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Numeri
al Di�erentiation: The Big Pi
tureThe goal of numeri
al di�erentiation is to 
ompute an a

urate ap-proximation to the derivative(s) of a fun
tion.Given measurements {fi}n
i=0 of the underlying fun
tion f(x) at thenode values {xi}n

i=0, our task is to estimate f ′(x) (and, later, higherderivatives) in the same nodes.The strategy: Fit a polynomial to a 
leverly sele
ted subset of thenodes, and use the derivative of that polynomial asthe approximation of the derivative.
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Numeri
al Di�erentiation

De�nition: � The derivative of f at x0 is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

.

The obvious approximation is to �x h �small� and 
ompute
f ′(x0) ≈ f(x0 + h)− f(x0)

h
.

Problems: Can
ellation and roundo� errors. � For small values of

h, f(x0 + h) ≈ f(x0) so the di�eren
e may have veryfew signi�
ant digits in �nite pre
ision arithmeti
.

⇒ smaller h not ne
essarily better numeri
ally.
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Main Tools for Numeri
al Di�erentiation 1 of 2In the dis
ussion on Numeri
al Di�erentiation (and later Integration)we will rely on our old friend (nemesis?) � the Taylor expansions...

Theorem: Taylor's Theorem �Suppose f ∈ Cn[a, b], f (n+1)∃ on [a, b], and x0 ∈ [a, b].Then ∀x ∈ (a, b), ∃ξ(x) ∈ (min(x0, x),max(x0, x)) with

f(x) = Pn(x) + Rn(x) where

Pn(x) =
nX

k=0

f(k)(x0)

k!
(x− x0)k, Rn(x) =

f(n+1)(ξ(x))

(n + 1)!
(x− x0)(n+1).

Pn(x) is the Taylor polynomial of degree n, and

Rn(x) is the remainder term (trun
ation error).
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Main Tools for Numeri
al Di�erentiation 2 of 2Our se
ond tool for building Di�erentiation and Integration s
hemesare the Lagrange Coe�
ients

Ln,k(x) =
n∏

j=0,j 6=k

x− xj

xk − xjRe
all: Ln,k(x) is the nth degree polynomial whi
h is 1 in xk and

0 in the other nodes (xj , j 6= k).Previously we have used the family Ln,0(x), Ln,1(x), . . ., Ln,n(x)to build the Lagrange interpolating polynomial. � A good tool fordis
ussing polynomial behavior, but not ne
essarily for 
omputingpolynomial values (
.f. Newton's divided di�eren
es).Now, lets 
ombine our tools and look at di�erentiation.
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Getting an Error Estimate � Taylor Expansion

f(x0 + h)− f(x0)
h

= 1
h

[
f(x0) + hf ′(x0) + h2

2 f ′′(ξ(x))− f(x0)
]

= f ′(x0) + h
2 f ′′(ξ(x))

If f ′′(ξ(x)) is bounded, i.e.

|f ′′(ξ(x))| < M, ∀ξ(x) ∈ (x0, x0 + h)then we have

f ′(x0) ≈ f(x0 + h)− f(x0)
h

, with an error less than M |h|
2

.

This is the approximation error.(Roundo� error, ∼ ǫma
h ≈ 10−16, not taken into a

ount).
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Using Higher Degree Polynomials to get Better A

ura
ySuppose {x0, x1, . . . , xn} are distin
t points in an interval I, and

f ∈ Cn+1(I), we 
an write

f(x) =
n∑

k=0

f(xk)Ln,k(x)︸ ︷︷ ︸Lagrange Interp. Poly.

+
∏n

k=0(x− xk)
(n + 1)!

f (n+1)(ξ(x))︸ ︷︷ ︸Error TermFormal di�erentiation of this expression gives:
f ′(x) =

n∑
k=0

f(xk)L′n,k(x) +
d

dx

[∏n
k=0(x− xk)
(n + 1)!

