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Numerical Differentiation and Integration: Quadrature – p. 1/44

Introdution: The Road MapLast time: we worked hard (or did we just rely on Newton's hardwork?) to �nd very aurate integration shemes; i.e. the Newton-Cotes formulas.This time: Instead of working so hard � we use a low-orderNewton-Cotes formula, but divide the integration interval into smallersub-intervals.We use the sum of the integrations over the separate sub-intervals as the approximation to the whole integral.
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Reall: Simpson's Rule

∫ b

a
f(x)dx = h

[
f(x0) + 4f(x1) + f(x2)

3

]
− h5

90
f (4)(ξ).

f(x)

p(x) − Simpson’s Rule
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Divide and Conquer with Simpson's Rule I/IIIThe exat solution:∫ 4

0
exdx = e4 − e0 = 53.59815

Simpson's Rule with h = 2∫ 4

0
exdx ≈ 2

3
(e0 + 4e2 + e4) = 56.76958.The error is −3.17143 (5.92%).

Divide-and-Conquer: Simpson's Rule with h = 1∫ 2

0
exdx+

∫ 4

2
exdx ≈ 1

3
(e0+4e1+e2)+

1
3
(e2+4e3+e4) = 53.86385The error is −0.26570. (0.50%) An improvement by a fator of 10!
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Divide and Conquer with Simpson's Rule II/IIIThe exat solution:∫ 4

0
exdx = e4 − e0 = 53.59815Divide-and-Conquer: Simpson's Rule with h = 1/2∫ 1

0
+

∫ 2

1
+

∫ 3

2
+

∫ 4

3
exdx ≈ 1

6
(e0 + 4e1/2 + e1) +

1
6
(e1 + 4e3/2 + e2)

+
1
6
(e2 + 4e5/2 + e3) +

1
6
(e3 + 4e7/2 + e4) = 53.61622The error has been redued to −0.01807 (0.034%).

h abs-error err/h err/h2 err/h3 err/h42 3.17143 1.585715 0.792857 0.396429 0.1982141 0.26570 0.265700 0.265700 0.265700 0.2657001/2 0.01807 0.036140 0.072280 0.144560 0.289120
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Divide and Conquer with Simpson's Rule III/IIIExtending the table...

h abs-error err/h err/h2 err/h3 err/h4 err/h52 3.171433 1.585716 0.792858 0.396429 0.198215 0.0991071 0.265696 0.265696 0.265696 0.265696 0.265696 0.2656961/2 0.018071 0.036142 0.072283 0.144566 0.289132 0.5782641/4 0.001155 0.004618 0.018473 0.073892 0.295566 1.1822661/8 0.000073 0.000580 0.004644 0.037152 0.297215 2.377716

Clearly, the err/h4 olumn seems to onverge (to a non-zero onstant)as h ց 0. The olumns to the left seem to onverge to zero, and theerr/h5 olumn seems to grow.This is numerial evidene that the omposite Simpson's rule has aonvergene rate of O (
h4

). But, isn't Simpson's rule 5th order???
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Generalized Composite Simpson's Rule I/IIFor an even integer n: Subdivide the interval [a, b] into n subintervals,and apply Simpson's rule on eah onseutive pair of sub-intervals.With h = (b− a)/n and xj = a + jh, j = 0, 1, . . . , n, we have
∫ b

a
f(x)dx =

n/2∑
j=1

∫ x2j

x2j−2

f(x)dx

=
n/2∑
j=1

{
h

3

[
f(x2j−2) + 4f(x2j−1) + f(x2j)

]
− h5

90
f (4)(ξj)

}
,

for some ξj ∈ [x2j−2, x2j ], if f ∈ C4[a, b].

Sine all the interior �even� x2j points appear twie in the sum, wean simplify the expression a bit...
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Generalized Composite Simpson's Rule II/II

∫ b

a
f(x)dx =

h

3

f(x0)− f(xn) +
n/2∑
j=1

[
4f(x2j−1) + 2f(x2j)

]
−h5

90

n/2∑
j=1

f (4)(ξj).

