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Introdu
tion: The Road MapLast time: we worked hard (or did we just rely on Newton's hardwork?) to �nd very a

urate integration s
hemes; i.e. the Newton-Cotes formulas.This time: Instead of working so hard � we use a low-orderNewton-Cotes formula, but divide the integration interval into smallersub-intervals.We use the sum of the integrations over the separate sub-intervals as the approximation to the whole integral.
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Re
all: Simpson's Rule

∫ b

a
f(x)dx = h

[
f(x0) + 4f(x1) + f(x2)

3

]
− h5

90
f (4)(ξ).

f(x)

p(x) − Simpson’s Rule
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Divide and Conquer with Simpson's Rule I/IIIThe exa
t solution:∫ 4

0
exdx = e4 − e0 = 53.59815

Simpson's Rule with h = 2∫ 4

0
exdx ≈ 2

3
(e0 + 4e2 + e4) = 56.76958.The error is −3.17143 (5.92%).

Divide-and-Conquer: Simpson's Rule with h = 1∫ 2

0
exdx+

∫ 4

2
exdx ≈ 1

3
(e0+4e1+e2)+

1
3
(e2+4e3+e4) = 53.86385The error is −0.26570. (0.50%) An improvement by a fa
tor of 10!
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Divide and Conquer with Simpson's Rule II/IIIThe exa
t solution:∫ 4

0
exdx = e4 − e0 = 53.59815Divide-and-Conquer: Simpson's Rule with h = 1/2∫ 1

0
+

∫ 2

1
+

∫ 3

2
+

∫ 4

3
exdx ≈ 1

6
(e0 + 4e1/2 + e1) +

1
6
(e1 + 4e3/2 + e2)

+
1
6
(e2 + 4e5/2 + e3) +

1
6
(e3 + 4e7/2 + e4) = 53.61622The error has been redu
ed to −0.01807 (0.034%).

h abs-error err/h err/h2 err/h3 err/h42 3.17143 1.585715 0.792857 0.396429 0.1982141 0.26570 0.265700 0.265700 0.265700 0.2657001/2 0.01807 0.036140 0.072280 0.144560 0.289120
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Divide and Conquer with Simpson's Rule III/IIIExtending the table...

h abs-error err/h err/h2 err/h3 err/h4 err/h52 3.171433 1.585716 0.792858 0.396429 0.198215 0.0991071 0.265696 0.265696 0.265696 0.265696 0.265696 0.2656961/2 0.018071 0.036142 0.072283 0.144566 0.289132 0.5782641/4 0.001155 0.004618 0.018473 0.073892 0.295566 1.1822661/8 0.000073 0.000580 0.004644 0.037152 0.297215 2.377716

Clearly, the err/h4 
olumn seems to 
onverge (to a non-zero 
onstant)as h ց 0. The 
olumns to the left seem to 
onverge to zero, and theerr/h5 
olumn seems to grow.This is numeri
al eviden
e that the 
omposite Simpson's rule has a
onvergen
e rate of O (
h4

). But, isn't Simpson's rule 5th order???
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Generalized Composite Simpson's Rule I/IIFor an even integer n: Subdivide the interval [a, b] into n subintervals,and apply Simpson's rule on ea
h 
onse
utive pair of sub-intervals.With h = (b− a)/n and xj = a + jh, j = 0, 1, . . . , n, we have
∫ b

a
f(x)dx =

n/2∑
j=1

∫ x2j

x2j−2

f(x)dx

=
n/2∑
j=1

{
h

3

[
f(x2j−2) + 4f(x2j−1) + f(x2j)

]
− h5

90
f (4)(ξj)

}
,

for some ξj ∈ [x2j−2, x2j ], if f ∈ C4[a, b].

Sin
e all the interior �even� x2j points appear twi
e in the sum, we
an simplify the expression a bit...
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Generalized Composite Simpson's Rule II/II

∫ b

a
f(x)dx =

h

3

f(x0)− f(xn) +
n/2∑
j=1

[
4f(x2j−1) + 2f(x2j)

]
−h5

90

n/2∑
j=1

f (4)(ξj).