]
f (n+1)(ξ(x))

+
∏n

k=0(x− xk)
(n + 1)!

d

dx

[
f (n+1)(ξ(x))

]
.Note: When we evaluate f ′(xj) at the node points (xj) the lastterm gives no 
ontribution. (⇒ we don't have to worry aboutit...)
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Exer
ising the Produ
t Rule for Di�erentiation

d

dx

[∏n
k=0(x− xk)
(n + 1)!

]
=

1

(n + 1)!
[(x− x1)(x− x2) · · · (x− xn) + (x− x0)(x− x2) · · · (x− xn) + · · ·] =

1
(n + 1)!

n∑
j=0

 n∏
k=0,k 6=j

(x− xk)



Now, if we let x = xℓ for some parti
ular value of ℓ, only the produ
twhi
h skips that value of j = ℓ is non-zero... e.g.

1
(n + 1)!

n∑
j=0

 n∏
k=0,k 6=j

(x− xk)

∣∣∣∣∣∣
x=xℓ

=
1

(n + 1)!

n∏
k=0,k 6=ℓ

(xℓ − xk)
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The (n + 1) point formula for approximating f ′(xj)Putting it all together yields what is known as the (n + 1) pointformula for approximating f ′(xj):

f ′(xj) =
n∑

k=0

f(xk)L′n,k(xj) +
f (n+1)(ξ)
(n + 1)!


n∏

k = 0
k 6= j

(xj − xk)



Note: The formula is most useful when the node points are equallyspa
ed (it 
an be 
omputed on
e and stored), i.e.

xk = x0 + kh.Now, we have to 
ompute the derivatives of the Lagrange 
oe�
ients,i.e. Ln,k(x)... [We 
an no longer dodge this task!℄
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Example: 3-point Formulas, I/IIIBuilding blo
ks:

L2,0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
, L′2,0(x) =

2x− x1 − x2

(x0 − x1)(x0 − x2)

L2,1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
, L′2,1(x) =

2x− x0 − x2

(x1 − x0)(x1 − x2)

L2,2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
, L′2,2(x) =

2x− x0 − x1

(x2 − x0)(x2 − x1)
.

Formulas:

f ′(xj) = f(x0)
[

2xj − x1 − x2

(x0 − x1)(x0 − x2)

]
+ f(x1)

[
2xj − x0 − x2

(x1 − x0)(x1 − x2)

]

+ f(x2)
[

2xj − x0 − x1

(x2 − x0)(x2 − x1)

]
+

f (3)(ξj)
6

2∏
k = 0
k 6= j

(xj − xk).
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Example: 3-point Formulas, II/IIIWhen the points are equally spa
ed...

f ′(x0) =
1
2h

[−3f(x0) + 4f(x1)− f(x2)] +
h2

3
f (3)(ξ0)

f ′(x1) =
1
2h

[−f(x0) + f(x2)]− h2

6
f (3)(ξ1)

f ′(x2) =
1
2h

[f(x0)− 4f(x1) + 3f(x2)] +
h2

3
f (3)(ξ2)Use x0 as the referen
e point � xk = x0 + kh:

f ′(x0) =
1
2h

[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +
h2

3
f (3)(ξ0)

f ′(x0 + h) =
1
2h

[−f(x0) + f(x0 + 2h)]− h2

6
f (3)(ξ1)

f ′(x0 + 2h) =
1
2h

[f(x0)− 4f(x0 + h) + 3f(x0 + 2h)] +
h2

3
f (3)(ξ2)
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Example: 3-point Formulas, III/III



f ′(x0) =
1
2h

[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +
h2

3
f (3)(ξ0)

f ′(x∗0) =
1
2h

[−f(x∗0 − h) + f(x∗0 + h)]− h2

6
f (3)(ξ1)

f ′(x+
0 ) =

1
2h

[
f(x+

0 − 2h)− 4f(x+
0 − h) + 3f(x+

0 )
]
+

h2

3
f (3)(ξ2)After the substitution x0 + h → x∗0 in the se
ond equation, and x0 +

2h → x+
0 in the third equation.Note#1: The third equation 
an be obtained from the �rst one by setting

h → −h.Note#2: The error is smallest in the se
ond equation.Note#3: The se
ond equation is a two-sided approximation, the �rst andthird one-sided approximations.Note#4: We 
an drop the supers
ripts ∗,+...
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3-point Formulas: Illustration Centered Formula
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f ′(x0) =
1
2h