The error term is:

E(f) = −h5

90

n/2∑
j=1

f (4)(ξj)
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The Error for Composite Simpson's Rule I/IIIf f ∈ C4[a, b], the Extreme Value Theorem implies that f (4)assumes its max and min in [a, b]. Now, sine

min
x∈[a,b]

f (4)(x) ≤ f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x),

[n

2

]
min

x∈[a,b]
f (4)(x) ≤

n/2∑
j=1

f (4)(ξj) ≤
[n

2

]
max
x∈[a,b]

f (4)(x),

min
x∈[a,b]

f (4)(x) ≤
[

2
n

] n/2∑
j=1

f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x),

By the Intermediate Value Theorem ∃µ ∈ (a, b) so that

f (4)(µ) =
2
n

n/2∑
j=1

f (4)(ξj) ⇔ n

2
f (4)(µ) =

n/2∑
j=1

f (4)(ξj)
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The Error for Composite Simpson's Rule II/IIWe an now rewrite the error term:

E(f) = −h5

90

n/2∑
j=1

f (4)(ξj) = − h5

180
nf (4)(µ),

or, sine h = (b− a)/n ⇔ n = (b− a)/h, we an write
E(f) = −(b− a)

180
h4f (4)(µ).

Hene Composite Simpson's Rule has degree of auray 3 (sineit is exat for polynomials up to order 3), and the error is proportionalto h4 � Convergene Rate O (
h4

).

Numerical Differentiation and Integration: Quadrature – p. 10/44

Composite Simpson's Rule � Summary

Theorem: �Let f ∈ C4[a, b], n be even, h = (b − a)/n, and xj = a + jh,
j = 0, 1, . . . , n. There exists µ ∈ (a, b) for whih the CompositeSimpson's Rule for n subintervals an be written with its error termas

∫ b

a
f(x)dx =

h

3

f(a)− f(b) +
n/2∑
j=1

[4f(x2j−1) + 2f(x2j)]


−(b− a)

180
h4f (4)(µ).

Note: x0 = a, and xn = b.
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Composite Simpson's Rule � AlgorithmGiven the end points a and b and an even positive integer n:

[1] h = (b− a)/n
[2] ENDPTS = f(a)+f(b)

ODDPTS = 0

EVENPTS = 0

[3] FOR i = 1, . . . , n− 1 — (interior points)

x = a + i ∗ h

if i is even: EVENPTS += f(x)

if i is odd: ODDPTS += f(x)

END

[4] INTAPPROX = h*(ENDPTS+2*EVENPTS+4*ODDPTS)/3
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Romberg Integration The Return of Rihardson's ExtrapolationRomberg Integration is the ombination of the Composite Trape-zoidal Rule (CTR)

∫ b

a
f(x)dx =

h

2

f(a) + f(b) + 2
n−1∑
j=1

f(xj)

− (b− a)
12

h2f ′′(µ)

and Rihardson Extrapolation.

Here, we know that the error term for regular Trapezoidal Rule is

O(h3). By the same argument as for Composite Simpson's Rule, thisgets redued to O(h2) for the omposite version.
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Romberg Integration Step-1: CTR Re�nementLet Rk,1 denote the Composite Trapezoidal Rule with 2k−1 sub-intervals, and hk = (b− a)/2k−1. We get:

R1,1 = h1
2 [f(a) + f(b)]

R2,1 = h2
2 [f(a) + 2f(a + h2) + f(b)]

= (b−a)
4 [f(a) + f(b) + 2f(a + h2)]

= 1
2 [R1,1 + h1f(a + h2)]...

Rk,1 =
1
2

Rk−1,1 + hk−1

2k−2∑
i=1

f(a + (2i− 1)hk)


︸ ︷︷ ︸

Update formula, using previous value + new points
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Example: Rk,1 for R π
0 sin(x)dx

0 1 2 3
0

0.2

0.4

0.6

0.8

1

f(x)
R[2,1]

0 1 2 3
0

0.2

0.4

0.6

0.8

1

f(x)
R[3,1]

0 1 2 3
0

0.2

0.4

0.6

0.8

1

f(x)
R[4,1]

k Rk,11 02 1.57079632679493 1.89611889793704 1.97423160194555 1.99357034377236 1.99839336097017 1.9995983886400
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Extrapolate using RihardsonWe know that the error term is O(h2), so in order to eliminate thisterm we ombine to onseutive entries Rk−1,1 and Rk,1 to form ahigher order approximation Rk,2 of the integral.