The error term is:

E(f) = −h5

90

n/2∑
j=1

f (4)(ξj)
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The Error for Composite Simpson's Rule I/IIIf f ∈ C4[a, b], the Extreme Value Theorem implies that f (4)assumes its max and min in [a, b]. Now, sin
e

min
x∈[a,b]

f (4)(x) ≤ f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x),

[n

2

]
min

x∈[a,b]
f (4)(x) ≤

n/2∑
j=1

f (4)(ξj) ≤
[n

2

]
max
x∈[a,b]

f (4)(x),

min
x∈[a,b]

f (4)(x) ≤
[

2
n

] n/2∑
j=1

f (4)(ξj) ≤ max
x∈[a,b]

f (4)(x),

By the Intermediate Value Theorem ∃µ ∈ (a, b) so that

f (4)(µ) =
2
n

n/2∑
j=1

f (4)(ξj) ⇔ n

2
f (4)(µ) =

n/2∑
j=1

f (4)(ξj)
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The Error for Composite Simpson's Rule II/IIWe 
an now rewrite the error term:

E(f) = −h5

90

n/2∑
j=1

f (4)(ξj) = − h5

180
nf (4)(µ),

or, sin
e h = (b− a)/n ⇔ n = (b− a)/h, we 
an write
E(f) = −(b− a)

180
h4f (4)(µ).

Hen
e Composite Simpson's Rule has degree of a

ura
y 3 (sin
eit is exa
t for polynomials up to order 3), and the error is proportionalto h4 � Convergen
e Rate O (
h4

).
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Composite Simpson's Rule � Summary

Theorem: �Let f ∈ C4[a, b], n be even, h = (b − a)/n, and xj = a + jh,
j = 0, 1, . . . , n. There exists µ ∈ (a, b) for whi
h the CompositeSimpson's Rule for n subintervals 
an be written with its error termas

∫ b

a
f(x)dx =

h

3

f(a)− f(b) +
n/2∑
j=1

[4f(x2j−1) + 2f(x2j)]


−(b− a)

180
h4f (4)(µ).

Note: x0 = a, and xn = b.
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Composite Simpson's Rule � AlgorithmGiven the end points a and b and an even positive integer n:

[1] h = (b− a)/n
[2] ENDPTS = f(a)+f(b)

ODDPTS = 0

EVENPTS = 0

[3] FOR i = 1, . . . , n− 1 — (interior points)

x = a + i ∗ h

if i is even: EVENPTS += f(x)

if i is odd: ODDPTS += f(x)

END

[4] INTAPPROX = h*(ENDPTS+2*EVENPTS+4*ODDPTS)/3
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Romberg Integration The Return of Ri
hardson's ExtrapolationRomberg Integration is the 
ombination of the Composite Trape-zoidal Rule (CTR)

∫ b

a
f(x)dx =

h

2

f(a) + f(b) + 2
n−1∑
j=1

f(xj)

− (b− a)
12

h2f ′′(µ)

and Ri
hardson Extrapolation.

Here, we know that the error term for regular Trapezoidal Rule is

O(h3). By the same argument as for Composite Simpson's Rule, thisgets redu
ed to O(h2) for the 
omposite version.
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Romberg Integration Step-1: CTR Re�nementLet Rk,1 denote the Composite Trapezoidal Rule with 2k−1 sub-intervals, and hk = (b− a)/2k−1. We get:

R1,1 = h1
2 [f(a) + f(b)]

R2,1 = h2
2 [f(a) + 2f(a + h2) + f(b)]

= (b−a)
4 [f(a) + f(b) + 2f(a + h2)]

= 1
2 [R1,1 + h1f(a + h2)]...

Rk,1 =
1
2

Rk−1,1 + hk−1

2k−2∑
i=1

f(a + (2i− 1)hk)


︸ ︷︷ ︸

Update formula, using previous value + new points
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Example: Rk,1 for R π
0 sin(x)dx

0 1 2 3
0

0.2

0.4

0.6

0.8

1

f(x)
R[2,1]

0 1 2 3
0

0.2

0.4

0.6

0.8

1

f(x)
R[3,1]

0 1 2 3
0

0.2

0.4

0.6

0.8

1

f(x)
R[4,1]

k Rk,11 02 1.57079632679493 1.89611889793704 1.97423160194555 1.99357034377236 1.99839336097017 1.9995983886400
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Extrapolate using Ri
hardsonWe know that the error term is O(h2), so in order to eliminate thisterm we 
ombine to 
onse
utive entries Rk−1,1 and Rk,1 to form ahigher order approximation Rk,2 of the integral.

