
Math 541: Numeri
al Analysis and ComputationInterpolation and Polynomial ApproximationPie
ewise Polynomial Approximation; Cubi
 SplinesLe
ture Notes #6
Joe Maha�yDepartment of Mathemati
sSan Diego State UniversitySan Diego, CA 92182-7720

mahaffy@math.sdsu.edu

http://www-rohan.sdsu.edu/∼jmahaffy

$Id: lecture.tex,v 1.8 2008/10/10 22:33:18 mahaffy Exp $

Interpolation and Polynomial Approximation: Piecewise Polynomial Approximation; Cubic Splines – p.1/27

Che
king the Roadmap Interpolatory PolynomialsInspired by Weierstrass, we have looked at a number of strategies for ap-proximating arbitrary fun
tions using polynomials.Taylor Detailed information from one point, ex
ellent lo
ally, but not verysu

essful for extended intervals.

Lagrange ≤ nth degree polynomial interpolating the fun
tion in (n + 1)points.Representation: Theoreti
al using the Lagrange 
oe�
ients

Ln,k(x); pointwise using Neville's method; and more useful/generalusing Newton's divided di�eren
es.

Hermite ≤ (2n + 1)th degree polynomial interpolating the fun
tion, andmat
hing its �rst derivative in (n + 1) points.Representation: Theoreti
al using two types of Hermite 
oe�-
ients Hn,k(x), and bHn,k(x); and more useful/general using amodi�
ation of Newton's divided di�eren
es.With (n + 1) points, and a uniform mat
hing 
riteria of m derivatives inea
h point we 
an talk these in terms of the broader 
lass of os
ulatingpolynomials with:Taylor(m,n=0), Lagrange(m=0,n), Hermite(m=1,n); with resulting degree

d ≤ (m + 1)(n + 1)− 1.
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Admiring the Roadmap... Are We Done?We even �gured out how to modify Newton's divided di�eren
es toprodu
e representations of arbitrary os
ulating polynomials...We have swept a dirty little se
ret under the rug: �For all these interpolation strategies we get � provided the underlyingfun
tion is smooth enough, i.e. f ∈ C(m+1)(n+1)([a, b]) � errors ofthe form∏n
i=0(x− xi)(m+1)

((m + 1)(n + 1))!︸ ︷︷ ︸
η(x)

f ((m+1)(n+1))(ξ(x)), ξ(x) ∈ [a, b]

We have seen that with the xi's dispersed (Lagrange/Hermite-style),the 
ontrollable part, η(x), of the error term is better behaved thanfor Taylor polynomials. However, we have no 
ontrol over the ((n +
1)(m + 1))th derivative of f .
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Problems with High Order Polynomial ApproximationWe 
an for
e a polynomial of high degree to pass through as manypoints (xi, f(xi)) as we like. However, high degree polynomials tendto �u
tuate wildly between the interpolating points.
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Alternative Approa
h to Interpolation Divide-and-ConquerThe os
illations tend to be extremely bad 
lose to the end points ofthe interval of interest, and (in general) the more points you put in,the wilder the os
illations get!

Clearly, we need some new tri
ks!

Idea: Divide the interval into smaller sub-intervals, and 
onstru
tdi�erent low degree polynomial approximations (with smallos
illations) on the sub-intervals.This is 
alled Pie
ewise Polynomial Approximation.

Simplest 
ontinuous variant: Pie
ewise Linear Approximation:
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Pie
ewise Linear Approximation Conne
t-the-Dots
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Figure: Pie
ewise linear approximation of the same data as onslide 4. Is this the end of ex
essive os
illations?!?

