Approximation Theory

Discrete Least Squares Approximation
Lecture Notes \#10

Joe Mahaffy

Department of Mathematics
San Diego State University
San Diego, CA 92182-7720
mahaffy@math.sdsu.edu
http://www-rohan.sdsu.edu/~jmahaffy
\$Id: lecture.tex,v 1.10 2007/11/08 18:49:01 mahaffy Exp \$

Approximation Theory: Discrete Least Squares Approximation - p. 1/29

Why a Low Dimensional Model?

Low dimensional models (e.g. low degree polynomials) are easy to work with, and are quite well behaved (high degree polynomials can be quite oscillatory.)

All measurements are noisy, to some degree. Often, we want to use a large number of measurements in order to "average out" random noise.

Approximation Theory looks at two problems:

[1] Given a data set, find the best fit for a model (i.e. in a class of functions, find the one that best represents the data.)
[2] Find a simpler model approximating a given function.

Sometimes we get a lot of data, many observations, and want to fit it to a simple model.

PDF-link:
code.

Interpolation: A Bad Idea?
We can probably agree that trying to interpolate this data set:

with a 50 th degree polynomial is not the best idea in the world... Even fitting a cubic spline to this data gives wild oscillations! [I tried, and it was not pretty!]

We are going to relax the requirement that the approximating function must pass through all the data points.

Now we need a measurement of how well our approximation fits the data. - A definition of "best fit."

If $f\left(x_{i}\right)$ are the measured function values, and $a\left(x_{i}\right)$ are the values of our approximating functions, we can define a function, $r\left(x_{i}\right)=f\left(x_{i}\right)-a\left(x_{i}\right)$ which measures the deviation (residual) at x_{i}. Notice that $\overrightarrow{\mathbf{r}}=\left\{r\left(x_{0}\right), r\left(x_{1}\right), \ldots, r\left(x_{n}\right)\right\}^{T}$ is a vector.

Notation: From now on, $f_{i}=f\left(x_{i}\right), a_{i}=a\left(x_{i}\right)$, and $r_{i}=r\left(x_{i}\right)$. Further, $\overrightarrow{\mathbf{f}}=\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}^{T}, \overrightarrow{\mathbf{a}}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}^{T}$, and $\overrightarrow{\mathbf{r}}=\left\{r_{0}, r_{1}, \ldots, r_{n}\right\}^{T}$.

There are many possible choices, e.g.

- The abs-sum of the deviations:

$$
E_{1}=\sum_{i=0}^{n}\left|r_{i}\right| \quad \Leftrightarrow \quad E_{1}=\|\overrightarrow{\mathbf{r}}\|_{1}
$$

- The sum-of-the-squares of the deviations:

$$
E_{2}=\sqrt{\sum_{i=0}^{n}\left|r_{i}\right|^{2}} \Leftrightarrow E_{2}=\|\overrightarrow{\mathbf{r}}\|_{2}
$$

- The largest of the deviations:

$$
E_{\infty}=\max _{0 \leq i \leq n}\left|r_{i}\right| \quad \Leftrightarrow \quad E_{\infty}=\|\overrightarrow{\mathbf{r}}\|_{\infty}
$$

In most cases, the sum-of-the-squares version is the easiest to work with. (From now on we will focus on this choice...)

Approximation Theory: Discrete Least Squares Approximation - p. 6/29

Discrete Least Squares: Linear Approximation.
The form of Least Squares you are most likely to see: Find the Linear Function, $p_{1}(x)=a_{0}+a_{1} x$ that best fits the data. The error $E\left(a_{0}, a_{1}\right)$ we need to minimize is:

$$
E\left(a_{0}, a_{1}\right)=\sum_{i=0}^{n}\left[\left(a_{0}+a_{1} x_{i}\right)-f_{i}\right]^{2} .
$$

The first partial derivatives with respect to a_{0} and a_{1} better be zero at the minimum:

$$
\begin{aligned}
\frac{\partial}{\partial a_{0}} E\left(a_{0}, a_{1}\right) & =2 \sum_{i=0}^{n}\left[\left(a_{0}+a_{1} x_{i}\right)-f_{i}\right]=0 \\
\frac{\partial}{\partial a_{1}} E\left(a_{0}, a_{1}\right) & =2 \sum_{i=0}^{n} x_{i}\left[\left(a_{0}+a_{1} x_{i}\right)-f_{i}\right]=0 .
\end{aligned}
$$