Rk,2 = Rk,1 +
Rk,1 −Rk−1,1

22 − 1

Rk,1 � O (
h2

)
Rk,20 01.5707963267949 2.094395102391.8961188979370 2.004559754981.9742316019455 2.000269169941.9935703437723 2.000016591041.9983933609701 2.000001033361.9995983886400 2.00000006453

Numerical Differentiation and Integration: Quadrature – p. 16/44



Extrapolate, again...It turns out (Taylor expand to 
he
k) that the 
omplete error term forthe Trapezoidal rule only has even powers of h:∫ b

a
f(x) = Rk,1 −

∞∑
i=1

E2ih
2i
k .

Hen
e the Rk,2 approximations have error terms that are of size

O(h4).
To get O(h6) approximations, we 
ompute

Rk,3 = Rk,2 +
Rk,2 −Rk−1,2

42 − 1
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Extrapolate, yet again...In general, sin
e we only have even powers of h in the error expansion:
Rk,j = Rk,j−1 +

Rk,j−1 −Rk−1,j−1

4j−1 − 1Revisiting ∫ π
0 sin(x)dx:

Rk,1 � O `
h2

´
Rk,2 � O `

h4
´

Rk,3 � O `
h6

´
Rk,4 � O `

h8
´01.570796326794897 2.0943951023931951.896118897937040 2.004559754984421 1.9985707318238361.974231601945551 2.000269169948388 1.999983130945986 2.0000055499796711.993570343772340 2.000016591047935 1.999999752454572 2.0000000162880421.998393360970145 2.000001033369413 1.999999996190845 2.0000000000596741.999598388640037 2.000000064530001 1.999999999940707 2.000000000000229
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Homework? No, enough already � Here's the 
ode outline!

% Romberg Integration for sin(x) over [0,pi]

a = 0; b = pi; % The Endpoints

R = zeros(7,7);

R(1,1) = (b− a)/2 ∗ (sin(a) + sin(b));

for k = 2 : 7

h = (b− a)/2(k−1);

R(k,1)=1/2 ∗ (R(k − 1, 1) + 2 ∗ h ∗∑
(sin(a + (2 ∗ (1 : (2(k−2)))− 1) ∗ h)));

end

for j = 2 : 7

for k = j : 7

R(k,j) = R(k, j − 1) + (R(k, j − 1)−R(k− 1, j − 1))/(4(j−1)−1);

end

end

disp(R)
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More Advan
ed Numeri
al Integration Ideas

Adaptive and Gaussian Quadrature
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Introdu
tion Adaptive QuadratureThe 
omposite formulas require equally spa
ed nodes.This is not good if the fun
tion we are trying to integrate has bothregions with large �u
tuations, and regions with small variations.

-10 0 10
-1.5

-1

-0.5

0

0.5

1

1.5

We need many points where the fun
tion �u
tuates, but few pointswhere it is 
lose to 
onstant or linear.
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Introdu
tion � Adaptive Quadrature MethodsIdea: Cleverly predi
t (or measure) the amount of variation andautomati
ally add more points where needed.We are going to dis
uss this in the 
ontext of Composite Simpson'srule, but the approa
h 
an be adopted for other integration s
hemes.First we are going to develop a way to measure the error �a numeri
al estimate of the a
tual error in the numeri
alintegration. Note that here just knowing the stru
ture of theerror term is not enough! (We will however use the stru
tureof the error term in our derivation of the numeri
al errorestimate.)Then we will use the error estimate to de
ide whether to a

ept thevalue from CSR, or if we need to re�ne further (re
omputewith smaller h).
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Some Notation � One-step Simpson's Rule S(f ; a, b)Notation � �One-step� Simpson's Rule:∫ b

a
f(x) dx = S(f ; a, b)− h5

1

90
f (4)(µ1)︸ ︷︷ ︸

E(f ;h1,µ1)

, µ1 ∈ (a, b),

where

S(f ; a, b) =
(b− a)

6

[
f(a) + 4f

(
a+b
2

)
+ f(b)

]
, h1 =

(b− a)
2

.
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Composite Simpson's Rule (CSR)With this notation, we 
an write CSR with n = 4, and h2 = (b −
a)/4 = h1/2:∫ b

a
f(x) dx = S(f ; a, a+b

2 ) + S(f ; a+b
2 , b)− E(f ;h2, µ2).

