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Numerial Di�erentiation: The Big PitureThe goal of numerial di�erentiation is to ompute an aurate ap-proximation to the derivative(s) of a funtion.Given measurements {fi}n
i=0 of the underlying funtion f(x) at thenode values {xi}n

i=0, our task is to estimate f ′(x) (and, later, higherderivatives) in the same nodes.The strategy: Fit a polynomial to a leverly seleted subset of thenodes, and use the derivative of that polynomial asthe approximation of the derivative.
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Numerial Di�erentiation

De�nition: � The derivative of f at x0 is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

.

The obvious approximation is to �x h �small� and ompute
f ′(x0) ≈ f(x0 + h)− f(x0)

h
.

Problems: Canellation and roundo� errors. � For small values of

h, f(x0 + h) ≈ f(x0) so the di�erene may have veryfew signi�ant digits in �nite preision arithmeti.

⇒ smaller h not neessarily better numerially.
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Main Tools for Numerial Di�erentiation 1 of 2In the disussion on Numerial Di�erentiation (and later Integration)we will rely on our old friend (nemesis?) � the Taylor expansions...

Theorem: Taylor's Theorem �Suppose f ∈ Cn[a, b], f (n+1)∃ on [a, b], and x0 ∈ [a, b].Then ∀x ∈ (a, b), ∃ξ(x) ∈ (min(x0, x),max(x0, x)) with

f(x) = Pn(x) + Rn(x) where

Pn(x) =
nX

k=0

f(k)(x0)

k!
(x− x0)k, Rn(x) =

f(n+1)(ξ(x))

(n + 1)!
(x− x0)(n+1).

Pn(x) is the Taylor polynomial of degree n, and

Rn(x) is the remainder term (trunation error).
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Main Tools for Numerial Di�erentiation 2 of 2Our seond tool for building Di�erentiation and Integration shemesare the Lagrange Coe�ients

Ln,k(x) =
n∏

j=0,j 6=k

x− xj

xk − xjReall: Ln,k(x) is the nth degree polynomial whih is 1 in xk and

0 in the other nodes (xj , j 6= k).Previously we have used the family Ln,0(x), Ln,1(x), . . ., Ln,n(x)to build the Lagrange interpolating polynomial. � A good tool fordisussing polynomial behavior, but not neessarily for omputingpolynomial values (.f. Newton's divided di�erenes).Now, lets ombine our tools and look at di�erentiation.
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Getting an Error Estimate � Taylor Expansion

f(x0 + h)− f(x0)
h

= 1
h

[
f(x0) + hf ′(x0) + h2

2 f ′′(ξ(x))− f(x0)
]

= f ′(x0) + h
2 f ′′(ξ(x))

If f ′′(ξ(x)) is bounded, i.e.

|f ′′(ξ(x))| < M, ∀ξ(x) ∈ (x0, x0 + h)then we have

f ′(x0) ≈ f(x0 + h)− f(x0)
h

, with an error less than M |h|
2

.

This is the approximation error.(Roundo� error, ∼ ǫmah ≈ 10−16, not taken into aount).
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Using Higher Degree Polynomials to get Better AuraySuppose {x0, x1, . . . , xn} are distint points in an interval I, and

f ∈ Cn+1(I), we an write

f(x) =
n∑

k=0

f(xk)Ln,k(x)︸ ︷︷ ︸Lagrange Interp. Poly.

+
∏n

k=0(x− xk)
(n + 1)!

f (n+1)(ξ(x))︸ ︷︷ ︸Error TermFormal di�erentiation of this expression gives:
f ′(x) =

n∑
k=0

f(xk)L′n,k(x) +
d

dx

[∏n
k=0(x− xk)
(n + 1)!

]
f (n+1)(ξ(x))

+
∏n

k=0(x− xk)
(n + 1)!

d

dx

[
f (n+1)(ξ(x))

]
.Note: When we evaluate f ′(xj) at the node points (xj) the lastterm gives no ontribution. (⇒ we don't have to worry aboutit...)
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Exerising the Produt Rule for Di�erentiation

d

dx

[∏n
k=0(x− xk)
(n + 1)!