[−f(x0 − h) + f(x0 + h)]− h2

6
f (3)(ξ1)

Numerical Differentiation and Integration: Differentiation; Richardson’s Extrapolation; Integration – p. 13/50

3-point Formulas: Illustration Forward Formula
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f ′(x0) =
1
2h

[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +
h2

3
f (3)(ξ0)
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3-point Formulas: Illustration Ba
kward Formula

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−7

−6

−5

−4

−3

−2

−1

0

1

f ′(x0) =
1
2h

[f(x0 − 2h)− 4f(x0 − h) + 3f(x0)] +
h2

3
f (3)(ξ2)
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5-point FormulasIf we want even better approximations we 
an go to 4-point, 5-point,6-point, et
. . . formulas.

The most a

urate (smallest error term) 5-point formula is:

f ′(x0) = f(x0−2h)−8f(x0−h)+8f(x0+h)−f(x0+2h)
12h + h4

30f (5)(ξ)

Sometimes (e.g for end-point approximations like the 
lampedsplines), we need one-sided formulas

f ′(x0) = −25f(x0)+48f(x0+h)−36f(x0+2h)+16f(x0+3h)−3f(x0+4h)
12h +h4

5 f (5)(ξ).
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5-point Formulas: Illustration Centered Formula
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f ′(x0) = f(x0−2h)−8f(x0−h)+8f(x0+h)−f(x0+2h)
12h + h4

30f (5)(ξ)
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Higher Order DerivativesWe 
an derive approximations for higher order derivatives in thesame way. � Fit a kth degree polynomial to a 
luster of points
{xi, f(xi)}n+k+1

i=n , and 
ompute the appropriate derivative of thepolynomial in the point of interest.

The standard 
entered approximation of the se
ond derivative is givenby

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
+O(h2)
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Wrapping Up Numeri
al Di�erentiationWe now have the tools to build high-order a

urate approximationsto the derivative.

We will use these tools and similar te
hniques in building integrations
hemes in the following le
tures.

Also, these approximations are the ba
kbone of �nite di�eren
e meth-ods for numeri
al solution of di�erential equations (see Math542,and Math693b).

Next, we develop a general tool for 
ombining low-order a

urateapproximations (to derivatives, integrals, anything! (almost))... inorder to hierar
hi
ally 
onstru
ting higher order approximations.
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Ri
hardson's ExtrapolationWhat it is: A general method for generating high-a

ura
y resultsusing low-order formulas.Appli
able when: The approximation te
hnique has an error termof predi
table form, e.g.

M −Nj(h) =
∞∑

k=j

Ekh
k,

where M is the unknown value we are trying to approximate, and

Nj(h) the approximation (whi
h has an error O(hj).)

Pro
edure: Use two approximations of the same order, but withdi�erent h; e.g. Nj(h) and Nj(h/2). Combine thetwo approximations in su
h a way that the error termsof order hj 
an
el.
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Building High A

ura
y Approximations I/VConsider two �rst order approximations to M :

M −N1(h) =
∞∑

k=1

Ekh
k,

and

M −N1(h/2) =
∞∑

k=1

Ek
hk

2k
.

If we let N2(h) = 2N1(h/2)−N1(h), then

M −N2(h) = 2E1
h

2
− E1h︸ ︷︷ ︸
0

+
n∑

k=2

E
(2)
k hk,

where

E
(2)
k = Ek

(
1

2k−1
− 1

)
.