Rk,2 = Rk,1 +
Rk,1 −Rk−1,1

22 − 1

Rk,1 � O (
h2

)
Rk,20 01.5707963267949 2.094395102391.8961188979370 2.004559754981.9742316019455 2.000269169941.9935703437723 2.000016591041.9983933609701 2.000001033361.9995983886400 2.00000006453
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Extrapolate, again...It turns out (Taylor expand to hek) that the omplete error term forthe Trapezoidal rule only has even powers of h:∫ b

a
f(x) = Rk,1 −

∞∑
i=1

E2ih
2i
k .

Hene the Rk,2 approximations have error terms that are of size

O(h4).
To get O(h6) approximations, we ompute

Rk,3 = Rk,2 +
Rk,2 −Rk−1,2

42 − 1
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Extrapolate, yet again...In general, sine we only have even powers of h in the error expansion:
Rk,j = Rk,j−1 +

Rk,j−1 −Rk−1,j−1

4j−1 − 1Revisiting ∫ π
0 sin(x)dx:

Rk,1 � O `
h2

´
Rk,2 � O `

h4
´

Rk,3 � O `
h6

´
Rk,4 � O `

h8
´01.570796326794897 2.0943951023931951.896118897937040 2.004559754984421 1.9985707318238361.974231601945551 2.000269169948388 1.999983130945986 2.0000055499796711.993570343772340 2.000016591047935 1.999999752454572 2.0000000162880421.998393360970145 2.000001033369413 1.999999996190845 2.0000000000596741.999598388640037 2.000000064530001 1.999999999940707 2.000000000000229
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Homework? No, enough already � Here's the ode outline!

% Romberg Integration for sin(x) over [0,pi]

a = 0; b = pi; % The Endpoints

R = zeros(7,7);

R(1,1) = (b− a)/2 ∗ (sin(a) + sin(b));

for k = 2 : 7

h = (b− a)/2(k−1);

R(k,1)=1/2 ∗ (R(k − 1, 1) + 2 ∗ h ∗∑
(sin(a + (2 ∗ (1 : (2(k−2)))− 1) ∗ h)));

end

for j = 2 : 7

for k = j : 7

R(k,j) = R(k, j − 1) + (R(k, j − 1)−R(k− 1, j − 1))/(4(j−1)−1);

end

end

disp(R)
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More Advaned Numerial Integration Ideas

Adaptive and Gaussian Quadrature
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Introdution Adaptive QuadratureThe omposite formulas require equally spaed nodes.This is not good if the funtion we are trying to integrate has bothregions with large �utuations, and regions with small variations.

-10 0 10
-1.5

-1

-0.5

0

0.5

1

1.5

We need many points where the funtion �utuates, but few pointswhere it is lose to onstant or linear.
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Introdution � Adaptive Quadrature MethodsIdea: Cleverly predit (or measure) the amount of variation andautomatially add more points where needed.We are going to disuss this in the ontext of Composite Simpson'srule, but the approah an be adopted for other integration shemes.First we are going to develop a way to measure the error �a numerial estimate of the atual error in the numerialintegration. Note that here just knowing the struture of theerror term is not enough! (We will however use the strutureof the error term in our derivation of the numerial errorestimate.)Then we will use the error estimate to deide whether to aept thevalue from CSR, or if we need to re�ne further (reomputewith smaller h).
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Some Notation � One-step Simpson's Rule S(f ; a, b)Notation � �One-step� Simpson's Rule:∫ b

a
f(x) dx = S(f ; a, b)− h5

1

90
f (4)(µ1)︸ ︷︷ ︸

E(f ;h1,µ1)

, µ1 ∈ (a, b),

where

S(f ; a, b) =
(b− a)

6

[
f(a) + 4f

(
a+b
2

)
+ f(b)

]
, h1 =

(b− a)
2

.
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Composite Simpson's Rule (CSR)With this notation, we an write CSR with n = 4, and h2 = (b −
a)/4 = h1/2:∫ b

a
f(x) dx = S(f ; a, a+b

2 ) + S(f ; a+b
2 , b)− E(f ;h2, µ2).

