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Introdution: Mathing a Few Parameters to a Lot of Data.Sometimes we get a lot of data, many observations, and want to�t it to a simple model.
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Why a Low Dimensional Model?Low dimensional models (e.g. low degree polynomials) are easy towork with, and are quite well behaved (high degree polynomialsan be quite osillatory.)

All measurements are noisy, to some degree. Often, we want to use alarge number of measurements in order to �average out� random noise.

Approximation Theory looks at two problems:[1℄ Given a data set, �nd the best �t for a model (i.e. in a lass offuntions, �nd the one that best represents the data.)[2℄ Find a simpler model approximating a given funtion.
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Interpolation: A Bad Idea?We an probably agree that trying to interpolate this data set:
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Measured Datawith a 50th degree polynomial is not the best idea in the world... Even�tting a ubi spline to this data gives wild osillations![I tried, and it was not pretty!℄
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De�ning �Best Fit� � the Residual.We are going to relax the requirement that the approximatingfuntion must pass through all the data points.

Now we need a measurement of how well our approximation�ts the data. � A de�nition of �best �t.�

If f(xi) are the measured funtion values, and a(xi) are the val-ues of our approximating funtions, we an de�ne a funtion,

r(xi) = f(xi) − a(xi) whih measures the deviation (residual) at

xi. Notie that ~r = {r(x0), r(x1), . . . , r(xn)}T is a vetor.

Notation: From now on, fi = f(xi), ai = a(xi), and ri = r(xi).Further, ~f = {f0, f1, . . . , fn}T , ~a = {a0, a1, . . . , an}T ,and ~r = {r0, r1, . . . , rn}T .
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What is the Size of the Residual?There are many possible hoies, e.g.

• The abs-sum of the deviations:

E1 =
n∑

i=0

|ri| ⇔ E1 = ‖~r‖1

• The sum-of-the-squares of the deviations:
E2 =

√√√√ n∑
i=0

|ri|2 ⇔ E2 = ‖~r‖2

• The largest of the deviations:
E∞ = max

0≤i≤n
|ri| ⇔ E∞ = ‖~r‖∞

In most ases, the sum-of-the-squares version is the easiest to workwith. (From now on we will fous on this hoie...)
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Disrete Least Squares Approximation.We have hosen the sum-of-squares measurement for errors. Lets �ndthe onstant that best �ts the data, minimize

E(C) =
n∑

i=0

(fi − C)2.

If C∗ is a minimizer, then E′(C∗) = 0 [the derivative at a max/min is zero℄
E′(C) = −

n∑
i=0

2(fi−C) = −2
n∑

i=0

fi + 2(n + 1)C,︸ ︷︷ ︸
Set =0, and solve for C

E′′(C) = 2(n + 1)︸ ︷︷ ︸
Positive

hene

C∗ =
1

n + 1

n∑
i=0

fi, it is a min sine E′′(C∗) = 2(n + 1) > 0.

is the onstant that best the �ts the data. (Note: C∗ is the average.)
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Disrete Least Squares: Linear Approximation.The form of Least Squares you are most likely to see: Find theLinear Funtion, p1(x) = a0 + a1x that best �ts the data. Theerror E(a0, a1) we need to minimize is:

E(a0, a1) =
n∑

i=0

[(a0 + a1xi)− fi]
2 .

The �rst partial derivatives with respet to a0 and a1 better be zeroat the minimum:

∂

∂a0
E(a0, a1) = 2

n∑
i=0

[(a0 + a1xi)− fi] = 0

∂

∂a1
E(a0, a1) = 2

n∑
i=0

xi [(a0 + a1xi)− fi] = 0.

We �massage� these expressions to get the Normal Equations...
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Linear Approximation: The Normal Equations p1(x)


a0(n + 1) + a1

n∑
i=0

xi =
n∑

i=0

fi

a0

n∑
i=0

xi + a1

n∑
i=0

x2
i =

n∑
i=0

xifi.

Sine everything exept a0 and a1 is known, this is a 2-by-2 systemof equations.


(n + 1)

n∑
i=0

xi

n∑
i=0

xi

n∑
i=0

x2
i


 a0

a1

 =


n∑

i=0

fi

n∑
i=0

xifi

 .
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Quadrati Model, p2(x)For the quadrati polynomial p2(x) = a0 + a1x + a2x
2, the error isgiven by

E(a0, a1, a2) =
n∑

i=0

[
a0 + a1xi + a2x

2
i − fi

]2

At the minimum (best model) we must have
∂

∂a0
E(a0, a1, a2) = 2

n∑
i=0

[
(a0 + a1xi + a2x

2
i )− fi

]
= 0

∂

∂a1
E(a0, a1, a2) = 2

n∑
i=0

xi

[
(a0 + a1xi + a2x

2
i )− fi

]
= 0

∂

∂a2
E(a0, a1, a2) = 2

n∑
i=0

x2
i

[
(a0 + a1xi + a2x

2
i )− fi

]
= 0.
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Quadrati Model: The Normal Equations p2(x)Similarly for the quadrati polynomial p2(x) = a0 + a1x + a2x
2, thenormal equations are:

a0(n + 1) + a1

n∑
i=0

xi + a2

n∑
i=0

x2
i =

n∑
i=0

fi

a0

n∑
i=0

xi + a1

n∑
i=0

x2
i + a2

n∑
i=0

x3
i =

n∑
i=0

xifi.

a0

n∑
i=0

x2
i + a1

n∑
i=0

x3
i + a2

n∑
i=0

x4
i =

n∑
i=0

x2
i fi.

