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Interpolation and Polynomial Approximation: Piecewise Polynomial Approximation; Cubic Splines – p.1/27

Cheking the Roadmap Interpolatory PolynomialsInspired by Weierstrass, we have looked at a number of strategies for ap-proximating arbitrary funtions using polynomials.Taylor Detailed information from one point, exellent loally, but not verysuessful for extended intervals.

Lagrange ≤ nth degree polynomial interpolating the funtion in (n + 1)points.Representation: Theoretial using the Lagrange oe�ients

Ln,k(x); pointwise using Neville's method; and more useful/generalusing Newton's divided di�erenes.

Hermite ≤ (2n + 1)th degree polynomial interpolating the funtion, andmathing its �rst derivative in (n + 1) points.Representation: Theoretial using two types of Hermite oe�-ients Hn,k(x), and bHn,k(x); and more useful/general using amodi�ation of Newton's divided di�erenes.With (n + 1) points, and a uniform mathing riteria of m derivatives ineah point we an talk these in terms of the broader lass of osulatingpolynomials with:Taylor(m,n=0), Lagrange(m=0,n), Hermite(m=1,n); with resulting degree

d ≤ (m + 1)(n + 1)− 1.
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Admiring the Roadmap... Are We Done?We even �gured out how to modify Newton's divided di�erenes toprodue representations of arbitrary osulating polynomials...We have swept a dirty little seret under the rug: �For all these interpolation strategies we get � provided the underlyingfuntion is smooth enough, i.e. f ∈ C(m+1)(n+1)([a, b]) � errors ofthe form∏n
i=0(x− xi)(m+1)

((m + 1)(n + 1))!︸ ︷︷ ︸
η(x)

f ((m+1)(n+1))(ξ(x)), ξ(x) ∈ [a, b]

We have seen that with the xi's dispersed (Lagrange/Hermite-style),the ontrollable part, η(x), of the error term is better behaved thanfor Taylor polynomials. However, we have no ontrol over the ((n +
1)(m + 1))th derivative of f .
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Problems with High Order Polynomial ApproximationWe an fore a polynomial of high degree to pass through as manypoints (xi, f(xi)) as we like. However, high degree polynomials tendto �utuate wildly between the interpolating points.
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Alternative Approah to Interpolation Divide-and-ConquerThe osillations tend to be extremely bad lose to the end points ofthe interval of interest, and (in general) the more points you put in,the wilder the osillations get!

Clearly, we need some new triks!

Idea: Divide the interval into smaller sub-intervals, and onstrutdi�erent low degree polynomial approximations (with smallosillations) on the sub-intervals.This is alled Pieewise Polynomial Approximation.

Simplest ontinuous variant: Pieewise Linear Approximation:
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Pieewise Linear Approximation Connet-the-Dots
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Figure: Pieewise linear approximation of the same data as onslide 4. Is this the end of exessive osillations?!?
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Problem with Pieewise Linear ApproximationThe pieewise linear interpolating funtion is not di�erentiable atthe �nodes,� i.e. the points xi. (Typially we want to do more thanjust plot the polynomial... and even plotting shows sharp orners!)Idea: Strengthened by our experiene with Hermite polynomials,why not generate pieewise polynomials that math both thefuntion value and some number of derivatives in the nodes!
The Return of the Cubic Hermite Polynomial!If, for instane f(x) and f ′(x) are known in the nodes, we an use aolletion of ubi Hermite polynomials H3

j (x) to build up suh afuntion.But... what if f ′(x) is not known (in general getting measurementsof the derivative of a physial proess is muh more di�ult and un-reliable than measuring the quantity itself), an we still generate aninterpolant with ontinuous derivative(s)???
Interpolation and Polynomial Approximation: Piecewise Polynomial Approximation; Cubic Splines – p.7/27

An Old Idea: Splines

Wikipedia De�nition: Spline �A spline onsists of a long strip of wood (a lath) �xed in position at a numberof points. In older days shipwrights often used splines to mark the urve of ahull. The lath will take the shape whih minimizes the energy required forbending it between the �xed points, and thus adopt the smoothest possibleshape.The origins of the spline in wood-working may show in the onjetured etymol-ogy whih onnets the word spline to the word splinter. Later raftsmen havemade splines out of rubber, steel, and other elastomeri materials.Spline devies help bend the wood for pianos, violins, violas, et. The Wrightbrothers used one to shape the wings of their airraft.In 1946 mathematiians started studying the spline shape, and derived thepieewise polynomial formula known as the spline urve or funtion. Thishas led to the widespread use of suh funtions in omputer-aided design,espeially in the surfae designs of vehiles.
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Modern Spline Constrution: � A Model Railroad
Pitures from Charlie Comstok's webpagehttp://s145079212.onlinehome.us/rr/
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Appliations & Pretty Pitures Provided by �Unle Google�
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Appliations & Pretty Pitures Provided by �Unle Google�
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Cubi Splines to the Resue!!! 1D-versionGiven a funtion f de�ned on [a, b] and a set of nodes

a = x0 < x1 < . . . < xn = b, a ubi spline interpolant Sfor f is a funtion that satis�es the following onditions:a. S(x) is a ubi polynomial, denoted Sj(x), on the sub-interval

