1 − ai+j+1

i + j + 1

expliitly.

A matrix with these entries is known as a Hilbert Matrix. Hilbertmatries are lassial examples for demonstrating how numerial so-lutions run into di�ulties due to propagation of roundo� er-rors.� We need some new language, and tools!

Approximation Theory: Discrete Least Squares Approximationand Orthogonal Polynomials – p. 13/27

The Condition Number of a MatrixThe ondition number of a matrix is the ratio of the largesteigenvalue and the smallest eigenvalue:

If A is an n × n matrix, and its eigenvalues are |λ1| ≤ |λ2| ≤ . . . ≤
|λn|, then the ondition number is

cond(A) =
|λn|
|λ1|The ondition number is one important fator determining the growthof the numerial (roundo�) error in a omputation.We an interpret the ondition number as a separation of sales.If we ompute with sixteen digits of preision ǫmah ≈ 10−16, the bestwe an expet from our omputations (even if we do everything right),is auray ∼ cond(A) · ǫmah.
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The Condition Number for Our Example
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Underlying function f(x) = 1 + x + x^2/25
Measured Data
Average
Linear Best Fit
Quadratic Best FitFigure: Ponder, yet again, the example of �tting polynomialsto the data (Right). The plot on the left shows the onditionnumbers for 0th, through 4th degree polynomial problems. Notethat for the 5-by-5 system (Hilbert matrix) orresponding to the4th degree problem the ondition number is already ∼ 107.
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Linearly Independent Funtions.

De�nition: � The set of funtions {Φ0(x),Φ1(x), . . . ,Φn(x)}is said to be linearly independent on [a, b] if, whenever

n∑
i=0

ciΦi(x) = 0, ∀x ∈ [a, b],

then ci = 0, ∀i = 0, 1, . . . , n. Otherwise the set is said to belinearly dependent.

Theorem: � If Φj(x) is a polynomial of degree j, then the set

{Φ0(x),Φ1(x), . . . ,Φn(x)} is linearly independent on any interval

[a, b].
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Linearly Independent Funtions: Polynomials.

Theorem: � If Φj(x) is a polynomial of degree j, then the set

{Φ0(x),Φ1(x), . . . ,Φn(x)} is linearly independent on any interval [a, b].

Proof: Suppose ci ∈ R, i = 0, 1, . . . , n, and P (x) =
∑n

i=0 ciΦi(x) =
0 ∀x ∈ [a, b]. Sine P (x) vanishes on [a, b] it must be the zero-polynomial, i.e. the oe�ients of all the powers of x must be zero.In partiular, the oe�ient of xn is zero. ⇒ cn = 0, hene P (x) =∑n−1

i=0 ciΦi(x). By repeating the same argument, we �nd ci = 0,

i = 0, 1, . . . , n. ⇒{Φ0(x),Φ1(x), . . . ,Φn(x)} is linearly independent.

�Theorem: � If {Φ0(x),Φ1(x), . . . ,Φn(x)} is a olletion of linearlyindependent polynomials in Pn, then any p(x) ∈ Pn an be writtenuniquely as a linear ombination of {Φ0(x),Φ1(x), . . . ,Φn(x)}.
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More De�nitions and Notation...

De�nition: � An integrable funtion w is alled a weight fun-tion on the interval [a, b] if w(x) ≥ 0 ∀x ∈ [a, b], but w(x) 6≡ 0on any subinterval of [a, b].

A weight funtion will allow us to assign di�erent degrees of impor-tane to di�erent parts of the interval. E.g. with w(x) = 1/
√

1− x2on [−1, 1] we are assigning more weight away from the enter of theinterval.
Inner Produt, with a weight funtion:

〈f(x), g(x)〉w(x) =
∫ b

a
f(x)g(x)∗ w(x)dx.
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Revisiting Least Squares Approx. with New Notation.Suppose {Φ0(x),Φ1(x), . . . ,Φn(x)} is a set of linearly indepen-dent funtions on [a, b], w(x) a weight funtion on [a, b], and
f(x) ∈ C[a, b].

We are now looking for the linear ombination

p(x) =
n∑

k=0

akΦk(x)

whih minimizes the sum-of-squares-error
E(~a) =

∫ b

a
[p(x)− f(x)]2 w(x)dx.When we di�erentiate with respet to ak, w(x) is a onstant, so thesystem of normal equations an be written...
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The Normal Equations, Revisited for the nth Time.

n∑
k=0

ak〈Φk(x), Φj(x)〉w(x) = 〈f(x), Φj(x)〉w(x), j = 0, 1, . . . , n.