Hen
e, N2(h) is now a se
ond order approximation to M .
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Building High A

ura
y Approximations II/VWe 
an play the game again, and 
ombine N2(h) with N2(h/2) toget a third-order a

urate approximation, et
.
N3(h) =

4N2(h/2)−N2(h)
3

= N2(h/2) +
N2(h/2)−N2(h)

3

N4(h) = N3(h/2) +
N3(h/2)−N3(h)

7

N5(h) = N4(h/2) +
N4(h/2)−N4(h)

24 − 1In general, 
ombining two jth order approximations to get a

(j + 1)st order approximation:
Nj+1(h) = Nj(h/2) +

Nj(h/2)−Nj(h)
2j − 1
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Building High A

ura
y Approximations III/VLet's derive the general update formula. Given,

M −Nj(h) = Ejh
j +O (

hj+1
)

M −Nj(h/2) = Ej
hj

2j
+O (

hj+1
)

We let

Nj+1(h) = αjNj(h) + βjNj(h/2)

However, if we want Nj+1(h) to approximate M , we must have αj +
βj = 1. Therefore

M −Nj+1(h) = αjEjh
j + (1− αj)Ej

hj

2j
+O (

hj+1
)
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Building High A

ura
y Approximations IV/VNow,
M −Nj+1(h) = Ejh

j

[
αj + (1− αj)

1
2j

]
+O (

hj+1
)

We want to sele
t αj so that the expression in the bra
ket is zero.This gives

αk =
−1

2k − 1
, 1− αk =

2k

2k − 1
=

(2k − 1) + 1
2k − 1

= 1 +
1

2k − 1

Therefore,

Nj+1(h) = Nj(h/2) +
Nj(h/2)−Nj(h)

2j − 1
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Building High A

ura
y Approximations V/VThe following table illustrates how we 
an use Ri
hardson's extrapo-lation to build a 5th order approximation, using �ve 1st order approx-imations:

O (h) O (
h2

) O (
h3

) O (
h4

) O (
h5

)
N1(h)

N1(h/2) N2(h)

N1(h/4) N2(h/2) N3(h)

N1(h/8) N2(h/4) N3(h/2) N4(h)

N1(h/16) N2(h/8) N3(h/4) N4(h/2) N5(h)

↑ Measurements ↑ Extrapolations ↑
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Example (
.f. slide#12, and slide#16)The 
entered di�eren
e formula approximating f ′(x0) 
an be ex-pressed:

f ′(x0) =
f(x + h)− f(x− h)

2h︸ ︷︷ ︸
N2(h)

− h2

6
f ′′′(ξ) +O(h4)︸ ︷︷ ︸error termIn order to eliminate the h2 part of the error, we let our new approxi-mation be

N3(h) = N2(h/2) +
N(h/2)−N(h)

3
.

N3(2h) = f(x+h)−f(x−h)
2h +

f(x+h)−f(x−h)
2h

− f(x+2h)−f(x−2h)
4h

3

= 8f(x+h)−8f(x−h)
6h − f(x+2h)−f(x−2h)

6h

= 1
12h [f(x− 2h)− 8f(x− h) + 8f(x + h)− f(x + 2h)] .
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Example, f(x) = x2ex.
x f(x)1.70 15.81971.80 19.60091.90 24.13612.00 29.55622.10 36.01282.20 43.68112.30 52.7634

f ′(x) = (2x + x2)ex,

f ′(2) = 8e2 = 59.112.

f(2.1)−f(2.0)
0.1 = 64.566. (Fwd Di�eren
e, 2pt)

f(2.1)−f(1.9)
0.2 = 59.384. (Ctr Di�eren
e, 3pt)

f(2.2)−f(1.8)
0.4 = 60.201. (Ctr Di�eren
e)

(4 ∗ 59.384− 60.201)/3 = 59.111. (Ri
hardson)
f(1.8)−8f(1.9)+8f(2.1)−f(2.2)

1.2 = 59.111. (5pt)
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Wrap-up / Homework #6 � Due Friday 11/2/2007We are going to use Ri
hardson extrapolation in 
ombination withsome of the simpler integration s
hemes we will develop in order togenerate general s
hemes for numeri
ally 
omputing integrals up tohigh order.
Note: In order to use Ri
hardson extrapolation, we must knowthe form of the error � hen
e �nding error terms in ourapproximations turns out to have a very pra
ti
al use.

(Part-1)

BF-4.1.5

BF-4.1.27

BF-4.2.9

Numerical Differentiation and Integration: Differentiation; Richardson’s Extrapolation; Integration – p. 28/50



Integration: Introdu
tion � The �Why?�After taking 
al
ulus, I thought I 
ould di�erentiate and/or integrateevery fun
tion...
Then 
ame physi
s, me
hani
al engineering, et
...