We 
an squeeze out an estimate for the error by noti
ing that

E(f ;h2, µ2) =
1
16

(
h5

1

90
f (4)(µ2)

)
=

1
16

E(f ;h1, µ2).

Now, assuming f (4)(µ1) ≈ f (4)(µ2), we do a little bit of algebramagi
 with our two approximations to the integral...
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Wait! Wait! Wait! � I pulled a fast one!

E(f ;h2, µ2) =
1
32

(
h5

1

90
f (4)(µ1

2)
)

+
1
32

(
h5

1

90
f (4)(µ2

2)
)

where µ1
2 ∈ [a, a+b

2 ], µ2
2 ∈ [a+b

2 , b].

If f ∈ C4[a, b], then we 
an use our old friend, the intermediatevalue theorem:

∃µ2 ∈ [µ1
2, µ

2
2] ⊂ [a, b] : f (4)(µ2) =

f (4)(µ1
2) + f (4)(µ2

2)
2

.

So it follows that

E(f ;h2, µ2) =
1
16

(
h5

1

90
f (4)(µ2)

)
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Ba
k to the Error Estimate...Now we have

S(f ; a, a+b
2 ) + S(f ; a+b

2 , b)− 1
16

(
h5

1

90
f (4)(µ2)

)
= S(f ; a, b)− h5

1

90
f (4)(µ1).Now use the assumption f (4)(µ1) ≈ f (4)(µ2) (and repla
e µ1 and µ2by µ):

h5
1

90
f (4)(µ) ≈ 16

15

[
S(f ; a, b)−S(f ; a, (a+b)/2)−S(f ; (a+b)/2, b)

]
,

noti
e that h5
1

90f (4)(µ) = E(f ; h1, µ) = 16E(f ; h2, µ). Hen
e

E(f ; h2, µ) ≈ 1
15

[
S(f ; a, b)−S(f ; a, (a+b)/2)−S(f ; (a+b)/2, b)

]
,
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Finally, we have the error estimate in hand...

Using the estimate of h5
1

90f (4)(µ), we have

∣∣∣∣∫ b

a
f(x)dx− S(f ; a, (a + b)/2)− S(f ; (a + b)/2,b)

∣∣∣∣
≈ 1

15

∣∣∣∣S(f ; a,b)− S(f ; a, (a + b)/2)− S(f ; (a + b)/2,b)
∣∣∣∣

Noti
e!!! S(f ; a, (a + b)/2) + S(f ; (a + b)/2, b) approximates∫ b
a f(x)dx 15 times better than it agrees with the knownquantity S(f ; a, b)!!!
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Example � Error Estimates I/IIWe will apply Simpson's rule to∫ π/2

0
sin(x) dx = 1.Here,

S1(sin(x); 0, π/2) = S(sin(x); 0, π/2)

=
π

12

[
sin(0) + 4 sin(π/4) + sin(π/2)

]
=

π

12

[
2
√

2 + 1
]

= 1.00227987749221.

S2(sin(x); 0, π/2) = S(sin(x); 0, π/4) + S(sin(x); π/4, π/2)

=
π

24

[
sin(0) + 4 sin(π/8) + 2 sin(π/4) + 4 sin(3π/8) + sin(π/2)

]
= 1.00013458497419.
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Example � Error Estimates II/IIThe error estimate is given by

1
15

[
S1(sin(x); 0, π/2)− S2(sin(x); 0, π/2)

]
=

1
15

[
1.00227987749221 − 1.00013458497419

]
= 0.00014301950120.This is a very good approximation of the a
tual error, whi
h is

0.00013458497419.

OK, we know how to get an error estimate. How do we usethis to 
reate an adaptive integration s
heme???

Numerical Differentiation and Integration: Quadrature – p. 29/44

Adaptive QuadratureWe want to approximate I =
∫ b
a f(x) dx with an error less than ǫ (aspe
i�ed toleran
e).

