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Introdution�It is rare to have the luxury of quadrati onvergene.�
(Burden-Faires, p.83)There are a number of methods for squeezing faster onvergene outof an already omputed sequene of numbers.

We here explore one method whih seems the have been around sinethe beginning of numerial analysis... Aitken's ∆2 method. Itan be used to aelerate onvergene of a sequene that is linearlyonvergent, regardless of its origin or appliation.

A review of modern extrapolation methods an be found in:

“Practical Extrapolation Methods: Theory and Applications,” Avram Sidi, Num-

ber 10 in Cambridge Monographs on Applied and Computational Mathematics,

Cambridge University Press, June 2003. ISBN: 0-521-66159-5
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Reall: Convergene of a Sequene

De�nition: � Suppose the sequene {pn}∞n=0 onverges to p,with pn 6= p for all n. If positive onstants λ and α exists with
lim

n→∞
|pn+1 − p|
|pn − p|α = λthen {pn}∞n=0 onverges to p of order α, with asymptoti erroronstant λ.

Linear onvergene means that α = 1, and |λ| < 1.
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Aitken's ∆2 MethodAssume {pn}∞n=0 is a linearly onvergent sequene with limit p.

Further, assume we are far out into the tail of the sequene (n large),and the signs of the suessive errors agree, i.e.

sign(pn − p) = sign(pn+1 − p) = sign(pn+2 − p) = . . .and that

pn+2 − p

pn+1 − p
≈ pn+1 − p

pn − p
≈ λ (the asymptotic limit)This would indiate

(pn+1 − p)2 ≈ (pn+2 − p)(pn − p)

p2
n+1 − 2pn+1p + p2 ≈ pn+2pn − (pn+2 + pn)p + p2We solve for p and get...
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Aitken's ∆2 MethodWe solve for p and get...

p ≈ pn+2pn − p2
n+1

pn+2 − 2pn+1 + pnA little bit of algebrai manipulation put this into the lassial Aitkenform:

p̂n = p = pn − (pn+1 − pn)2

pn+2 − 2pn+1 + pn

Aitken's ∆2 Method is based on the assumption that the p̂n we om-pute from pn+2, pn+1 and pn is a better approximation to the reallimit p.The analysis needed to prove this is beyond the sope of this lass,see e.g. Sidi's book.
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Aitken's ∆2 Method The ReipeGiven a sequene �nite {pn}N
n=0 or in�nite {qn}∞n=0 sequene whihonverges linearly to some limit.

De�ne the new sequenes

p̂n = pn − (pn+1 − pn)2

pn+2 − 2pn+1 + pn
, n = 0, 1, . . . , N − 2or

q̂n = qn − (qn+1 − qn)2

qn+2 − 2qn+1 + qn
, n = 0, 1, . . . ,∞

The numerator is a forward difference squared, while the denominatoris a seond order central difference.
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ExampleConsider the sequene {pn}∞n=1, where the sequene is generated bythe �xed point iteration pn+1 = cos(pn), p0 = 0.

Iteration pn p̂n0 0.000000000000000 0 .6850733573260451 1.000000000000000 0.7 280103614676172 0 .540302305868140 0.73 36651645852313 0 .857553215846393 0.73 69062943404744 0 .654289790497779 0.73 80504213716645 0.7 93480358742566 0.73 86360968816556 0.7 01368773622757 0.73 88765828171367 0.7 63959682900654 0.73 89922430270348 0.7 22102425026708 0.7390 425113281599 0.7 50417761763761 0.7390 6594959994110 0.73 1404042422510 0.7390 7638331895611 0.7 44237354900557 0.73908 1177259563∗12 0.73 5604740436347 0.73908 3333909684∗
Note: Bold digits are correct; p̂11 needs p13, and p̂12 additionally needs p14.
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Faster Convergene for �Aitken-Sequenes�

Theorem: Convergene of Aitken-∆2-Sequenes �Suppose {pn}∞n=0 is a sequene that onverges linearly to thelimit p, and for n large enough we have (pn − p)(pn+1 − p) > 0.Then the Aitken-aelerated sequene {p̂n}∞n=0 onverges fast to

p in the sense that

lim
n→∞

[
p̂n − p

pn − p

]
= 0

We an ombine Aitken's method with �xed-point iteration in orderto get a ��xed-point iteration on steroids.�
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Ste�ensen's Method: Fixed-Point Iteration on SteroidsSuppose we have a �xed point iteration:

p0, p1 = g(p0), p2 = g(p1), . . .