]
=

1

(n + 1)!
[(x− x1)(x− x2) · · · (x− xn) + (x− x0)(x− x2) · · · (x− xn) + · · ·] =

1
(n + 1)!

n∑
j=0

 n∏
k=0,k 6=j

(x− xk)



Now, if we let x = xℓ for some partiular value of ℓ, only the produtwhih skips that value of j = ℓ is non-zero... e.g.

1
(n + 1)!

n∑
j=0

 n∏
k=0,k 6=j

(x− xk)

∣∣∣∣∣∣
x=xℓ

=
1

(n + 1)!

n∏
k=0,k 6=ℓ

(xℓ − xk)
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The (n + 1) point formula for approximating f ′(xj)Putting it all together yields what is known as the (n + 1) pointformula for approximating f ′(xj):

f ′(xj) =
n∑

k=0

f(xk)L′n,k(xj) +
f (n+1)(ξ)
(n + 1)!


n∏

k = 0
k 6= j

(xj − xk)



Note: The formula is most useful when the node points are equallyspaed (it an be omputed one and stored), i.e.

xk = x0 + kh.Now, we have to ompute the derivatives of the Lagrange oe�ients,i.e. Ln,k(x)... [We an no longer dodge this task!℄
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Example: 3-point Formulas, I/IIIBuilding bloks:

L2,0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
, L′2,0(x) =

2x− x1 − x2

(x0 − x1)(x0 − x2)

L2,1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
, L′2,1(x) =

2x− x0 − x2

(x1 − x0)(x1 − x2)

L2,2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
, L′2,2(x) =

2x− x0 − x1

(x2 − x0)(x2 − x1)
.

Formulas:

f ′(xj) = f(x0)
[

2xj − x1 − x2

(x0 − x1)(x0 − x2)

]
+ f(x1)

[
2xj − x0 − x2

(x1 − x0)(x1 − x2)

]

+ f(x2)
[

2xj − x0 − x1

(x2 − x0)(x2 − x1)

]
+

f (3)(ξj)
6

2∏
k = 0
k 6= j

(xj − xk).
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Example: 3-point Formulas, II/IIIWhen the points are equally spaed...

f ′(x0) =
1
2h

[−3f(x0) + 4f(x1)− f(x2)] +
h2

3
f (3)(ξ0)

f ′(x1) =
1
2h

[−f(x0) + f(x2)]− h2

6
f (3)(ξ1)

f ′(x2) =
1
2h

[f(x0)− 4f(x1) + 3f(x2)] +
h2

3
f (3)(ξ2)Use x0 as the referene point � xk = x0 + kh:

f ′(x0) =
1
2h

[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +
h2

3
f (3)(ξ0)

f ′(x0 + h) =
1
2h

[−f(x0) + f(x0 + 2h)]− h2

6
f (3)(ξ1)

f ′(x0 + 2h) =
1
2h

[f(x0)− 4f(x0 + h) + 3f(x0 + 2h)] +
h2

3
f (3)(ξ2)
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Example: 3-point Formulas, III/III



f ′(x0) =
1
2h

[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +
h2

3
f (3)(ξ0)

f ′(x∗0) =
1
2h

[−f(x∗0 − h) + f(x∗0 + h)]− h2

6
f (3)(ξ1)

f ′(x+
0 ) =

1
2h

[
f(x+

0 − 2h)− 4f(x+
0 − h) + 3f(x+

0 )
]
+

h2

3
f (3)(ξ2)After the substitution x0 + h → x∗0 in the seond equation, and x0 +

2h → x+
0 in the third equation.Note#1: The third equation an be obtained from the �rst one by setting

h → −h.Note#2: The error is smallest in the seond equation.Note#3: The seond equation is a two-sided approximation, the �rst andthird one-sided approximations.Note#4: We an drop the supersripts ∗,+...
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3-point Formulas: Illustration Centered Formula
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f ′(x0) =
1
2h