What has hanged? xk → Φk(x) New basis funtions.

〈◦, ◦〉 → 〈◦, ◦〉w(x) New inner produt.

Why are we doing this?

We are going to selet the basis funtions Φk(x) so that the normalequations are easy to solve!
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Orthogonal Funtions.

De�nition: � {Φ0(x),Φ1(x), . . . ,Φn(x)} is said to be an or-thogonal set of funtions on [a, b] with respet to the weightfuntion w(x) if

〈Φi(x), Φj(x)〉w(x) =

 0, when i 6= j,

ai, when i = j.If in addition ai = 1, i = 0, 1, . . . , n the set is said to be orthonor-mal.
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The Payo� � No Matrix Inversion Needed.

Theorem: � If {Φ0(x),Φ1(x), . . . ,Φn(x)} is a set of orthog-onal funtions on an interval [a, b], with respet to the weightfuntion w(x), then the least squares approximation to f(x) on
[a, b] with respet to w(x) is

p(x) =
n∑

k=0

akΦk(x),

where, for eah k = 0, 1, . . . , n,
ak =

〈Φk(x), f(x)〉w(x)

〈Φk(x), Φk(x)〉w(x)
.

We an �nd the oe�ients without solving AT Ax = AT b!!!Where do we get a set of orthogonal funtions??? (Costo???)
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The Gram-Shmidt Proess.

Theorem: � The set of polynomials {Φ0(x),Φ1(x), . . . ,Φn(x)}de�ned in the following way is orthogonal on [a, b] with respet to
w(x):

Φ0(x) = 1, Φ1(x) = (x− b1)Φ0,where

b1 =
〈xΦ0(x), Φ0(x)〉w(x)

〈Φ0(x), Φ0(x)〉w(x)
,for k ≥ 2,

Φk(x) = (x− bk)Φk−1(x)− ckΦk−2(x),where

bk =
〈xΦk−1(x), Φk−1(x)〉w(x)

〈Φk−1(x), Φk−1(x)〉w(x)
, ck =

〈xΦk−1(x), Φk−2(x)〉w(x)

〈Φk−2(x), Φk−2(x)〉w(x)
.
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Example: Legendre Polynomials 1 of 2The set of Legendre Polynomials {Pn(x)} is orthogonal on [−1, 1]with respet to the weight funtion w(x) = 1.

P0(x) = 1, P1(x) = (x− b1) ◦ 1where

b1 =

∫ 1
−1 x dx∫ 1
−1 dx

= 0

i.e. P1(x) = x.

b2 =

∫ 1
−1 x3 dx∫ 1
−1 x2 dx

= 0, c2 =

∫ 1
−1 x2 dx∫ 1
−1 1 dx

= 1/3,

i.e. P2(x) = x2 − 1/3.
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Example: Legendre Polynomials 2 of 2The �rst six Legendre Polynomials are

P0(x) = 1

P1(x) = x

P2(x) = x2 − 1/3

P3(x) = x3 − 3x/5

P4(x) = x4 − 6x2/7 + 3/35

P5(x) = x5 − 10x3/9 + 5x/21.

We enountered the Legendre polynomials in the ontext of numerialintegration. It turns out that the roots of the Legendre polynomialsare used as the nodes in Gaussian quadrature.Now we have the mahinery to manufature Legendre polynomials ofany degree.
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Rodrigues' FormulaThe Gram-Shmidt proedure is one way to obtain the Legendrepolynomials, as seen in the previous slide, but an be tedious.

An alternate method for �nding Legendre polynomials uses tehniquesfrom di�erential equations and the Rodrigues’ formula:
Pn(x) =

1
2nn!

dn

dxn
(x2 − 1)n
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Example: Laguerre PolynomialsThe set of Laguerre Polynomials {Ln(x)} is orthogonal on (0,∞)with respet to the weight funtion w(x) = e−x.

L0(x) = 1,

b1 =
〈x, 1〉e−x

〈1, 1〉e−x

= 1

L1(x) = x− 1,

b2 =
〈x(x− 1), x− 1〉e−x

〈x− 1, x− 1〉e−x

= 3, c2 =
〈x(x− 1), 1〉e−x

〈1, 1〉e−x

= 1,

L2(x) = (x− 3)(x− 1)− 1 = x2 − 4x + 2.
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