One we have p0, p1 and p2, we an ompute

p̂0 = p0 − (p1 − p0)2

p2 − 2p1 + p0At this point we �restart� the �xed point iteration with p0 = p̂0, e.g.

p3 = p̂0, p4 = g(p3), p5 = g(p4)And ompute

p̂3 = p3 − (p4 − p3)2

p5 − 2p4 + p3
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Ste�ensen's Method: The Quadrati Waltz!This waltz: g-g-A(itken), g-g-A, . . . onverges quadratially!
Input: Initial approximation p0; tolerane TOL; maximumnumber of iterations N0.

Output: Approximate solution p, or failure message.
1. Set i = 1
2. While i ≤ N0 do 3-6
3∗ Set p1 = g(p0), p2 = g(p1),

p = p0 − (p1 − p0)2/(p2 − 2p1 + p0)
4. If |p− p0| < TOL then
4a. output p

4b. stop program
5. Set i = i + 1
6. Set p0 = p

7. Output: �Failure after N0 iterations.�
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Ste�ensen's Method: Example 1 of 2Below we ompare a Fixed Point iteration, Newton's Method, andSte�ensen's Method for solving:

f(x) = x3 + 4x2 − 10 = 0

or alternately,

pn+1 = g(pn) =
√

10
pn + 4
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Ste�ensen's Method: Example 2 of 2

Fixed Point Iteration

i pn g(pn)0 1.50000 1.348401 1.34840 1.367382 1.36738 1.364963 1.36496 1.36524 1.36526 1.365235 1.36523 1.36523

Newton’s Method

i xn f(xn)0 1.50000 1.51600e-011 1.36495 -3.11226e-042 1.36523 -1.35587e-09

Steffensen’s Method

i pn p1 p2 p |p− p2|0 1.50000 1.34840 1.36738 1.36527 3.96903e-051 1.36527 1.36523 1.36523 1.36523 2.80531e-12Solutions of Equations in One Variable,Interpolation and Polynomial Approximation – p. 12/56



Ste�ensen's Method: Potential Breakage

3∗ If at some point p2 − 2p1 + p0 = 0 (whih appears in thedenominator), then we stop and selet the urrent value of p2 asour approximate answer.

Notes: Both Newton's and Ste�ensen's methods give quadrati on-vergene. In Newton's method we ompute one funtionvalue and one derivative in eah iteration. In Ste�ensen'smethod we have two funtion evaluations and a more ompli-ated algebrai expression in eah iteration, but no deriva-tive. It looks like we got something for (almost) nothing.However, in order the guarantee quadrati onvergene forSte�ensen's method, the �xed point funtion g must be 3times ontinuously di�erentiable, e.g. f ∈ C3[a, b], (seetheorem-2.14 in Burden-Faires). Newton's method �only�requires f ∈ C2[a, b] (BF Theorem-2.5).
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Zeros of Polynomials
De�nition: Degree of a Polynomial �A polynomial of degree n has the form

P (x) = anxn + an−1x
n−1 + · · ·+ a1x + a0, an 6= 0where the ai's are onstants (either real, or omplex) alled theoe�ients of P .

Why look at polynomials? � We'll be looking at the problem

P (x) = 0 (i.e. f(x) = 0 for a speial lass of funtions.)Polynomials are the basis for many approximation methods, henebeing able to solve polynomial equations fast is valuable.We'd like to use Newton's method, so we need to ompute P (x) and

P ′(x) as e�iently as possible.
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Fundamentals
Theorem: The Fundamental Theorem of Algebra �If P (x) is a polynomial of degree n ≥ 1 with real or omplexoe�ients, then P (x) = 0 has at least one (possibly omplex)root.