The need for numeri
al integration was painfully obvious!

Sometimes (most of the time?), the anti-derivative is not available in
losed form. ∫
f(x) dx = F (x)︸ ︷︷ ︸

Anti-Derivative

+ C
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Numeri
al QuadratureThe basi
 idea is to repla
e integration by 
lever summation:
∫ b

a
f(x) dx →

n∑
i=0

aifi,

where a ≤ x0 < x1 < · · · < xn ≤ b, fi = f(xi).

The 
oe�
ients ai and the nodes xi are to be sele
ted.
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Building Integration S
hemes with Lagrange PolynomialsGiven the nodes {x0, x1, . . . , xn} we 
an use the Lagrange interpo-lating polynomial

Pn(x) =
n∑

i=0

fiLn,i(x), with error En(x) =
f (n+1)(ξ(x))

(n + 1)!

n∏
i=0

(x−xi)

to obtain

∫ b

a
f(x) dx =

∫ b

a
Pn(x) dx︸ ︷︷ ︸

The Approximation

+
∫ b

a
En(x) dx︸ ︷︷ ︸

The Error Estimate

Numerical Differentiation and Integration: Differentiation; Richardson’s Extrapolation; Integration – p. 31/50

Identifying the Coe�
ients

∫ b

a
Pn(x) dx =

∫ b

a

n∑
i=0

fiLn,i(x) dx =
n∑

i=0

fi

∫ b

a
Ln,i(x) dx︸ ︷︷ ︸

ai

=
n∑

i=0

fiai.

Hen
e we write ∫ b

a
f(x) dx ≈

n∑
i=0

aifiwith error given by

E(f) =
∫ b

a
En(x) dx =

∫ b

a

f (n+1)(ξ(x))
(n + 1)!

n∏
i=0

(x− xi) dx.

Note: Can we 
hange the order of integration ∫ and summation ∑ as wedid above? In this 
ase where we are integrating a polynomial overa �nite interval it is OK. For te
hni
al details see a 
lass on realanalysis (e.g. Math 534B).
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Example #1: Trapezoidal Rule I/IIILet a = x0 < x1 = b, and use the linear interpolating polynomial

P1(x) = f0

[
x− x1

x0 − x1

]
+ f1

[
x− x0

x1 − x0

]
.
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Example #1: Trapezoidal Rule II/IIIThen∫ b

a
f(x) dx =

∫ x1

x0

[
f0

[
x− x1

x0 − x1

]
+ f1

[
x− x0

x1 − x0

]]
dx

+
1
2

∫ x1

x0

f ′′(ξ(x))(x − x0)(x− x1) dx.

The error term (use the Weighted Mean Value Theorem):∫ x1

x0

f ′′(ξ(x))(x− x0)(x− x1) dx = f ′′(ξ)
∫ x1

x0

(x− x0)(x− x1) dx

= f ′′(ξ)
[
x3

3
− x1 + x0

2
x2 + x0x1x2

]x1

x0

= −h3

6
f ′′(ξ).

where h = x1 − x0 = b− a.
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Example #1: Trapezoidal Rule III/IIIHen
e,∫ b

a
f(x) dx =

[
f0

[
(x− x1)2

2(x0 − x1)

]
+ f1

[
(x− x0)2

2(x1 − x0)

]]x1

x0

− h3

12
f ′′(ξ)

=
(x1 − x0)

2
[f0 + f1]− h3

12
f ′′(ξ)

∫ b

a
f(x)dx = h

[
f(x0) + f(x1)

2

]
− h3

12
f ′′(ξ), h = b− a.

Numerical Differentiation and Integration: Differentiation; Richardson’s Extrapolation; Integration – p. 35/50

Example #2a: Simpson's Rule (sub-optimal error bound)Let x0 = a, x1 = a+b
2 , x2 = b, let h = b−a

2 and use the quadrati
interpolating polynomial∫ b

a
f(x)dx =

∫ x2

x0

[
f(x0)

(x− x1)(x− x2)
(x0 − x1)(x0 − x2)

+ f(x1)
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)

+ f(x2)
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

]
dx

+
∫ x2

x0

(x− x0)(x− x1)(x− x2)
6

f (3)(ξ(x)) dx ...