[−f(x0 − h) + f(x0 + h)]− h2

6
f (3)(ξ1)
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3-point Formulas: Illustration Forward Formula
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f ′(x0) =
1
2h

[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +
h2

3
f (3)(ξ0)
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3-point Formulas: Illustration Bakward Formula
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f ′(x0) =
1
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[f(x0 − 2h)− 4f(x0 − h) + 3f(x0)] +
h2

3
f (3)(ξ2)
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5-point FormulasIf we want even better approximations we an go to 4-point, 5-point,6-point, et. . . formulas.

The most aurate (smallest error term) 5-point formula is:

f ′(x0) = f(x0−2h)−8f(x0−h)+8f(x0+h)−f(x0+2h)
12h + h4

30f (5)(ξ)

Sometimes (e.g for end-point approximations like the lampedsplines), we need one-sided formulas

f ′(x0) = −25f(x0)+48f(x0+h)−36f(x0+2h)+16f(x0+3h)−3f(x0+4h)
12h +h4

5 f (5)(ξ).
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5-point Formulas: Illustration Centered Formula
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f ′(x0) = f(x0−2h)−8f(x0−h)+8f(x0+h)−f(x0+2h)
12h + h4

30f (5)(ξ)
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Higher Order DerivativesWe an derive approximations for higher order derivatives in thesame way. � Fit a kth degree polynomial to a luster of points
{xi, f(xi)}n+k+1

i=n , and ompute the appropriate derivative of thepolynomial in the point of interest.

The standard entered approximation of the seond derivative is givenby

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
+O(h2)
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Wrapping Up Numerial Di�erentiationWe now have the tools to build high-order aurate approximationsto the derivative.

We will use these tools and similar tehniques in building integrationshemes in the following letures.

Also, these approximations are the bakbone of �nite di�erene meth-ods for numerial solution of di�erential equations (see Math542,and Math693b).

Next, we develop a general tool for ombining low-order aurateapproximations (to derivatives, integrals, anything! (almost))... inorder to hierarhially onstruting higher order approximations.

Numerical Differentiation and Integration: Differentiation; Richardson’s Extrapolation; Integration – p. 19/50

Rihardson's ExtrapolationWhat it is: A general method for generating high-auray resultsusing low-order formulas.Appliable when: The approximation tehnique has an error termof preditable form, e.g.

M −Nj(h) =
∞∑

k=j

Ekh
k,

where M is the unknown value we are trying to approximate, and

Nj(h) the approximation (whih has an error O(hj).)

Proedure: Use two approximations of the same order, but withdi�erent h; e.g. Nj(h) and Nj(h/2). Combine thetwo approximations in suh a way that the error termsof order hj anel.
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Building High Auray Approximations I/VConsider two �rst order approximations to M :

M −N1(h) =
∞∑

k=1

Ekh
k,

and

M −N1(h/2) =
∞∑

k=1

Ek
hk

2k
.

If we let N2(h) = 2N1(h/2)−N1(h), then

M −N2(h) = 2E1
h

2
− E1h︸ ︷︷ ︸
0

+
n∑

k=2

E
(2)
k hk,

where

E
(2)
k = Ek

(
1

2k−1
− 1

)
.

Hene, N2(h) is now a seond order approximation to M .