We an squeeze out an estimate for the error by notiing that

E(f ;h2, µ2) =
1
16

(
h5

1

90
f (4)(µ2)

)
=

1
16

E(f ;h1, µ2).

Now, assuming f (4)(µ1) ≈ f (4)(µ2), we do a little bit of algebramagi with our two approximations to the integral...
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Wait! Wait! Wait! � I pulled a fast one!

E(f ;h2, µ2) =
1
32

(
h5

1

90
f (4)(µ1

2)
)

+
1
32

(
h5

1

90
f (4)(µ2

2)
)

where µ1
2 ∈ [a, a+b

2 ], µ2
2 ∈ [a+b

2 , b].

If f ∈ C4[a, b], then we an use our old friend, the intermediatevalue theorem:

∃µ2 ∈ [µ1
2, µ

2
2] ⊂ [a, b] : f (4)(µ2) =

f (4)(µ1
2) + f (4)(µ2

2)
2

.

So it follows that

E(f ;h2, µ2) =
1
16

(
h5

1

90
f (4)(µ2)

)
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Bak to the Error Estimate...Now we have

S(f ; a, a+b
2 ) + S(f ; a+b

2 , b)− 1
16

(
h5

1

90
f (4)(µ2)

)
= S(f ; a, b)− h5

1

90
f (4)(µ1).Now use the assumption f (4)(µ1) ≈ f (4)(µ2) (and replae µ1 and µ2by µ):

h5
1

90
f (4)(µ) ≈ 16

15

[
S(f ; a, b)−S(f ; a, (a+b)/2)−S(f ; (a+b)/2, b)

]
,

notie that h5
1

90f (4)(µ) = E(f ; h1, µ) = 16E(f ; h2, µ). Hene

E(f ; h2, µ) ≈ 1
15

[
S(f ; a, b)−S(f ; a, (a+b)/2)−S(f ; (a+b)/2, b)

]
,
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Finally, we have the error estimate in hand...

Using the estimate of h5
1

90f (4)(µ), we have

∣∣∣∣∫ b

a
f(x)dx− S(f ; a, (a + b)/2)− S(f ; (a + b)/2,b)

∣∣∣∣
≈ 1

15

∣∣∣∣S(f ; a,b)− S(f ; a, (a + b)/2)− S(f ; (a + b)/2,b)
∣∣∣∣

Notie!!! S(f ; a, (a + b)/2) + S(f ; (a + b)/2, b) approximates∫ b
a f(x)dx 15 times better than it agrees with the knownquantity S(f ; a, b)!!!

Numerical Differentiation and Integration: Quadrature – p. 27/44

Example � Error Estimates I/IIWe will apply Simpson's rule to∫ π/2

0
sin(x) dx = 1.Here,

S1(sin(x); 0, π/2) = S(sin(x); 0, π/2)

=
π

12

[
sin(0) + 4 sin(π/4) + sin(π/2)

]
=

π

12

[
2
√

2 + 1
]

= 1.00227987749221.

S2(sin(x); 0, π/2) = S(sin(x); 0, π/4) + S(sin(x); π/4, π/2)

=
π

24

[
sin(0) + 4 sin(π/8) + 2 sin(π/4) + 4 sin(3π/8) + sin(π/2)

]
= 1.00013458497419.

Numerical Differentiation and Integration: Quadrature – p. 28/44



Example � Error Estimates II/IIThe error estimate is given by

1
15

[
S1(sin(x); 0, π/2)− S2(sin(x); 0, π/2)

]
=

1
15

[
1.00227987749221 − 1.00013458497419

]
= 0.00014301950120.This is a very good approximation of the atual error, whih is

0.00013458497419.

OK, we know how to get an error estimate. How do we usethis to reate an adaptive integration sheme???
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Adaptive QuadratureWe want to approximate I =
∫ b
a f(x) dx with an error less than ǫ (aspei�ed tolerane).

