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The World is not One-Dimensional

Very few interesting problems are one-dimensional, so we need inte-

gration schemes for multiple integrals, i.e.

7= //R f(@,y) do dy,

where R = {(z,y) : x € [a,b], y € [c,d]}.

Good News: The integration techniques we have developed
previously can be adopted for multi-dimensional

integration in a straight-forward way.

Composite Simpson's Rule (CSR) is our favorite integration scheme,

so we will discuss multi-dimensional integration in that context.
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Multi-Dimensional Composite Simpson’s Rule

We divide the z-range [a,b] into an even
number n, of subintervals with nodes 4 |
spaced h, = (b — a)/n, apart, and
the y-range [c,d] into an even number
ny of subintervals with nodes spaced . 1
hy = (d — ¢)/ny apart.

y

We write

I—//Rﬂx,y)dxdy—/ab [/jf(m)dy] d,

and first apply CSR to approximate the integration in y — treating x

as a constant.
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Composite Simpson’s Rule in the y-coordinate

Let y; = c+ jhy, j =0,1,...,n,, then

ny /2

d
/ flz,y)dy = % F@,yo) = f(@oyn) + D [2F (@, 125) +4f (2, y25-1)]

j=1
A= Oht B (e )
180 oyt

for some p,, € [c, d].

Then we apply the integral in the z—coordinate...

/ab/cdf(x,y)dydx: %{/&bf(x,yg)d:r—/abf(a;,yn)dx

ny/2

+; {2/abf(:c,y2j)dfﬂ+4/abf(m’y2jl)dxH

B (d — C)h3 /b 84}8(% Ny)
180 a oyt

dx,
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Apply Composite Simpson’s Rule in the z-coordinate

Now, we “simply” apply CSR in the x-coordinate, for each integral in
the expression...

/ab/cdf(a:,y)dydxz

ng /2
%{ [f(mo,yo) — f(@n,y0) + z; (Qf(l’%yo) + 4f($2i—1’y0))]
ng /2
- |:f(x0ayn) - f(x'rnyn) + Z <2f(x21’y'") + 4f($21'—1,yn)>:|
Ny /2 = na /2
+>° [2 [f(x07y2j) — (s y2) + ) <2f(x2ivy2j) +4f($2i—1vy2j)>}
=1 =1
ng /2
+4 {f(fﬂo,yzj—l) — f@nyzi—1) + Y (zf(xzi’ij_l) +4f($2i_1’y2j_1)>” }
=1

This looks somewhat painful, but do not despair!!!
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2-Dimensional Composite Simpson’s Rule — The Error

The error for the approximation is

__(b-ad=of,,0'f 10 f

for some (s, 12), (vys i) € B = [a,b] x [e,d].

“Derivation of the error is left as an
exercise for the interested reader...”
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Building 2-D CSR in a Comprehensible Way?

Consider the tensor product of the z- and y-stencils for CSR with 2

sub-intervals:

Evaluate the function at the corresponding points, multiply by the
above weights, and sum = 2-D CSR.
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Building 2-D CSR in a Comprehensible Way? — Example

9 /ZE4 /y4 ( )
flz,y)dzdy ~
hl’h'y Zo Yo

1| f(xo,y0) +4f(x1,90) + 2f(x2,y0) + 4f(x3,90) + f(24,90) |+

4| f(xo,y1) +4f(x1,y1) +2f (w2, 91) +4f(x3,y1) + f(wa,91) |+

2| f(zo,y2) +4f(x1,y2) + 2f (x2,y2) + 4f (23, y2) + f(x4,2) |+

4| f(xo,y3) +4f(x1,y3) +2f (22, y3) + 4f(x3,y3) + f(24,y3) |+

L\ f(wo,ya) +4f(x1,y4) + 2f (w2, ya) + 4f (23, Y1) + f(24,94)

T4 — X0 4 — Yo
hy = 1 , hy:y4y'
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Building Higher-Dimensional Schemes

By the same strategy, we can build a 3-D CSR-scheme

CSR;y. = CSR; ® CSR, ® CSR..
There's nothing unique about the usage of CSR. The same idea can
be used to build higher dimensional Gaussian Quadrature schemes. If

we have the stencils for the one-dimensional (Composite) Gaussian
Quadrature schemes in the z-, y- and z-directions (GQ,, GQ,, GQ.):

If you're really twisted you could use different schemes in the different

coordinate directions, i.e.
NUM NT,,. = CSR, ® GQ, ® Romberg. .
Needless to day, the error terms would get really “interesting.”
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Integrating Outside the Box

The integration schemes we have discussed so far only works for

rectangular regions [a, b] X [¢,d]...

In calculus we compute integrals of this form:

d(z)
/ / (z,y)dy dx
(2)

We can modify our integration schemes to deal with this type of

integrals.
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Dealing with Variable Integration Limits

| | -
T T L

a b

In order to numerically compute an integral of this type

b pd(z)
/ /( Hry) dyds

we are going to use CSR with a fixed step size hy, = (b — a)/ny in
—¢(z))/ny in the

the z-direction, and variable step size h, = (d(x)

y-direction.
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Variable Integration Limits — Example

For simplicity we apply straight-up one-step SR to

b pd(z)
// [z, y)dy dx
a Je(z)
and get

d(:z:)
/ / (z,y)dydx ~
(=)

3

—

4(d(z1)—c(z1)
6

[f<x1,c<x1>> A f(, SEEAEY

dra)clwa) | p (g, e(o)) + Af (g, CRTNT2DY 4 p () d(

a+b
2

where vg = a, 71 = , To =b.
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o]+

)|}

0) |+
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Variable Integration Limits

We can imagine how to extend to multiple dimensions, i.e.

bopd@) f(zy)
/ / / g(z,y,2)dz dy dz.
a Je(z) Je(zy)

Again, there nothing special about Simpson’s Rule — we can attack
variable integration limits with Gaussian Quadrature, Trapezoidal
Rule, or Boole's Rule...