Numerical Differentiation and Integration: Differentiation; Richardson’s Extrapolation; Integration – p. 21/50

Building High Auray Approximations II/VWe an play the game again, and ombine N2(h) with N2(h/2) toget a third-order aurate approximation, et.
N3(h) =

4N2(h/2)−N2(h)
3

= N2(h/2) +
N2(h/2)−N2(h)

3

N4(h) = N3(h/2) +
N3(h/2)−N3(h)

7

N5(h) = N4(h/2) +
N4(h/2)−N4(h)

24 − 1In general, ombining two jth order approximations to get a

(j + 1)st order approximation:
Nj+1(h) = Nj(h/2) +

Nj(h/2)−Nj(h)
2j − 1
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Building High Auray Approximations III/VLet's derive the general update formula. Given,

M −Nj(h) = Ejh
j +O (

hj+1
)

M −Nj(h/2) = Ej
hj

2j
+O (

hj+1
)

We let

Nj+1(h) = αjNj(h) + βjNj(h/2)

However, if we want Nj+1(h) to approximate M , we must have αj +
βj = 1. Therefore

M −Nj+1(h) = αjEjh
j + (1− αj)Ej

hj

2j
+O (

hj+1
)
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Building High Auray Approximations IV/VNow,
M −Nj+1(h) = Ejh

j

[
αj + (1− αj)

1
2j

]
+O (

hj+1
)

We want to selet αj so that the expression in the braket is zero.This gives

αk =
−1

2k − 1
, 1− αk =

2k

2k − 1
=

(2k − 1) + 1
2k − 1

= 1 +
1

2k − 1

Therefore,

Nj+1(h) = Nj(h/2) +
Nj(h/2)−Nj(h)

2j − 1
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Building High Auray Approximations V/VThe following table illustrates how we an use Rihardson's extrapo-lation to build a 5th order approximation, using �ve 1st order approx-imations:

O (h) O (
h2

) O (
h3

) O (
h4

) O (
h5

)
N1(h)

N1(h/2) N2(h)

N1(h/4) N2(h/2) N3(h)

N1(h/8) N2(h/4) N3(h/2) N4(h)

N1(h/16) N2(h/8) N3(h/4) N4(h/2) N5(h)

↑ Measurements ↑ Extrapolations ↑
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Example (.f. slide#12, and slide#16)The entered di�erene formula approximating f ′(x0) an be ex-pressed:

f ′(x0) =
f(x + h)− f(x− h)

2h︸ ︷︷ ︸
N2(h)

− h2

6
f ′′′(ξ) +O(h4)︸ ︷︷ ︸error termIn order to eliminate the h2 part of the error, we let our new approxi-mation be

N3(h) = N2(h/2) +
N(h/2)−N(h)

3
.

N3(2h) = f(x+h)−f(x−h)
2h +

f(x+h)−f(x−h)
2h

− f(x+2h)−f(x−2h)
4h

3

= 8f(x+h)−8f(x−h)
6h − f(x+2h)−f(x−2h)

6h

= 1
12h [f(x− 2h)− 8f(x− h) + 8f(x + h)− f(x + 2h)] .
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Example, f(x) = x2ex.
x f(x)1.70 15.81971.80 19.60091.90 24.13612.00 29.55622.10 36.01282.20 43.68112.30 52.7634

f ′(x) = (2x + x2)ex,

f ′(2) = 8e2 = 59.112.

f(2.1)−f(2.0)
0.1 = 64.566. (Fwd Di�erene, 2pt)

f(2.1)−f(1.9)
0.2 = 59.384. (Ctr Di�erene, 3pt)

f(2.2)−f(1.8)
0.4 = 60.201. (Ctr Di�erene)

(4 ∗ 59.384− 60.201)/3 = 59.111. (Rihardson)
f(1.8)−8f(1.9)+8f(2.1)−f(2.2)

1.2 = 59.111. (5pt)
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Wrap-up / Homework #6 � Due Friday 11/2/2007We are going to use Rihardson extrapolation in ombination withsome of the simpler integration shemes we will develop in order togenerate general shemes for numerially omputing integrals up tohigh order.
Note: In order to use Rihardson extrapolation, we must knowthe form of the error � hene �nding error terms in ourapproximations turns out to have a very pratial use.

(Part-1)

BF-4.1.5

BF-4.1.27

BF-4.2.9
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Integration: Introdution � The �Why?�After taking alulus, I thought I ould di�erentiate and/or integrateevery funtion...
Then ame physis, mehanial engineering, et...

The need for numerial integration was painfully obvious!