∫ b

a
f(x)dx = h

[
f(x0) + 4f(x1) + f(x2)

3

]
+O(h4f (4)(ξ)).
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Example #2: Simpson's Rule

∫ b

a
f(x)dx = h

[
f(x0) + 4f(x1) + f(x2)

3

]
+O(h4f (4)(ξ)).

f(x)

p(x) − Simpson’s Rule
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Example #2b: Simpson's Rule (optimal error bound)The optimal error bound for Simpson's rule 
an be obtained by Taylorexpanding f(x) about the mid-point x1:

f(x) = f(x1)+f ′(x1)(x−x1)+
f ′′(x1)

2
(x−x1)2+

f ′′′(x1)

6
(x−x1)3+

f(4)(ξ(x))

24
(x−x1)4

Then formally integrating this expression
Z b

a

"
f(x1) + f ′(x1)(x− x1) +

f ′′(x1)

2
(x− x1)2 +

f ′′′(x1)

6
(x− x1)3 +

f(4)(ξ(x))

24
(x− x1)4

#
dx

After use of the weighted mean value theorem, and the the approx-imation f ′′(x1) = 1
h2 [f(x0) − 2f(x1) + f(x2)] − h2

12f (4)(ξ), and awhole lot of algebra (see BF pp 189�190) we end up with∫ x2

x0

f(x) dx = h
[
f(x0) + 4f(x1) + f(x2)

3

]
− h5

90
f (4)(ξ).
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Integration Examples

f(x) [a, b]
R b

a f(x)dx Trapezoidal Error Simpson Error

x [0, 1] 1/2 0.5 0 0.5 0

x2 [0, 1] 1/3 0.5 0.16667 0.33333 0

x3 [0, 1] 1/4 0.5 0.25000 0.25000 0
x4 [0, 1] 1/5 0.5 0.30000 0.20833 0.0083333
ex [0, 1] e− 1 1.8591 0.14086 1.7189 0.0005793

The Trapezoidal rule gives exa
t solutions for linear fun
tions. �The error terms 
ontains a se
ond derivative.

Simpson's rule gives exa
t solutions for polynomials of degree less than4. � The error term 
ontains a fourth derivative.
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Degree of A

ura
y (Pre
ision)

De�nition: Degree of A

ura
y �The Degree of A

ura
y, or pre
ision, of a quadrature formulais the largest positive integer n su
h that the formula is exa
t for

xk ∀k = 0, 1, . . . , n.

With this de�nition:
S
heme Degree of A

ura
yTrapezoidal 1Simpson's 3

Trapezoidal and Simpson's are examples of a 
lass of methods knownas Newton-Cotes formulas.
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Newton-Cotes Formulas � Two Types Closed

Closed The (n + 1) point 
losed NCF uses nodes xi = x0 + ih,

i = 0, 1, . . . , n, where x0 = a, xn = b and h = (b− a)/n.It is 
alled 
losed sin
e the endpoints are in
luded as nodes.
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Newton-Cotes Formulas � Two Types Open
Open The (n + 1) point open NCF uses nodes xi = x0 + ih,

i = 0, 1, . . . , n where h = (b−a)/(n+2) and x0 = a+h,
xn = b− h. (We label x−1 = a, xn+1 = b.)
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Closed Newton-Cotes FormulasThe approximation is∫ b

a
f(x) dx ≈

n∑
i=0

aif(xi),

where

ai =
∫ xn

x0

Ln,i(x) dx =
∫ xn

x0

n∏
j = 0
j 6= i

(x− xj)
(xi − xj)

dx.