Note: Even though the model is quadrati, the resulting (normal)equations are linear. � The model is linear in its parameters,

a0, a1, and a2.
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The Normal Equations � As Matrix Equations.We rewrite the Normal Equations as:

(n + 1)
n∑

i=0

xi

n∑
i=0

x2
i

n∑
i=0

xi

n∑
i=0

x2
i

n∑
i=0

x3
i

n∑
i=0

x2
i

n∑
i=0

x3
i

n∑
i=0

x4
i




a0

a1

a2

 =



n∑
i=0

fi

n∑
i=0

xifi.

n∑
i=0

x2
i fi.


.

It is not immediately obvious, but this expression an be written inthe form ATA~a = AT~f . Where the matrix A is very easy to write interms of xi. [Jump Forward℄.
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The Polynomial Equations in Matrix Form pm(x)We an express the mth degree polynomial, pm(x), evaluated at thepoints xi:

a0 + a1xi + a2x
2
i + . . . + amxm

i = fi, i = 0, . . . , nas a produt of an (n+1)-by-(m+1) matrix, A and the (m+1)-by-1vetor ~a and the result is the (n + 1)-by-1 vetor ~f , usually n ≫ m:

1 x0 x2
0 · · · xm

0

1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2

1 x3 x2
3 · · · xm

3... ... ... ... ...

1 xn x2
n · · · xm

n


︸ ︷︷ ︸

A


a0

a1...

am


︸ ︷︷ ︸

~a

=



f0

f1

f2

f3...

fn


︸ ︷︷ ︸

~f

.
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Building a Solvable System from A~a = ~fWe annot immediately solve the linear system

A~a = ~fwhen A is a retangular matrix (n + 1)-by-(m + 1), m 6= n.

We an generate a solvable system by multiplying both the left- andright-hand-side by AT , i.e.

ATA~a = AT~fNow, the matrix AT A is a square (m + 1)-by-(m + 1) matrix, and

AT~f an (m + 1)-by-1 vetor.

Let's take a loser look at AT A, and AT~f ...
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Computing AT A.



1 1 1 1 . . . 1

x0 x1 x2 x3 . . . xn

x2
0 x2

1 x2
2 x2

3 . . . x2
n... ... ... ... ... ...

xm
0 xm

1 xm
2 xm

3 . . . xm
n





1 x0 x2
0 · · · xm

0

1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2

1 x3 x2
3 · · · xm

3... ... ... ... ...
1 xn x2

n · · · xm
n



=


n + 1

∑n
i=0 x1

i · · · ∑n
i=0 xm

i∑n
i=0 x1

i

∑n
i=0 x2

i · · · ∑n
i=0 xm+1

i... ... . . . ...∑n
i=0 xm

i

∑n
i=0 xm+1

i · · · ∑n
i=0 x2m

i

 .
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Computing AT f .



1 1 1 1 . . . 1

x0 x1 x2 x3 . . . xn

x2
0 x2

1 x2
2 x2

3 . . . x2
n... ... ... ... ... ...

xm
0 xm

1 xm
2 xm

3 . . . xm
n





f0

f1

f2

f3...

fn


=



∑n
i=0 fi∑n

i=0 xifi∑n
i=0 x2

i fi...∑n
i=0 xm

i fi.



We have reovered the Normal Equations...

[Jump Bak℄.
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Disrete Least Squares: A Simple, Powerful Method.Given the data set (~x,~f), where ~x = {x0, x1, . . . , xn}T and

~f = {f0, f1, . . . , fn}T , we an quikly �nd the best polynomial �t forany spei�ed polynomial degree!

Notation: Let ~xj be the vetor {xj
0, x

j
1, . . . , x

j
n}T .

E.g. to ompute the best �tting polynomial of degree 3,

p3(x) = a0 + a1x + a2x
2 + a3x

3, de�ne:

A =


| | | |
| | | |
~1 ~x ~x2 ~x3

| | | |
| | | |

 , and ompute ~a = (AT A)−1(AT~f).
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Disrete Least Squares: Matlab Example.I used this ode to generate the data for the plots on slide 2.
x = (0:0.1:5)’; % The x-vector

f = 1+x+x.∧2/25; % The underlying function

n = randn(size(x)); % Random perturbations

fn = f+n; % Add randomness

A = [x ones(size(x))]; % Build A for linear fit

%a = (A’*A)\(A’*f); % Solve

a = A\f; % Better, Equivalent, Solve

p1 = polyval(a,x); % Evaluate

A = [x.∧2 x ones(size(x))]; % A for quadratic fit

%a = (A’*A)\(A’*f); % Solve

a = A\f; % Better, Equivalent, Solve

p2 = polyval(a,x); % Evaluate
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But... I do not want to �t a polynomial!!!Fitting an exponential model g(x) = becx to the given data ~d, isquite straight-forward.