Sometimes (most of the time?), the anti-derivative is not available inlosed form. ∫
f(x) dx = F (x)︸ ︷︷ ︸

Anti-Derivative

+ C
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Numerial QuadratureThe basi idea is to replae integration by lever summation:
∫ b

a
f(x) dx →

n∑
i=0

aifi,

where a ≤ x0 < x1 < · · · < xn ≤ b, fi = f(xi).

The oe�ients ai and the nodes xi are to be seleted.
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Building Integration Shemes with Lagrange PolynomialsGiven the nodes {x0, x1, . . . , xn} we an use the Lagrange interpo-lating polynomial

Pn(x) =
n∑

i=0

fiLn,i(x), with error En(x) =
f (n+1)(ξ(x))

(n + 1)!

n∏
i=0

(x−xi)

to obtain

∫ b

a
f(x) dx =

∫ b

a
Pn(x) dx︸ ︷︷ ︸

The Approximation

+
∫ b

a
En(x) dx︸ ︷︷ ︸

The Error Estimate
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Identifying the Coe�ients

∫ b

a
Pn(x) dx =

∫ b

a

n∑
i=0

fiLn,i(x) dx =
n∑

i=0

fi

∫ b

a
Ln,i(x) dx︸ ︷︷ ︸

ai

=
n∑

i=0

fiai.

Hene we write ∫ b

a
f(x) dx ≈

n∑
i=0

aifiwith error given by

E(f) =
∫ b

a
En(x) dx =

∫ b

a

f (n+1)(ξ(x))
(n + 1)!

n∏
i=0

(x− xi) dx.

Note: Can we hange the order of integration ∫ and summation ∑ as wedid above? In this ase where we are integrating a polynomial overa �nite interval it is OK. For tehnial details see a lass on realanalysis (e.g. Math 534B).
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Example #1: Trapezoidal Rule I/IIILet a = x0 < x1 = b, and use the linear interpolating polynomial

P1(x) = f0

[
x− x1

x0 − x1

]
+ f1

[
x− x0

x1 − x0

]
.
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Example #1: Trapezoidal Rule II/IIIThen∫ b

a
f(x) dx =

∫ x1

x0

[
f0

[
x− x1

x0 − x1

]
+ f1

[
x− x0

x1 − x0

]]
dx

+
1
2

∫ x1

x0

f ′′(ξ(x))(x − x0)(x− x1) dx.

The error term (use the Weighted Mean Value Theorem):∫ x1

x0

f ′′(ξ(x))(x− x0)(x− x1) dx = f ′′(ξ)
∫ x1

x0

(x− x0)(x− x1) dx

= f ′′(ξ)
[
x3

3
− x1 + x0

2
x2 + x0x1x2

]x1

x0

= −h3

6
f ′′(ξ).

where h = x1 − x0 = b− a.
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Example #1: Trapezoidal Rule III/IIIHene,∫ b

a
f(x) dx =

[
f0

[
(x− x1)2

2(x0 − x1)

]
+ f1

[
(x− x0)2

2(x1 − x0)

]]x1

x0

− h3

12
f ′′(ξ)

=
(x1 − x0)

2
[f0 + f1]− h3

12
f ′′(ξ)

∫ b

a
f(x)dx = h

[
f(x0) + f(x1)

2

]
− h3

12
f ′′(ξ), h = b− a.
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Example #2a: Simpson's Rule (sub-optimal error bound)Let x0 = a, x1 = a+b
2 , x2 = b, let h = b−a

2 and use the quadratiinterpolating polynomial∫ b

a
f(x)dx =

∫ x2

x0

[
f(x0)

(x− x1)(x− x2)
(x0 − x1)(x0 − x2)

+ f(x1)
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)

+ f(x2)
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

]
dx

+
∫ x2

x0

(x− x0)(x− x1)(x− x2)
6

f (3)(ξ(x)) dx ...