Note that there is nothing stopping us from using adaptive schemes
to find the integrals... but the complexity of the code grows!
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Algorithm: Variable Limits Double Integral using CSR

[1] hx = (b-a)/n, ENDPTS=0, EVENPTS=0, ODDPTS=0

[2] FOR i=0,1,...,n % CSR in x
X = a+ irhx
kil = f(x,c(x)) + f(x,d(x)) % End terns
k2 = 0 % Even terns
k3 =0 % Odd terns
hy = (d(x)-c(x))/n

FOR j=1,2,...,(m—1)
y = c(x)+*hy
Q=f(x,y)
IF j EVEN. k2 += Q ELSE: k3 += Q
END- FOR- j
L = hy*(k1l + 2xk2 + 4xk3)/3;
IFiis 0 ORn: ENDPTS += L
ELSEIF i EVEN.  EVENPTS += L
ELSEI F i ODD: ODDPTS += L
END- FOR- i
| NTAPPROX = hx* ( ENDPTS+2* EVENPTS+4* CDDPTS) / 3
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Improper Integrals — Introduction

“Improper” integrals:

[ 1] Integrals over infinite intervals

/a ” fw) da.

[ 2] Integrals with unbounded functions

Note: We can always transform [ 1] —[ 2]

00 t =1 0
/ f(z)de = —/ —t72 (Y dt
a 1

dt = —x~2dzx /a
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More Forgotten Calculus

The integral
/b da
a (‘T - a)p
converges if and only if p € (0,1), and

/b de (b—a)'?
o (@=—a)p  1-p

If f(x) can be written on the form

g()

f<x> = JZAS (0)1)7 g e C[avb]

then the improper integral
b
/ f(x)dx, exists.
a

Numerical Integration and Differentiation: Multiple Integrals; Improper Integrals — p. 16/24




Splitting the Integrand using Taylor Expansions /1

Assuming that g € C%*1[a, b], for some d € Z7, the Taylor polynomial

of degree d is
k

zd:g w—a)

k=0

We can now write
g9(x) — Py() > Pa(x)
NI = = T

where the last integral is easy to find, since Py(x) is a polynomial:

d
k —-p _ N\k+1-p
k:ZO/“ d Z l( k ¥ 1 — -9

b g®) (a)
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Splitting the Integrand using Taylor Expansions 1/n

If we let

b a (k) k+1
~ _ -p
| rayaa~ > i -,
then the approximation error is bounded by:

Vg = Pal@) " Ra@) [P E@) @0
/ | , d

(x —a) T —a)P (k+ 1Dz —a)p
= (k—ll-l).ze(zb g (@) / @) P de
g(d+1) (f) (b o a)d+27p.

T k+1)!d+2-p)

What if we want to do better?
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Numerical Approximation of the Remainder Term

To get a more accurate approximation to the integral, we compute

the numerical approximation of the remainder term:

b gla) ~ Pale)
/a @—ap ™

Define: (Remove the singularity)

Apply: Composite Simpson's Rule

n/2

b
/ G(x) dr ~ g G(xo) — G(l?n) + Z |:4G($2j1) + QG(QZQj)

j=1

Add the CSR-approximation to 3¢ _ k,?;ila)p)( —a)kti-rp,
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Example#1 /1

1 T
€

The fourth order Taylor polynomial is

We want to compute

2 g3 g
P4($)=1+$+?+€+ﬁ7

SO

1 1 3/2 5/2 7/2
Py(x) , -1/2 /2 . % z z
/0 W dr = /0 x +ax/ 4+ 5 + 6 + 21 dx

2 2 2 2 2
-2, /2 2.923544974
1+3+2-5+6~7+24-9 92354497
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Example#1 1n/m

Next, we apply CSR with h =1/4 to fol G(z) dz, where
e — Py(x)

G(z) = al/2
0 x = 0.

z € (0,1]

1

1

/ G(z)dx ~ 13 {0 +4-0.0000170 + 2 - 0.00413 + 4 - 0.0026026
0 .

+0.0099485} = 0.0017691.

Hence,

1 x
/ _e1/2 dx ~ 2.923544974 + 0.0017691 = 2.9253141,
0 X
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Example#1 1/

Since |G™W(z)| < 1 on (0,1], the error from CSR is bounded by

1 1
— - —=0. 217.
R0 T 0.0000217

The error bound for the Taylor-only approximation is bounded by

1
—— = 0.00151515
5!-5.5

If, instead of adding the CSR-approximation of fG(x) dz, we used
P5(z), the error bound for that Taylor-only approximation would be

1
—— = 0.00021044.
6!-6.5
The Ps(z)-only-error is comparable with the Py(x)+CSR-error:

1
——— = 0.000026455.
775
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Example#2 /1

We are going to approximate the integral

«© 1 1 d
. on sin { — | da.
A quick change of variables ¢t = ! gives us

1
/ t12sin(t) dt.

0

The sixth Taylor polynomial Pg(t) for sin(t) about t =0 is

1, 1 1
Ps(t) =t — Et‘j + Eot5, |Rg(t)| < =7 = 0.00019841

1 1
/ t12Pg(t) dt = / 2 Ly Lo g
0 0 6 120

= 0.62056277

2 2 N
3 7.6 11-120
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Example#2 1n/n

We define
sin(t) — Pg(t)

G(t) = £/
0 t=0,

t € (0,1]

and apply CSR with h = 1/32 to fol G(t) dt to get

1 1
/1 Wsm <;> dx

~ 0.62056277 — 0.0000261672790305 = 0.62053660

which is accurate within ~ 1078,
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