[1] Compute the two approximations

S1(f(x); a, b) = S(f(x); a, b), and
S2(f(x); a, b) = S(f(x); a, a+b

2 ) + S(f(x); a+b
2 , b).

[2] Estimate the error, if the estimate is less than ǫ, we are done.Otherwise...

[3] Apply steps [1] and [2] reursively to the intervals

[a, a+b
2 ] and [a+b

2 , b] with tolerane ǫ/2.
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Adaptive Quadrature, Interval Re�nement Example #1

The funny �gure above is supposed to illustrate a possible sub-intervalre�nement hierarhy. Red dashed lines illustrate failure to satisfy thetolerane, and blak lines illustrate satis�ed tolerane.level tol interval1 ǫ [a,b]2 ǫ/2 [a,a + b−a
2

] [a + (b− a)/2,b]3 ǫ/4 [a,a + b−a
4

] [a + b−a
4

,a + b−a
2

]...
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Adaptive Quadrature, Interval Re�nement Example #2
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Figure: Appliation of adaptive CSR to the funtion f(x) = 1 −
3
√

(x− π
2e )2. Here, we have required that the estimated error be lessthan 10−6. The left panel shows the funtion, and the right panel showsthe number of re�nement levels needed to reah the desired auray.At ompletion we have the value of the integral being 0.61692712, withan estimated error of 3.93 · 10−7.
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Gaussian QuadratureIdea: Evaluate the funtion at a set of optimally hosen points inthe interval.We will hoose {x0, x1, . . . , xn} ∈ [a, b] and oe�ients ci, so thatthe approximation ∫ b

a
f(x)dx ≈

n∑
i=0

cif(xi)

is exat for the largest lass of polynomials possible.

We have already seen that the open Newton-Cotes formulas sometimegive us better �bang-for-buk� than the losed formulas (e.g. the mid-point formula uses only 1 point and is as aurate as the two-pointtrapezoidal rule). � Gaussian quadrature takes this one step further.
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Quadrature Types � A Comparison

Newton-Cotes Gaussian

Open Closed

Quadrature Degree of Degree of Degree of
Points Accuracy Accuracy Accuracy1 1∗ � 12 1 1 33 3 3# 54 3 3 75 5 5 9

∗ � The mid-point rule.
# � Simpson's rule.The mid-point rule is the only optimal sheme we have see so far.
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Gaussian Quadrature � Example 2-Point FormulaSuppose we want to �nd an optimal two-point formula:∫ 1

−1
f(x) dx = c1f(x1) + c2f(x2).Sine we have 4 parameters to play with, we an generate a formulathat is exat up to polynomials of degree 3. We get the following4 equations:∫ 1

−1
1 dx = 2 = c1 + c2∫ 1

−1
x dx = 0 = c1x1 + c2x2∫ 1

−1
x2 dx = 2

3 = c1x
2
1 + c2x

2
2∫ 1

−1
x3 dx = 0 = c1x

3
1 + c2x

3
2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

c1 = 1

c2 = 1

x1 = −
√

3
3

x2 =
√

3
3
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Higher Order Gaussian Quadrature FormulasWe ould obtain higher order formulas by adding more points, om-puting the integrals, and solving the resulting non-linear system ofequations... but it gets very painful, very fast.The Legendre Polynomials ome to our resue!The Legendre polynomials Pn(x) are orthogonal on [−1, 1] with re-spet to the weight funtion w(x) = 1, i.e.

∫ 1

−1
Pn(x)Pm(x) dx = αnδn,m =

 0 m 6= n

αn m = n
.

If P (x) is a polynomial of degree less than n, then∫ 1

−1
Pn(x)P (x) dx = 0.
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A Quik Note on Legendre PolynomialsWe will see Legendre polynomials in more detail later. For now, allwe need to know is that they satisfy the property∫ 1

−1
Pn(x)Pm(x) dx = αnδn,m.

and the �rst few Legendre polynomials are

P0(x) = 1
P1(x) = x

P2(x) = x2 − 1/3
P3(x) = x3 − 3x/5
P4(x) = x4 − 6x2/7 + 3/35
P5(x) = x5 − 10x3/9 + 5x/21.It turns out that the roots of the Legendre polynomials are the nodesin Gaussian quadrature.
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Higher Order Gaussian Quadrature Formulas

Theorem: � Suppose that {x1, x2, . . . , xn} are the roots of the
nth Legendre polynomial Pn(x) and that for eah i = 1, 2, . . . , n,the oe�ients ci are de�ned by

ci =
∫ 1

−1

n∏
j = 1
j 6= i

x− xj

xi − xj
dx.