Note: The Lagrange polynomial Ln,i(x) models a fun
tion whi
htakes the value 0 at all xj (j 6= i), and 1 at xi. Hen
e, the
oe�
ient ai 
aptures the integral of a fun
tion whi
h is 1 in

xi and zero in the other node points.
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Closed Newton-Cotes Formulas � Error

Theorem: � Suppose that ∑n
i=0 aif(xi) denotes the (n+1) point
losed Newton-Cotes formula with x0 = a, xn = b, and h = (b−a)/n.Then there exists ξ ∈ (a, b) for whi
h∫ b

a
f(x)dx =

n∑
i=0

aif(xi)+
hn+3f (n+2)(ξ)

(n + 2)!

∫ n

0
t2(t−1) · · · (t−n)dt,

if n is even and f ∈ Cn+2[a, b], and∫ b

a
f(x)dx =

n∑
i=0

aif(xi) +
hn+2f (n+1)(ξ)

(n + 1)!

∫ n

0
t(t− 1) · · · (t−n)dt,

if n is odd and f ∈ Cn+1[a, b].

Note that when n is an even integer, the degree of pre
ision is (n+1).When n is odd, the degree of pre
ision is only n.
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Closed Newton-Cotes Formulas � Examples

n = 2: Simpson's Rule

h

3

[
f(x0) + 4f(x1) + f(x2)

]
− h5

90
f (4)(ξ)

n = 3: Simpson's 3
8-Rule

3h
8

[
f(x0) + 3f(x1) + 3f(x2) + f(x3)

]
− 3h5

80
f (4)(ξ)

n = 4: Boole's Rule

2h
45

[
7f(x0) + 32f(x1) + 12f(x2) + 32f(x3) + 7f(x4)

]
− 8h7

945
f (6)(ξ)
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Open Newton-Cotes FormulasThe approximation is∫ b

a
f(x) dx =

∫ xn+1

x−1

f(x) dx ≈
n∑

i=0

aif(xi),

where

ai =
∫ xn+1

x−1

Ln,i(x) dx =
∫ xn

x0

n∏
j = 0
j 6= i

(x− xj)
(xi − xj)

dx.
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Open Newton-Cotes Formulas � Error

Theorem: � Suppose that ∑n
i=0 aif(xi) denotes the (n+1) pointopen Newton-Cotes formula with x−1 = a, xn+1 = b, and h =

(b− a)/(n + 2). Then there exists ξ ∈ (a, b) for whi
h∫ b

a
f(x)dx =

n∑
i=0

aif(xi)+
hn+3f (n+2)(ξ)

(n + 2)!

∫ n+1

−1
t2(t−1) · · · (t−n)dt,

if n is even and f ∈ Cn+2[a, b], and∫ b

a
f(x)dx =

n∑
i=0

aif(xi)+
hn+2f (n+1)(ξ)

(n + 1)!

∫ n+1

−1
t(t−1) · · · (t−n)dt,

if n is odd and f ∈ Cn+1[a, b].

Note that when n is an even integer, the degree of pre
ision is (n+1).When n is odd, the degree of pre
ision is only n.
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Open Newton-Cotes Formulas � Examples

n = 0 : 2hf(x0) +
h3

3
f ′′(ξ)

n = 1 :
3h
2

[
f(x0) + f(x1)

]
+

3h3

4
f ′′(ξ)

n = 2 :
4h
3

[
2f(x0)− f(x1) + 2f(x2)

]
+

14h5

45
f (4)(ξ)

n = 3 :
5h
24

[
11f(x0) + f(x1) + f(x2) + 11f(x3)

]
+

95h5

144
f (4)(ξ)
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Divide and Conquer!Say you want to 
ompute: ∫ 100

0
f(x) dx.

Is it a Good IdeaTM to dire
tly apply your favorite Newton-Cotesformula to this integral?!?No!With the 
losed 5-point NCF, we have h = 25 and h5/90 ∼ 105 soeven with a bound on f (6)(ξ) the error will be large.Better: Apply the 
losed 5-point NCF to the integrals∫ 4(i+1)

4i
f(x) dx, i = 0, 1, . . . , 24then sum. �Composite Numeri
al Integration.� (next time)
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Homework #6 � Due Friday 11/2/2007(Part-1)

BF-4.1.5

BF-4.1.27

BF-4.2.9

(Part-2)

BF-4.3.1-a,b.

BF-4.3.5-a,b.
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