Interpolation and Polynomial Approximation: Piecewise Polynomial Approximation; Cubic Splines – p.6/27

Problem with Pie
ewise Linear ApproximationThe pie
ewise linear interpolating fun
tion is not di�erentiable atthe �nodes,� i.e. the points xi. (Typi
ally we want to do more thanjust plot the polynomial... and even plotting shows sharp 
orners!)Idea: Strengthened by our experien
e with Hermite polynomials,why not generate pie
ewise polynomials that mat
h both thefun
tion value and some number of derivatives in the nodes!
The Return of the Cubic Hermite Polynomial!If, for instan
e f(x) and f ′(x) are known in the nodes, we 
an use a
olle
tion of 
ubi
 Hermite polynomials H3

j (x) to build up su
h afun
tion.But... what if f ′(x) is not known (in general getting measurementsof the derivative of a physi
al pro
ess is mu
h more di�
ult and un-reliable than measuring the quantity itself), 
an we still generate aninterpolant with 
ontinuous derivative(s)???
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An Old Idea: Splines

Wikipedia De�nition: Spline �A spline 
onsists of a long strip of wood (a lath) �xed in position at a numberof points. In older days shipwrights often used splines to mark the 
urve of ahull. The lath will take the shape whi
h minimizes the energy required forbending it between the �xed points, and thus adopt the smoothest possibleshape.The origins of the spline in wood-working may show in the 
onje
tured etymol-ogy whi
h 
onne
ts the word spline to the word splinter. Later 
raftsmen havemade splines out of rubber, steel, and other elastomeri
 materials.Spline devi
es help bend the wood for pianos, violins, violas, et
. The Wrightbrothers used one to shape the wings of their air
raft.In 1946 mathemati
ians started studying the spline shape, and derived thepie
ewise polynomial formula known as the spline 
urve or fun
tion. Thishas led to the widespread use of su
h fun
tions in 
omputer-aided design,espe
ially in the surfa
e designs of vehi
les.
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Modern Spline Constru
tion: � A Model Railroad
Pi
tures from Charlie Comsto
k's webpagehttp://s145079212.onlinehome.us/rr/
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Appli
ations & Pretty Pi
tures Provided by �Un
le Google�
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Appli
ations & Pretty Pi
tures Provided by �Un
le Google�
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Cubi
 Splines to the Res
ue!!! 1D-versionGiven a fun
tion f de�ned on [a, b] and a set of nodes

a = x0 < x1 < . . . < xn = b, a 
ubi
 spline interpolant Sfor f is a fun
tion that satis�es the following 
onditions:a. S(x) is a 
ubi
 polynomial, denoted Sj(x), on the sub-interval

[xj , xj+1] ∀j = 0, 1, . . . , n− 1.b. Sj(xj) = f(xj), ∀j = 0, 1, . . . , (n− 1). �Left� Interpolation
. Sj(xj+1) = f(xj+1), ∀j = 0, 1, . . . , (n− 1). �Right� Interpolationd. S′j(xj+1) = S′j+1(xj+1), ∀j = 0, 1, . . . , (n− 2). Slope-mat
he. S′′j (xj+1) = S′′j+1(xj+1), ∀j = 0, 1, . . . , (n− 2). Curvature-mat
h

f. One of the following sets of boundary 
onditions is satis�ed:1. S′′(x0) = S′′(xn) = 0, � free / natural boundary2. S′(x0) = f ′(x0) and S′(xn) = f ′(xn), � 
lamped boundary
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A Spline Segment

x(j+2)x(j+1)x(j)

S{j}(x) S{j+1}(x)

The spline segment Sj(x) �lives� on the interval [xj , xj+1].The spline segment Sj+1(x) �lives� on the interval [xj+1, xj+2].

Their fun
tion values: Sj(xj+1) = Sj+1(xj+1) = f(xj+1)derivatives: S′j(xj+1) = S′j+1(xj+1)and se
ond derivatives: S′′j (xj+1) = S′′j+1(xj+1)... are required to mat
h in the interior point xj+1.

Interpolation and Polynomial Approximation: Piecewise Polynomial Approximation; Cubic Splines – p.13/27

Example �Cartoon�: Cubi
 Spline.
S[1] S[n−1]

S[n]

S[0]

S[2]

x[n−1]

x[0]

x[2]
x[n]

x[1]
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Building Cubi
 Splines, I. � Applying the ConditionsWe start with

Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3

∀j ∈ {0, 1, . . . , n− 1}and apply all the 
onditions to these polynomials...