If P (x) is any polynomial of degree less than 2n, then∫ 1

−1
P (x) dx =

n∑
i=1

ciP (xi).
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Proof of the Theorem I/IIILet us �rst onsider a polynomial, P (x) with degree less than n. P (x)an be rewritten as an (n− 1)-st Lagrange polynomial with nodes atthe roots of the nth Legendre polynomial Pn(x). This representationis exat sine the error term involves the nth derivative of P (x), whihis zero. Hene,∫ 1

−1
P (x) dx =

∫ 1

−1

[ n∑
i=1

n∏
j = 1
j 6= i

x− xj

xi − xj
P (xj)

]
dx

=
n∑

i=1

[ ∫ 1

−1

n∏
j = 1
j 6= i

x− xj

xi − xj
dx

]
P (xj) =

n∑
i=1

ciP (xi),

whih veri�es the result for polynomials of degree less than n.
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Proof of the Theorem II/IIIIf the polynomial P (x) of degree [n, 2n) is divided by the nth Legendrepolynomial Pn(x), we get:

P (x) = Q(x)Pn(x) + R(x)where both Q(x) and R(x) are of degree less than n.

[1] Sine deg(Q(x)) < n∫ 1

−1
Q(x)Pn(x) dx = 0.

[2] Further, sine xi is a root of Pn(x):

P (xi) = Q(xi)Pn(xi) + R(xi) = R(xi).
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Proof of the Theorem III/III

[3] Now, sine deg(R(x)) < n, the �rst part of the proof implies∫ 1

−1
R(x) dx =

n∑
i=1

ciR(xi).

Putting [1], [2] and [3] together we arrive at∫ 1

−1
P (x) dx =

∫ 1

−1
[Q(x)Pn(x) + R(x)] dx

=
∫ 1

−1
R(x) dx =

n∑
i=1

ciR(xi)

=
n∑

i=1

ciP (xi),

whih shows that the formula is exat for all polynomials P (x) ofdegree less than 2n. �
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Gaussian Quadrature beyond the interval [−1, 1]By a simple linear transformation,

t =
2x− a− b

b− a
⇔ x =

(b− a)t + (b + a)
2

,we an apply the Gaussian Quadrature formulas to any interval∫ b

a
f(x) dx =

∫ 1

−1
f

(
(b− a)t + (b + a)

2

)
(b− a)

2
dt.
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Examples I/IIDegree Pn(x) Roots / Quadrature points2 x2 − 1/3 {−1/
√

3, 1/
√

3}3 x3 − 3x/5 {−√
3/5, 0,

√
3/5}4 x4 − 6x2/7 + 3/35 {−0.86114, −0.33998, 0.33998, 0.86114}

∫ π/4

0
(cos(x))2 dx =

1
4

+
π

8
= 0.642699081698724

Degree Quadrature points Coe�ients2 0.16597, 0.61942 1, 13 0.08851, 0.39270, 0.69688 0.55556, 0.88889, 0.555564 0.05453, 0.25919, 0.52621, 0.73087 0.34785, 0.65215, 0.65215, 0.34785
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Examples II/II

∫ π/4

0
(cos(x))2 dx =

1
4

+
π

8
= 0.642699081698724

Degree Quadrature points Coe�ients2 0.16597, 0.61942 1, 13 0.08851, 0.39270, 0.69688 0.55556, 0.88889, 0.555564 0.05453, 0.25919, 0.52621, 0.73087 0.34785, 0.65215, 0.65215, 0.34785

Degree Integral approximation Error2 0.642317235049753 0.0003818466489...3 0.642701112090729 0.0000020303920...4 0.642699075999924 0.0000000056988...
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