[1] Compute the two approximations

S1(f(x); a, b) = S(f(x); a, b), and
S2(f(x); a, b) = S(f(x); a, a+b

2 ) + S(f(x); a+b
2 , b).

[2] Estimate the error, if the estimate is less than ǫ, we are done.Otherwise...

[3] Apply steps [1] and [2] re
ursively to the intervals

[a, a+b
2 ] and [a+b

2 , b] with toleran
e ǫ/2.
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Adaptive Quadrature, Interval Re�nement Example #1

The funny �gure above is supposed to illustrate a possible sub-intervalre�nement hierar
hy. Red dashed lines illustrate failure to satisfy thetoleran
e, and bla
k lines illustrate satis�ed toleran
e.level tol interval1 ǫ [a,b]2 ǫ/2 [a,a + b−a
2

] [a + (b− a)/2,b]3 ǫ/4 [a,a + b−a
4

] [a + b−a
4

,a + b−a
2

]...
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Adaptive Quadrature, Interval Re�nement Example #2
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Figure: Appli
ation of adaptive CSR to the fun
tion f(x) = 1 −
3
√

(x− π
2e )2. Here, we have required that the estimated error be lessthan 10−6. The left panel shows the fun
tion, and the right panel showsthe number of re�nement levels needed to rea
h the desired a

ura
y.At 
ompletion we have the value of the integral being 0.61692712, withan estimated error of 3.93 · 10−7.
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Gaussian QuadratureIdea: Evaluate the fun
tion at a set of optimally 
hosen points inthe interval.We will 
hoose {x0, x1, . . . , xn} ∈ [a, b] and 
oe�
ients ci, so thatthe approximation ∫ b

a
f(x)dx ≈

n∑
i=0

cif(xi)

is exa
t for the largest 
lass of polynomials possible.

We have already seen that the open Newton-Cotes formulas sometimegive us better �bang-for-bu
k� than the 
losed formulas (e.g. the mid-point formula uses only 1 point and is as a

urate as the two-pointtrapezoidal rule). � Gaussian quadrature takes this one step further.
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Quadrature Types � A Comparison

Newton-Cotes Gaussian

Open Closed

Quadrature Degree of Degree of Degree of
Points Accuracy Accuracy Accuracy1 1∗ � 12 1 1 33 3 3# 54 3 3 75 5 5 9

∗ � The mid-point rule.
# � Simpson's rule.The mid-point rule is the only optimal s
heme we have see so far.
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Gaussian Quadrature � Example 2-Point FormulaSuppose we want to �nd an optimal two-point formula:∫ 1

−1
f(x) dx = c1f(x1) + c2f(x2).Sin
e we have 4 parameters to play with, we 
an generate a formulathat is exa
t up to polynomials of degree 3. We get the following4 equations:∫ 1

−1
1 dx = 2 = c1 + c2∫ 1

−1
x dx = 0 = c1x1 + c2x2∫ 1

−1
x2 dx = 2

3 = c1x
2
1 + c2x

2
2∫ 1

−1
x3 dx = 0 = c1x

3
1 + c2x

3
2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

c1 = 1

c2 = 1

x1 = −
√

3
3

x2 =
√

3
3
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Higher Order Gaussian Quadrature FormulasWe 
ould obtain higher order formulas by adding more points, 
om-puting the integrals, and solving the resulting non-linear system ofequations... but it gets very painful, very fast.The Legendre Polynomials 
ome to our res
ue!The Legendre polynomials Pn(x) are orthogonal on [−1, 1] with re-spe
t to the weight fun
tion w(x) = 1, i.e.

∫ 1

−1
Pn(x)Pm(x) dx = αnδn,m =

 0 m 6= n

αn m = n
.

If P (x) is a polynomial of degree less than n, then∫ 1

−1
Pn(x)P (x) dx = 0.
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A Qui
k Note on Legendre PolynomialsWe will see Legendre polynomials in more detail later. For now, allwe need to know is that they satisfy the property∫ 1

−1
Pn(x)Pm(x) dx = αnδn,m.

and the �rst few Legendre polynomials are

P0(x) = 1
P1(x) = x

P2(x) = x2 − 1/3
P3(x) = x3 − 3x/5
P4(x) = x4 − 6x2/7 + 3/35
P5(x) = x5 − 10x3/9 + 5x/21.It turns out that the roots of the Legendre polynomials are the nodesin Gaussian quadrature.
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Higher Order Gaussian Quadrature Formulas

Theorem: � Suppose that {x1, x2, . . . , xn} are the roots of the
nth Legendre polynomial Pn(x) and that for ea
h i = 1, 2, . . . , n,the 
oe�
ients ci are de�ned by

ci =
∫ 1

−1

n∏
j = 1
j 6= i

x− xj

xi − xj
dx.