[xj , xj+1] ∀j = 0, 1, . . . , n− 1.b. Sj(xj) = f(xj), ∀j = 0, 1, . . . , (n− 1). �Left� Interpolation. Sj(xj+1) = f(xj+1), ∀j = 0, 1, . . . , (n− 1). �Right� Interpolationd. S′j(xj+1) = S′j+1(xj+1), ∀j = 0, 1, . . . , (n− 2). Slope-mathe. S′′j (xj+1) = S′′j+1(xj+1), ∀j = 0, 1, . . . , (n− 2). Curvature-math

f. One of the following sets of boundary onditions is satis�ed:1. S′′(x0) = S′′(xn) = 0, � free / natural boundary2. S′(x0) = f ′(x0) and S′(xn) = f ′(xn), � lamped boundary
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A Spline Segment

x(j+2)x(j+1)x(j)

S{j}(x) S{j+1}(x)

The spline segment Sj(x) �lives� on the interval [xj , xj+1].The spline segment Sj+1(x) �lives� on the interval [xj+1, xj+2].

Their funtion values: Sj(xj+1) = Sj+1(xj+1) = f(xj+1)derivatives: S′j(xj+1) = S′j+1(xj+1)and seond derivatives: S′′j (xj+1) = S′′j+1(xj+1)... are required to math in the interior point xj+1.
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Example �Cartoon�: Cubi Spline.
S[1] S[n−1]

S[n]

S[0]

S[2]

x[n−1]

x[0]

x[2]
x[n]

x[1]
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Building Cubi Splines, I. � Applying the ConditionsWe start with

Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3

∀j ∈ {0, 1, . . . , n− 1}and apply all the onditions to these polynomials...

For onveniene we introdue the notation hj = xj+1 − xj .

b. Sj(xj) = aj = f(xj). aj+1 = Sj+1(xj+1) = aj + bjhj + cjh
2
j + djh

3
jd. Notie S′j(xj) = bj , hene we get bj+1 = bj + 2cjhj + 3djh

2
je. Notie S′′j (xj) = 2cj , hene we get cj+1 = cj + 3djhj

Crikey!!! � We got a whole lot of equations to solve!!!
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Cubi Splines, II. � Solving the Resulting Equations.

We solve [e℄ for dj =
cj+1 − cj

3hj

, and plug into [℄ and [d℄ to get

['℄ aj+1 = aj + bjhj +
h2

j

3
(2cj + cj+1),[d'℄ bj+1 = bj + hj(cj + cj+1).We solve for bj in ['℄ and get[*℄ bj =

1
hj

(aj+1 − aj)− hj

3
(2cj + cj+1).Redue the index by 1, to get[*'℄ bj−1 =

1
hj−1

(aj − aj−1)− hj−1

3
(2cj−1 + cj).Plug [*℄ (lhs) and [*'℄ (rhs) into the index-redued-by-1 version of[d'℄, i.e.[d� ℄ bj = bj−1 + hj−1(cj−1 + cj).
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Cubi Splines, III. � A Linear System of EquationsAfter some �massaging� we end up with the linear system of equationsfor j ∈ {1, 2, . . . , n− 1} (the interior nodes).

hj−1cj−1+2(hj−1+hj)cj+hjcj+1 =
3
hj

(aj+1−aj)− 3
hj−1

(aj−aj−1).Notie: The only unknowns are {cj}n
j=0, sine the values of {aj}n

j=0and {hj}n−1
j=0 are given.One we ompute {cj}n−1

j=0 , we get

bj =
aj+1 − aj

hj
− hj(2cj + cj+1)

3
,and

dj =
cj+1 − cj

3hj
.We are almost ready to solve for the oe�ients {cj}n−1

j=0 , but weonly have (n− 1) equations for (n + 1) unknowns...
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Cubi Splines, IV. � Completing the System 1 of 2

We an omplete the system in many ways, some ommon ones are...

Natural boundary onditions:

[n1] 0 = S′′0 (x0) = 2c0 ⇒ c0 = 0

[n2] 0 = S′′n(xn) = 2cn ⇒ cn = 0
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Cubi Splines, IV. � Completing the System 2 of 2We an omplete the system in many ways, some ommon ones are...