For 
onvenien
e we introdu
e the notation hj = xj+1 − xj .

b. Sj(xj) = aj = f(xj)
. aj+1 = Sj+1(xj+1) = aj + bjhj + cjh
2
j + djh

3
jd. Noti
e S′j(xj) = bj , hen
e we get bj+1 = bj + 2cjhj + 3djh

2
je. Noti
e S′′j (xj) = 2cj , hen
e we get cj+1 = cj + 3djhj

Crikey!!! � We got a whole lot of equations to solve!!!
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Cubi
 Splines, II. � Solving the Resulting Equations.

We solve [e℄ for dj =
cj+1 − cj

3hj

, and plug into [
℄ and [d℄ to get

[
'℄ aj+1 = aj + bjhj +
h2

j

3
(2cj + cj+1),[d'℄ bj+1 = bj + hj(cj + cj+1).We solve for bj in [
'℄ and get[*℄ bj =

1
hj

(aj+1 − aj)− hj

3
(2cj + cj+1).Redu
e the index by 1, to get[*'℄ bj−1 =

1
hj−1

(aj − aj−1)− hj−1

3
(2cj−1 + cj).Plug [*℄ (lhs) and [*'℄ (rhs) into the index-redu
ed-by-1 version of[d'℄, i.e.[d� ℄ bj = bj−1 + hj−1(cj−1 + cj).
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Cubi
 Splines, III. � A Linear System of EquationsAfter some �massaging� we end up with the linear system of equationsfor j ∈ {1, 2, . . . , n− 1} (the interior nodes).

hj−1cj−1+2(hj−1+hj)cj+hjcj+1 =
3
hj

(aj+1−aj)− 3
hj−1

(aj−aj−1).Noti
e: The only unknowns are {cj}n
j=0, sin
e the values of {aj}n

j=0and {hj}n−1
j=0 are given.On
e we 
ompute {cj}n−1

j=0 , we get

bj =
aj+1 − aj

hj
− hj(2cj + cj+1)

3
,and

dj =
cj+1 − cj

3hj
.We are almost ready to solve for the 
oe�
ients {cj}n−1

j=0 , but weonly have (n− 1) equations for (n + 1) unknowns...

Interpolation and Polynomial Approximation: Piecewise Polynomial Approximation; Cubic Splines – p.17/27

Cubi
 Splines, IV. � Completing the System 1 of 2

We 
an 
omplete the system in many ways, some 
ommon ones are...

Natural boundary 
onditions:

[n1] 0 = S′′0 (x0) = 2c0 ⇒ c0 = 0

[n2] 0 = S′′n(xn) = 2cn ⇒ cn = 0
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Cubi
 Splines, IV. � Completing the System 2 of 2We 
an 
omplete the system in many ways, some 
ommon ones are...

Clamped boundary 
onditions: (Derivative known at endpoints).
[c1] S′0(x0) = b0 = f ′(x0)

[c2] S′n−1(xn) = bn = bn−1 + hn−1(cn−1 + cn) = f ′(xn)

[c1] and [c2] give the additional equations

[c1′] 2h0c0 + h0c1 = 3
h0

(a1 − a0)− 3f ′(x0)

[c2′] hn−1cn−1 + 2hn−1cn = 3f ′(xn)− 3
hn−1

(an − an−1).
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Natural Boundary Conditions: Linear System, A~x = ~bWe end up with a linear system of equations, A~x = ~b, where

A =



1 0 0 · · · · · · 0

h0 2(h0 + h1) h1

. . . ...

0 h1 2(h1 + h2) h2

. . . ...... . . . . . . . . . . . . ...... . . . . . . . . . 0... . . . hn−2 2(hn−2 + hn−1) hn−1

0 · · · · · · 0 0 1


,

Boundary Terms: marked in blue-bold.
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Natural Boundary Conditions: Linear System, A~x = ~bWe end up with a linear system of equations, A~x = ~b, where

~b =



0
3(a2−a1)

h1
− 3(a1−a0)

h0...