If P (x) is any polynomial of degree less than 2n, then∫ 1

−1
P (x) dx =

n∑
i=1

ciP (xi).
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Proof of the Theorem I/IIILet us �rst 
onsider a polynomial, P (x) with degree less than n. P (x)
an be rewritten as an (n− 1)-st Lagrange polynomial with nodes atthe roots of the nth Legendre polynomial Pn(x). This representationis exa
t sin
e the error term involves the nth derivative of P (x), whi
his zero. Hen
e,∫ 1

−1
P (x) dx =

∫ 1

−1

[ n∑
i=1

n∏
j = 1
j 6= i

x− xj

xi − xj
P (xj)

]
dx

=
n∑

i=1

[ ∫ 1

−1

n∏
j = 1
j 6= i

x− xj

xi − xj
dx

]
P (xj) =

n∑
i=1

ciP (xi),

whi
h veri�es the result for polynomials of degree less than n.
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Proof of the Theorem II/IIIIf the polynomial P (x) of degree [n, 2n) is divided by the nth Legendrepolynomial Pn(x), we get:

P (x) = Q(x)Pn(x) + R(x)where both Q(x) and R(x) are of degree less than n.

[1] Sin
e deg(Q(x)) < n∫ 1

−1
Q(x)Pn(x) dx = 0.

[2] Further, sin
e xi is a root of Pn(x):

P (xi) = Q(xi)Pn(xi) + R(xi) = R(xi).
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Proof of the Theorem III/III

[3] Now, sin
e deg(R(x)) < n, the �rst part of the proof implies∫ 1

−1
R(x) dx =

n∑
i=1

ciR(xi).

Putting [1], [2] and [3] together we arrive at∫ 1

−1
P (x) dx =

∫ 1

−1
[Q(x)Pn(x) + R(x)] dx

=
∫ 1

−1
R(x) dx =

n∑
i=1

ciR(xi)

=
n∑

i=1

ciP (xi),

whi
h shows that the formula is exa
t for all polynomials P (x) ofdegree less than 2n. �

Numerical Differentiation and Integration: Quadrature – p. 41/44

Gaussian Quadrature beyond the interval [−1, 1]By a simple linear transformation,

t =
2x− a− b

b− a
⇔ x =

(b− a)t + (b + a)
2

,we 
an apply the Gaussian Quadrature formulas to any interval∫ b

a
f(x) dx =

∫ 1

−1
f

(
(b− a)t + (b + a)

2

)
(b− a)

2
dt.
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Examples I/IIDegree Pn(x) Roots / Quadrature points2 x2 − 1/3 {−1/
√

3, 1/
√

3}3 x3 − 3x/5 {−√
3/5, 0,

√
3/5}4 x4 − 6x2/7 + 3/35 {−0.86114, −0.33998, 0.33998, 0.86114}

∫ π/4

0
(cos(x))2 dx =

1
4

+
π

8
= 0.642699081698724

Degree Quadrature points Coe�
ients2 0.16597, 0.61942 1, 13 0.08851, 0.39270, 0.69688 0.55556, 0.88889, 0.555564 0.05453, 0.25919, 0.52621, 0.73087 0.34785, 0.65215, 0.65215, 0.34785
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Examples II/II

∫ π/4

0
(cos(x))2 dx =

1
4

+
π

8
= 0.642699081698724

Degree Quadrature points Coe�
ients2 0.16597, 0.61942 1, 13 0.08851, 0.39270, 0.69688 0.55556, 0.88889, 0.555564 0.05453, 0.25919, 0.52621, 0.73087 0.34785, 0.65215, 0.65215, 0.34785

Degree Integral approximation Error2 0.642317235049753 0.0003818466489...3 0.642701112090729 0.0000020303920...4 0.642699075999924 0.0000000056988...
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