Clamped boundary onditions: (Derivative known at endpoints).
[c1] S′0(x0) = b0 = f ′(x0)

[c2] S′n−1(xn) = bn = bn−1 + hn−1(cn−1 + cn) = f ′(xn)

[c1] and [c2] give the additional equations

[c1′] 2h0c0 + h0c1 = 3
h0

(a1 − a0)− 3f ′(x0)

[c2′] hn−1cn−1 + 2hn−1cn = 3f ′(xn)− 3
hn−1

(an − an−1).
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Natural Boundary Conditions: Linear System, A~x = ~bWe end up with a linear system of equations, A~x = ~b, where

A =



1 0 0 · · · · · · 0

h0 2(h0 + h1) h1

. . . ...

0 h1 2(h1 + h2) h2

. . . ...... . . . . . . . . . . . . ...... . . . . . . . . . 0... . . . hn−2 2(hn−2 + hn−1) hn−1

0 · · · · · · 0 0 1


,

Boundary Terms: marked in blue-bold.

Interpolation and Polynomial Approximation: Piecewise Polynomial Approximation; Cubic Splines – p.20/27



Natural Boundary Conditions: Linear System, A~x = ~bWe end up with a linear system of equations, A~x = ~b, where

~b =



0
3(a2−a1)

h1
− 3(a1−a0)

h0...

3(an−an−1)
hn−1

− 3(an−1−an−2)
hn−2

0


, ~x =



c0

c1...

cn−1

cn



~x are the unknowns (the quantity we are solving for!)Boundary Terms: marked in blue-bold.
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Clamped Boundary Conditions: Linear SystemWe end up with a linear system of equations, Ax = b, where
A =



2h0 h0 0 · · · · · · 0

h0 2(h0 + h1) h1

. . . ...
0 h1 2(h1 + h2) h2

. . . ...... . . . . . . . . . . . . ...... . . . . . . . . . 0... . . . hn−2 2(hn−2 + hn−1) hn−1

0 · · · · · · 0 hn−1 2hn−1


,

Boundary Terms: marked in blue-bold.
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Clamped Boundary Conditions: Linear SystemWe end up with a linear system of equations, A~x = ~b, where

~b =



3(a1−a0)
h0

− 3f ′(x0)
3(a2−a1)

h1
− 3(a1−a0)

h0...

3(an−an−1)
hn−1

− 3(an−1−an−2)
hn−2

3f ′(xn)− 3(an−an−1)
hn−1


, ~x =



c0

c1...

cn−1

cn



Boundary Terms: marked in blue-bold.
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Cubi Splines, The Error BoundNo numerial story is omplete without an error bound...

If f ∈ C4[a, b], let

M = max
a≤x≤b

|f4(x)|.

If S is the unique lamped ubi spline interpolant to f with respetto the nodes a = x0 < x1 < · · · < xn = b, then with

h = max
0≤j≤n−1

(xj+1 − xj) = max
0≤j≤n−1

hj

max
a≤x≤b

|f(x)− S(x)| ≤ 5Mh4

384
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Banded Matries [Referene℄We notie that the linear systems for both natural and lampedboundary onditions give rise to tri-diagonal linear systems.

Further, these systems are stritly diagonally dominant � theentries on the diagonal outweigh the sum of the o�-diagonal ele-ments (in absolute terms) �, so pivoting (re-arrangement to avoiddivision by a small number) is not needed when solving for ~x usingGaussian Elimination (to be disussed in detail later in the semester)...

This means that these systems an be solved very quikly (we willrevisit this topi later on, but for now the algorithm is on the nextouple of slides), see also Math543 �Computational Linear Algebra/ Numerial Matrix Analysis.�
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Algorithm: Solving Tx = b in O(n) Time, I. [Referene℄Given the N ×N tridiagonal matrix T and the N × 1 vetor b:
Step 1: The first row:

l1,1 = T1,1

u1,2 = T1,2/l1,1

z1 = b1/l1,1

Step 2: FOR i = 2 : (n− 1)

li,i−1 = Ti,i−1

li,i = Ti,i − li,i−1ui−1,i

ui,i+1 = Ti,i+1/li,i
zi = (bi − li,i−1zi−1)/li,i

END

Step 3: The last row:

ln,n−1 = Tn,n−1

ln,n = Tn,n − ln,n−1un−1,n

zn = (bn − ln,n−1zn−1)/ln,n
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Algorithm: Solving Tx = b in O(n) Time, II. [Referene℄

Step 4: xn = zn

Step 5: FOR i = (n− 1) : −1 : 1

xi = zi − ui,i+1xi+1

ENDNotes: The algorithm omputes both the LU -fatorization of T ,as well as the solution ~x = T−1~b. Steps 1�3 omputes
~z = L−1~b, and steps 4�5 omputes ~x = U−1~z. (Thiswill gain meaning later on, when we talk about GaussianElimination and Matrix Fatorizations � Don't worry if itmakes no sense at all right now!)
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