∫ b

a
f(x)dx = h

[
f(x0) + 4f(x1) + f(x2)

3

]
+O(h4f (4)(ξ)).
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Example #2: Simpson's Rule

∫ b

a
f(x)dx = h

[
f(x0) + 4f(x1) + f(x2)

3

]
+O(h4f (4)(ξ)).

f(x)

p(x) − Simpson’s Rule
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Example #2b: Simpson's Rule (optimal error bound)The optimal error bound for Simpson's rule an be obtained by Taylorexpanding f(x) about the mid-point x1:

f(x) = f(x1)+f ′(x1)(x−x1)+
f ′′(x1)

2
(x−x1)2+

f ′′′(x1)

6
(x−x1)3+

f(4)(ξ(x))

24
(x−x1)4

Then formally integrating this expression
Z b

a

"
f(x1) + f ′(x1)(x− x1) +

f ′′(x1)

2
(x− x1)2 +

f ′′′(x1)

6
(x− x1)3 +

f(4)(ξ(x))

24
(x− x1)4

#
dx

After use of the weighted mean value theorem, and the the approx-imation f ′′(x1) = 1
h2 [f(x0) − 2f(x1) + f(x2)] − h2

12f (4)(ξ), and awhole lot of algebra (see BF pp 189�190) we end up with∫ x2

x0

f(x) dx = h
[
f(x0) + 4f(x1) + f(x2)

3

]
− h5

90
f (4)(ξ).
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Integration Examples

f(x) [a, b]
R b

a f(x)dx Trapezoidal Error Simpson Error

x [0, 1] 1/2 0.5 0 0.5 0

x2 [0, 1] 1/3 0.5 0.16667 0.33333 0

x3 [0, 1] 1/4 0.5 0.25000 0.25000 0
x4 [0, 1] 1/5 0.5 0.30000 0.20833 0.0083333
ex [0, 1] e− 1 1.8591 0.14086 1.7189 0.0005793

The Trapezoidal rule gives exat solutions for linear funtions. �The error terms ontains a seond derivative.

Simpson's rule gives exat solutions for polynomials of degree less than4. � The error term ontains a fourth derivative.
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Degree of Auray (Preision)

De�nition: Degree of Auray �The Degree of Auray, or preision, of a quadrature formulais the largest positive integer n suh that the formula is exat for

xk ∀k = 0, 1, . . . , n.

With this de�nition:
Sheme Degree of AurayTrapezoidal 1Simpson's 3

Trapezoidal and Simpson's are examples of a lass of methods knownas Newton-Cotes formulas.
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Newton-Cotes Formulas � Two Types Closed

Closed The (n + 1) point losed NCF uses nodes xi = x0 + ih,

i = 0, 1, . . . , n, where x0 = a, xn = b and h = (b− a)/n.It is alled losed sine the endpoints are inluded as nodes.
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Newton-Cotes Formulas � Two Types Open
Open The (n + 1) point open NCF uses nodes xi = x0 + ih,

i = 0, 1, . . . , n where h = (b−a)/(n+2) and x0 = a+h,
xn = b− h. (We label x−1 = a, xn+1 = b.)
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Closed Newton-Cotes FormulasThe approximation is∫ b

a
f(x) dx ≈

n∑
i=0

aif(xi),

where

ai =
∫ xn

x0

Ln,i(x) dx =
∫ xn

x0

n∏
j = 0
j 6= i

(x− xj)
(xi − xj)

dx.

Note: The Lagrange polynomial Ln,i(x) models a funtion whihtakes the value 0 at all xj (j 6= i), and 1 at xi. Hene, theoe�ient ai aptures the integral of a funtion whih is 1 in

xi and zero in the other node points.
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Closed Newton-Cotes Formulas � Error

Theorem: � Suppose that ∑n
i=0 aif(xi) denotes the (n+1) pointlosed Newton-Cotes formula with x0 = a, xn = b, and h = (b−a)/n.Then there exists ξ ∈ (a, b) for whih∫ b

a
f(x)dx =

n∑
i=0

aif(xi)+
hn+3f (n+2)(ξ)

(n + 2)!