We "massage" these expressions to get the Normal Equations...

$$
\left\{\begin{array}{l}
\mathrm{a}_{0}(n+1)+\mathrm{a}_{1} \sum_{i=0}^{n} x_{i}=\sum_{i=0}^{n} f_{i} \\
\mathrm{a}_{0} \sum_{i=0}^{n} x_{i}+\mathrm{a}_{1} \sum_{i=0}^{n} x_{i}^{2}=\sum_{i=0}^{n} x_{i} f_{i} .
\end{array}\right.
$$

Since everything except a_{0} and a_{1} is known, this is a 2 -by- 2 system of equations.

$$
\left[\begin{array}{cc}
(n+1) & \sum_{i=0}^{n} x_{i} \\
\sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{a}_{0} \\
\mathrm{a}_{1}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=0}^{n} f_{i} \\
\sum_{i=0}^{n} x_{i} f_{i}
\end{array}\right] .
$$

For the quadratic polynomial $p_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}$, the error is given by

$$
E\left(a_{0}, a_{1}, a_{2}\right)=\sum_{i=0}^{n}\left[a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}-f_{i}\right]^{2}
$$

At the minimum (best model) we must have

$$
\begin{aligned}
\frac{\partial}{\partial a_{0}} E\left(a_{0}, a_{1}, a_{2}\right) & =2 \sum_{i=0}^{n}\left[\left(a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}\right)-f_{i}\right]=0 \\
\frac{\partial}{\partial a_{1}} E\left(a_{0}, a_{1}, a_{2}\right) & =2 \sum_{i=0}^{n} x_{i}\left[\left(a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}\right)-f_{i}\right]=0 \\
\frac{\partial}{\partial a_{2}} E\left(a_{0}, a_{1}, a_{2}\right) & =2 \sum_{i=0}^{n} x_{i}^{2}\left[\left(a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}\right)-f_{i}\right]=0 .
\end{aligned}
$$

We rewrite the Normal Equations as:

$$
\left[\begin{array}{ccc}
(n+1) & \sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} \\
\sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} & \sum_{i=0}^{n} x_{i}^{3} \\
\sum_{i=0}^{n} x_{i}^{2} & \sum_{i=0}^{n} x_{i}^{3} & \sum_{i=0}^{n} x_{i}^{4}
\end{array}\right]\left[\begin{array}{l}
\mathrm{a}_{0} \\
\mathrm{a}_{1} \\
\mathrm{a}_{2}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=0}^{n} f_{i} \\
\sum_{i=0}^{n} x_{i} f_{i} . \\
\sum_{i=0}^{n} x_{i}^{2} f_{i} .
\end{array}\right] .
$$

It is not immediately obvious, but this expression can be written in the form $\mathbf{A}^{\mathbf{T}} \mathbf{A} \overrightarrow{\mathbf{a}}=\mathbf{A}^{\mathbf{T}} \overrightarrow{\mathbf{f}}$. Where the matrix A is very easy to write in terms of x_{i}. [Jump Forward].

We can express the m th degree polynomial, $p_{m}(x)$, evaluated at the points x_{i} :

$$
a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}+\ldots+a_{m} x_{i}^{m}=f_{i}, \quad i=0, \ldots, n
$$

as a product of an $(n+1)$-by- $(m+1)$ matrix, A and the $(m+1)$-by- 1 vector $\overrightarrow{\mathbf{a}}$ and the result is the $(n+1)$-by- 1 vector $\overrightarrow{\mathbf{f}}$, usually $n \gg m$:

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
x_{0} & x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
x_{0}^{2} & x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
x_{0}^{m} & x_{1}^{m} & x_{2}^{m} & x_{3}^{m} & \ldots & x_{n}^{m}
\end{array}\right]\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{m} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{m} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{m} \\
1 & x_{3} & x_{3}^{2} & \cdots & x_{3}^{m} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{m}
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
n+1 & \sum_{i=0}^{n} x_{i}^{1} \\
\sum_{i=0}^{n} x_{i}^{1} & \sum_{i=0}^{n} x_{i}^{2} & \cdots & \sum_{i=0}^{n} x_{i}^{m} \\
\vdots & \vdots & \ddots & \\
\sum_{i=0}^{n} x_{i}^{m} & \sum_{i=0}^{n} x_{i}^{m+1} & \cdots & \sum_{i=0}^{m+1} \\
\sum_{i=0}^{n} x_{i}^{2 m}
\end{array}\right]
\end{aligned}
$$

We cannot immediately solve the linear system

$$
A \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{f}}
$$

when A is a rectangular matrix $(n+1)$-by- $(m+1), m \neq n$.