First, re-ast the problem as a set of linear equations. We have:
becxi = di, i = 0, . . . , nompute the natural logarithm on both sides:

ln b︸︷︷︸
a0

+ c︸︷︷︸
a1

xi = ln di︸︷︷︸
fi

.

Now, we an apply a polynomial least squares �t to the problem, andone we have (a0, a1), b = ea0 and c = a1.Note: This does not give the least squares �t to the original prob-lem!!! (It gives us a pretty good estimate.)
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But... That is not a True Least Squares Fit!Note: Fitting the modi�ed problem does not give the least squares�t to the original problem!!!In order to �nd the true least squares �t we need to know how to �ndroots and/or minima/maxima of non-linear systems of equations.

Feel free to sneak a peek at Burden-Faires hapter 10. Unfortunatelywe do not have the time to talk about this here...

What we need: Math693a � Numerial Optimization Teh-niques.
Some of this stu� may show up in a di�erent ontext in: Math562� Mathematial Methods of Operations Researh.
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Criket Thermometer AppliationThere is a folk method of approximating the temperature (in Fahren-heit). This entered the sienti� literature in 1896 by Dolbear withdata olleted by the Bessey brothers in 1898.

The temperature is approximated from the rate of rikets hirpingby taking the number of hirps/min dividing by 4 and adding 40.
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Bessey:  T = 0.21 N + 40.4
Dolbear: T = 0.25 N + 40
Bessey data
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Polynomial Fits to the DataExel's Trendline was used to �t linear, quadrati, ubi, and quartipolynomials.
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Criket Data AnalysisC. A. Bessey and E. A. Bessey olleted data on eight di�erentrikets that they observed in Linoln, Nebraska during Augustand September, 1897. The number of hirps/min was N and thetemperature was T .

Create matries

A1 =


1 N1

1 N2... ...

 A2 =


1 N1 N2

1

1 N2 N2
2... ... ...



A3 =


1 N1 N2

1 N3
1

1 N2 N2
2 N3

2... ... ... ...
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Criket Linear ModelCompute the matrix

AT
1 A1 =

 52 7447

7447 1133259


This has eigenvalues

λ1 = 3.0633 and λ2 = 1, 133, 308whih gives the ondition number

cond(AT
1 A1) = 3.6996× 105.With MatLab's linsolve solving for oe�ients a,

AT
1 A1a = AT

1 T,we obtain the best linear model

T = 0.21548N + 39.744.
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Criket Quadrati ModelSimilarly, ompute the matrix

AT
2 A2 =


52 7447 1133259

7447 1133259 1.8113× 108

1133259 1.8113× 108 3.0084× 1010



This has eigenvalues

λ1 = 0.1957 λ2 = 42, 706 λ3 = 3.00853× 1010

whih gives the ondition number

cond(AT
2 A2) = 1.5371× 1011.With MatLab's linsolve, we obtain the best quadrati model

T = −0.00064076N2 + 0.39625N + 27.849.
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Criket Cubi and Quarti ModelsThe ondition numbers for the ubi and quarti rapidly get largerwith

cond(AT
3 A3) = 6.3648× 1016 and cond(AT

4 A4) = 1.1218× 1023

These last two ondition numbers suggest that any oe�ientsobtained are highly suspet.

The best ubi and quarti models are given by
T = 0.0000018977N3 − 0.001445N2 + 0.50540N + 23.138

T = −0.00000001765N4 + 0.00001190N3 − 0.003504N2

= +0.6876N + 17.314
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Best Criket ModelSo how does one selet the best model?

Visually, one an see that the linear model does a very good job, andone only obtains a slight improvement with a quadrati. Is it worththe added ompliation for the slight improvement.

It is lear that the sum of square errors (SSE) will improve as thenumber of parameters inrease.

From statistis, it is hotly debated how muh penalty one should payfor adding parameters.
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Best Criket Model - AnalysisBayesian Information Criterion: Let n be the number of data points,

SSE be the sum of square errors, and let k be the number of param-eters in the model.

BIC = n ln(SSE/n) + k ln(n).Akaike Information Criterion:

AIC = 2k + n(ln(2πSSE/n) + 1).
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Best Criket Model - Analysis ContinuedThe table below shows the by the Akaike information riterion thatwe should take a quadrati model, while using a Bayesian InformationCriterion we should use a ubi model.

Linear Quadrati Cubi Quarti

SSE 108.8 79.08 78.74 78.70

BIC 46.3 33.65 33.43 37.35

AIC 189.97 175.37 177.14 179.12Returning to the original statement, we do fairly well by using the folkformula, despite the rest of this analysis!
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