3(an−an−1)
hn−1

− 3(an−1−an−2)
hn−2

0


, ~x =



c0

c1...

cn−1

cn



~x are the unknowns (the quantity we are solving for!)Boundary Terms: marked in blue-bold.
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Clamped Boundary Conditions: Linear SystemWe end up with a linear system of equations, Ax = b, where
A =



2h0 h0 0 · · · · · · 0

h0 2(h0 + h1) h1

. . . ...
0 h1 2(h1 + h2) h2

. . . ...... . . . . . . . . . . . . ...... . . . . . . . . . 0... . . . hn−2 2(hn−2 + hn−1) hn−1

0 · · · · · · 0 hn−1 2hn−1


,

Boundary Terms: marked in blue-bold.
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Clamped Boundary Conditions: Linear SystemWe end up with a linear system of equations, A~x = ~b, where

~b =



3(a1−a0)
h0

− 3f ′(x0)
3(a2−a1)

h1
− 3(a1−a0)

h0...

3(an−an−1)
hn−1

− 3(an−1−an−2)
hn−2

3f ′(xn)− 3(an−an−1)
hn−1


, ~x =



c0

c1...

cn−1

cn



Boundary Terms: marked in blue-bold.
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Cubi
 Splines, The Error BoundNo numeri
al story is 
omplete without an error bound...

If f ∈ C4[a, b], let

M = max
a≤x≤b

|f4(x)|.

If S is the unique 
lamped 
ubi
 spline interpolant to f with respe
tto the nodes a = x0 < x1 < · · · < xn = b, then with

h = max
0≤j≤n−1

(xj+1 − xj) = max
0≤j≤n−1

hj

max
a≤x≤b

|f(x)− S(x)| ≤ 5Mh4

384
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Banded Matri
es [Referen
e℄We noti
e that the linear systems for both natural and 
lampedboundary 
onditions give rise to tri-diagonal linear systems.

Further, these systems are stri
tly diagonally dominant � theentries on the diagonal outweigh the sum of the o�-diagonal ele-ments (in absolute terms) �, so pivoting (re-arrangement to avoiddivision by a small number) is not needed when solving for ~x usingGaussian Elimination (to be dis
ussed in detail later in the semester)...

This means that these systems 
an be solved very qui
kly (we willrevisit this topi
 later on, but for now the algorithm is on the next
ouple of slides), see also Math543 �Computational Linear Algebra/ Numeri
al Matrix Analysis.�
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Algorithm: Solving Tx = b in O(n) Time, I. [Referen
e℄Given the N ×N tridiagonal matrix T and the N × 1 ve
tor b:
Step 1: The first row:

l1,1 = T1,1

u1,2 = T1,2/l1,1

z1 = b1/l1,1

Step 2: FOR i = 2 : (n− 1)

li,i−1 = Ti,i−1

li,i = Ti,i − li,i−1ui−1,i

ui,i+1 = Ti,i+1/li,i
zi = (bi − li,i−1zi−1)/li,i

END

Step 3: The last row:

ln,n−1 = Tn,n−1

ln,n = Tn,n − ln,n−1un−1,n

zn = (bn − ln,n−1zn−1)/ln,n
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Algorithm: Solving Tx = b in O(n) Time, II. [Referen
e℄

Step 4: xn = zn

Step 5: FOR i = (n− 1) : −1 : 1

xi = zi − ui,i+1xi+1

ENDNotes: The algorithm 
omputes both the LU -fa
torization of T ,as well as the solution ~x = T−1~b. Steps 1�3 
omputes
~z = L−1~b, and steps 4�5 
omputes ~x = U−1~z. (Thiswill gain meaning later on, when we talk about GaussianElimination and Matrix Fa
torizations � Don't worry if itmakes no sense at all right now!)
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