We can generate a solvable system by multiplying both the left- and right-hand-side by A^{T}, i.e.

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A} \overrightarrow{\mathbf{a}}=\mathbf{A}^{\mathrm{T}} \overrightarrow{\mathbf{f}}
$$

Now, the matrix $A^{T} A$ is a square $(m+1)$-by- $(m+1)$ matrix, and $A^{T} \overrightarrow{\mathbf{f}}$ an $(m+1)$-by- 1 vector.

Let's take a closer look at $A^{T} A$, and $A^{T} \overrightarrow{\mathbf{f}} \ldots$

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
x_{0} & x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
x_{0}^{2} & x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
x_{0}^{m} & x_{1}^{m} & x_{2}^{m} & x_{3}^{m} & \ldots & x_{n}^{m}
\end{array}\right]\left[\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
f_{3} \\
\vdots \\
f_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=0}^{n} f_{i} \\
\sum_{i=0}^{n} x_{i} f_{i} \\
\sum_{i=0}^{n} x_{i}^{2} f_{i} \\
\vdots \\
\sum_{i=0}^{n} x_{i}^{m} f_{i}
\end{array}\right]
$$

We have recovered the Normal Equations...

[Jump Back].

Given the data set ($\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{f}}$), where $\overrightarrow{\mathbf{x}}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}^{T}$ and $\overrightarrow{\mathbf{f}}=\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}^{T}$, we can quickly find the best polynomial fit for any specified polynomial degree!

Notation: Let $\overrightarrow{\mathbf{x}}^{j}$ be the vector $\left\{x_{0}^{j}, x_{1}^{j}, \ldots, x_{n}^{j}\right\}^{T}$.
E.g. to compute the best fitting polynomial of degree 3, $p_{3}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$, define:

I used this code to generate the data for the plots on slide 2.

```
x = (0:0.1:5)'; % The x-vector
f = 1+x+x.^2/25; % The underlying function
n = randn(size(x)); % Random perturbations
fn = f+n; % Add randomness
A = [x ones(size(x))]; % Build A for linear fit
%a=(\mp@subsup{A}{}{\prime}*A)\(\mp@subsup{A}{}{\prime}*\mathbf{A}); % Solve
a = A\f; % Better, Equivalent, Solve
p1 = polyval (a,x); % Evaluate
A = [x.^2 x ones(size(x))]; % A for quadratic fit
%a = (A'A}*A)\(\mp@subsup{A}{}{\prime}*f); % Solve
a = A\f; % Better, Equivalent, Solve
p2 = polyval (a,x); % Evaluate
```

Fitting an exponential model $g(x)=b e^{c x}$ to the given data $\overrightarrow{\mathbf{d}}$, is quite straight-forward.

First, re-cast the problem as a set of linear equations. We have:

$$
b e^{c x_{i}}=d_{i}, \quad i=0, \ldots, n
$$

compute the natural logarithm on both sides:

$$
\underbrace{\ln b}_{a_{0}}+\underbrace{c}_{a_{1}} x_{i}=\underbrace{\ln d_{i}}_{f_{i}} .
$$

Now, we can apply a polynomial least squares fit to the problem, and once we have $\left(a_{0}, a_{1}\right), b=e^{a_{0}}$ and $c=a_{1}$.

Note: This does not give the least squares fit to the original problem!!! (It gives us a pretty good estimate.)

But... That is not a True Least Squares Fit!
Note: Fitting the modified problem does not give the least squares fit to the original problem!!!

In order to find the true least squares fit we need to know how to find roots and/or minima/maxima of non-linear systems of equations.

Feel free to sneak a peek at Burden-Faires chapter 10. Unfortunately we do not have the time to talk about this here...

What we need: Math 693a - Numerical Optimization Techniques.

Some of this stuff may show up in a different context in: Math 562 - Mathematical Methods of Operations Research.

There is a folk method of approximating the temperature (in Fahrenheit). This entered the scientific literature in 1896 by Dolbear with data collected by the Bessey brothers in 1898 .

The temperature is approximated from the rate of crickets chirping by taking the number of chirps/min dividing by 4 and adding 40 .