∫ n

0
t2(t−1) · · · (t−n)dt,

if n is even and f ∈ Cn+2[a, b], and∫ b

a
f(x)dx =

n∑
i=0

aif(xi) +
hn+2f (n+1)(ξ)

(n + 1)!

∫ n

0
t(t− 1) · · · (t−n)dt,

if n is odd and f ∈ Cn+1[a, b].

Note that when n is an even integer, the degree of preision is (n+1).When n is odd, the degree of preision is only n.
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Closed Newton-Cotes Formulas � Examples

n = 2: Simpson's Rule

h

3

[
f(x0) + 4f(x1) + f(x2)

]
− h5

90
f (4)(ξ)

n = 3: Simpson's 3
8-Rule

3h
8

[
f(x0) + 3f(x1) + 3f(x2) + f(x3)

]
− 3h5

80
f (4)(ξ)

n = 4: Boole's Rule

2h
45

[
7f(x0) + 32f(x1) + 12f(x2) + 32f(x3) + 7f(x4)

]
− 8h7

945
f (6)(ξ)
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Open Newton-Cotes FormulasThe approximation is∫ b

a
f(x) dx =

∫ xn+1

x−1

f(x) dx ≈
n∑

i=0

aif(xi),

where

ai =
∫ xn+1

x−1

Ln,i(x) dx =
∫ xn

x0

n∏
j = 0
j 6= i

(x− xj)
(xi − xj)

dx.

Numerical Differentiation and Integration: Differentiation; Richardson’s Extrapolation; Integration – p. 46/50

Open Newton-Cotes Formulas � Error

Theorem: � Suppose that ∑n
i=0 aif(xi) denotes the (n+1) pointopen Newton-Cotes formula with x−1 = a, xn+1 = b, and h =

(b− a)/(n + 2). Then there exists ξ ∈ (a, b) for whih∫ b

a
f(x)dx =

n∑
i=0

aif(xi)+
hn+3f (n+2)(ξ)

(n + 2)!

∫ n+1

−1
t2(t−1) · · · (t−n)dt,

if n is even and f ∈ Cn+2[a, b], and∫ b

a
f(x)dx =

n∑
i=0

aif(xi)+
hn+2f (n+1)(ξ)

(n + 1)!

∫ n+1

−1
t(t−1) · · · (t−n)dt,

if n is odd and f ∈ Cn+1[a, b].

Note that when n is an even integer, the degree of preision is (n+1).When n is odd, the degree of preision is only n.
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Open Newton-Cotes Formulas � Examples

n = 0 : 2hf(x0) +
h3

3
f ′′(ξ)

n = 1 :
3h
2

[
f(x0) + f(x1)

]
+

3h3

4
f ′′(ξ)

n = 2 :
4h
3

[
2f(x0)− f(x1) + 2f(x2)

]
+

14h5

45
f (4)(ξ)

n = 3 :
5h
24

[
11f(x0) + f(x1) + f(x2) + 11f(x3)

]
+

95h5

144
f (4)(ξ)

Numerical Differentiation and Integration: Differentiation; Richardson’s Extrapolation; Integration – p. 48/50



Divide and Conquer!Say you want to ompute: ∫ 100

0
f(x) dx.

Is it a Good IdeaTM to diretly apply your favorite Newton-Cotesformula to this integral?!?No!With the losed 5-point NCF, we have h = 25 and h5/90 ∼ 105 soeven with a bound on f (6)(ξ) the error will be large.Better: Apply the losed 5-point NCF to the integrals∫ 4(i+1)

4i
f(x) dx, i = 0, 1, . . . , 24then sum. �Composite Numerial Integration.� (next time)
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Homework #6 � Due Friday 11/2/2007(Part-1)

BF-4.1.5

BF-4.1.27

BF-4.2.9

(Part-2)

BF-4.3.1-a,b.

BF-4.3.5-a,b.
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