Excel's Trendline was used to fit linear, quadratic, cubic, and quartic polynomials.

Cricket Data Analysis

C. A. Bessey and E. A. Bessey collected data on eight different crickets that they observed in Lincoln, Nebraska during August and September, 1897. The number of chirps/min was N and the temperature was T.

Create matrices

$$
\begin{gathered}
A_{1}=\left(\begin{array}{cc}
1 & N_{1} \\
1 & N_{2} \\
\vdots & \vdots
\end{array}\right) \quad A_{2}=\left(\begin{array}{ccc}
1 & N_{1} & N_{1}^{2} \\
1 & N_{2} & N_{2}^{2} \\
\vdots & \vdots & \vdots
\end{array}\right) \\
A_{3}=\left(\begin{array}{cccc}
1 & N_{1} & N_{1}^{2} & N_{1}^{3} \\
1 & N_{2} & N_{2}^{2} & N_{2}^{3} \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right)
\end{gathered}
$$

Cricket Linear Model
Compute the matrix

$$
A_{1}^{T} A_{1}=\left(\begin{array}{cc}
52 & 7447 \\
7447 & 1133259
\end{array}\right)
$$

This has eigenvalues

$$
\lambda_{1}=3.0633 \quad \text { and } \quad \lambda_{2}=1,133,308
$$

which gives the condition number

$$
\operatorname{cond}\left(A_{1}^{T} A_{1}\right)=3.6996 \times 10^{5} .
$$

With MatLab's linsolve solving for coefficients a,

$$
A_{1}^{T} A_{1} a=A_{1}^{T} T,
$$

we obtain the best linear model

$$
T=0.21548 N+39.744 .
$$

Approximation Theory: Discrete Least Squares Approximation - p. 24/29

Similarly, compute the matrix

$$
A_{2}^{T} A_{2}=\left(\begin{array}{ccc}
52 & 7447 & 1133259 \\
7447 & 1133259 & 1.8113 \times 10^{8} \\
1133259 & 1.8113 \times 10^{8} & 3.0084 \times 10^{1} 0
\end{array}\right)
$$

This has eigenvalues

$$
\lambda_{1}=0.1957 \quad \lambda_{2}=42,706 \quad \lambda_{3}=3.00853 \times 10^{10}
$$

which gives the condition number

$$
\operatorname{cond}\left(A_{2}^{T} A_{2}\right)=1.5371 \times 10^{11}
$$

With MatLab's linsolve, we obtain the best quadratic model

$$
T=-0.00064076 N^{2}+0.39625 N+27.849
$$

The condition numbers for the cubic and quartic rapidly get larger with
$\operatorname{cond}\left(A_{3}^{T} A_{3}\right)=6.3648 \times 10^{16} \quad$ and $\quad \operatorname{cond}\left(A_{4}^{T} A_{4}\right)=1.1218 \times 10^{23}$
These last two condition numbers suggest that any coefficients obtained are highly suspect.

The best cubic and quartic models are given by

$$
\begin{aligned}
T & =0.0000018977 N^{3}-0.001445 N^{2}+0.50540 N+23.138 \\
T & =-0.00000001765 N^{4}+0.00001190 N^{3}-0.003504 N^{2} \\
& =+0.6876 N+17.314
\end{aligned}
$$

Best Cricket Model
So how does one select the best model?

Visually, one can see that the linear model does a very good job, and one only obtains a slight improvement with a quadratic. Is it worth the added complication for the slight improvement.

It is clear that the sum of square errors (SSE) will improve as the number of parameters increase.

From statistics, it is hotly debated how much penalty one should pay for adding parameters.

Best Cricket Model - Analysis
Bayesian Information Criterion: Let n be the number of data points, $S S E$ be the sum of square errors, and let k be the number of parameters in the model.

$$
B I C=n \ln (S S E / n)+k \ln (n)
$$

Akaike Information Criterion:

$$
A I C=2 k+n(\ln (2 \pi S S E / n)+1)
$$

The table below shows the by the Akaike information criterion that we should take a quadratic model, while using a Bayesian Information Criterion we should use a cubic model.

	Linear	Quadratic	Cubic	Quartic
$S S E$	108.8	79.08	78.74	78.70
$B I C$	46.3	33.65	33.43	37.35
$A I C$	189.97	175.37	177.14	179.12

Returning to the original statement, we do fairly well by using the folk formula, despite the rest of this analysis!