The proof is surprisingly(?) di�ult and requires understanding ofomplex analysis... We leave it as an exerise for the motivatedstudent!
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Key Consequenes of the Fundamental Theorem of Algebra, 1 of 2

Corollary: �If P (x) is a polynomial of degree n ≥ 1 with real or omplex oef-�ients then there exists unique onstants x1, x2, . . ., xk (possiblyomplex) and unique positive integers m1, m2, . . ., mk suh that∑k
i=1 mi = n and

P (x) = an(x− x1)m1(x− x2)m2 · · · (x− xk)mk

� The olletion of zeros is unique.� mi are the multipliities of the individual zeros.� A polynomial of degree n has exatly n zeros, ounting multi-pliity.
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Key Consequenes of the Fundamental Theorem of Algebra, 2 of 2

Corollary: �Let P (x) and Q(x) be polynomials of degree at most n. If x1, x2,

. . ., xk, with k > n are distint numbers with P (xi) = Q(xi) for

i = 1, 2, . . . , k, then P (x) = Q(x) for all values of x.

� If two polynomials of degree n agree at at least (n + 1) points,then they must be the same.
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Horner's Method: Evaluating Polynomials Quikly 1 of 4Let

P (x) = anxn + an−1x
n−1 + · · ·+ a1x + a0

We want an e�ient method to solve
P (x) = 0.In 1819, William Horner developed an e�ient algorithm with nmultipliations and n additions to evaluate P (x0).

Tehnique is alled Horner's Method or Syntheti Division.
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Horner's Method: Evaluating Polynomials Quikly 2 of 4If we are looking to evaluate P (x0) for any x0, let

bn = an, bk = ak + bk+1x0, k = (n− 1), (n− 2), . . . , 1, 0Then b0 = P (x0). We have only used n multipliations and nadditions.
At the same time we have omputed the deomposition

P (x) = (x− x0)Q(x) + b0Where

Q(x) =
n−1∑
k=1

bk+1x
k

If b0 = 0, then x0 is a root of P (x).
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Horner's Method: Evaluating Polynomials Quikly 3 of 4Huh?!? Where did the expression ome from? � Consider

P (x) = anxn + an−1x
n−1 + · · ·+ a1x + a0

= (anxn−1 + an−1x
n−2 + · · ·+ a1)x + a0

= ((anxn−2 + an−1x
n−3 + · · ·)x + a1)x + a0

= (. . . ((︸ ︷︷ ︸
n−1

anx + an−1︸ ︷︷ ︸
bn−1

)x + · · ·)x + a1)x + a0

Horner's method is �simply� the omputation of this parenthesizedexpression from the inside-out...

Solutions of Equations in One Variable,Interpolation and Polynomial Approximation – p. 20/56



Horner's Method: Evaluating Polynomials Quikly 4 of 4Now, if we need to ompute P ′(x0) we have

P ′(x)
∣∣∣∣
x=x0

= (x− x0)Q ′(x) + Q(x)
∣∣∣∣
x=x0

= Q(x0)

Whih we an ompute (again using Horner's method) in (n − 1)multipliations and (n− 1) additions.

Proof? We really ought to prove that Horner's method works.It basially boils down to lots of algebra whih shows that theoe�ients of P (x) and (x− x0)Q(x) + b0 are the same...

A ouple of examples may be more instrutive...
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Example#1: Horner's MethodFor P (x) = x4 − x3 + x2 + x− 1, ompute P (5):
x0 = 5 a4 = 1 a3 = −1 a2 = 1 a1 = 1 a0 = −1

b4x0 = 5 b3x0 = 20 b2x0 = 105 b1x0 = 530

b4 = 1 b3 = 4 b2 = 21 b1 = 106 b0 = 529

Hene, P(5) = 529, and

P (x) = (x− 5)(x3 + 4x2 + 21x + 106) + 529Similarly we get P ′(5) = Q(5) = 436

x0 = 5 a3 = 1 a2 = 4 a1 = 21 a0 = 106

b3x0 = 5 b2x0 = 45 b1x0 = 330

b3 = 1 b2 = 9 b1 = 66 b0 = 436
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Algorithm: Horner's Method

Input: Degree n; oe�ients a0, a1, . . ., an; x0

Output: y = P (x0), z = P ′(x0).

1. Set y = an, z = an

2. For j = (n− 1), (n− 2), . . . , 1Set y = x0y + aj , z = x0z + y

3. Set y = x0y + a0

4. Output (y, z)

5. End program
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De�ation � Finding All the Zeros of a PolynomialIf we are solving our urrent favorite problem

P (x) = 0, P (x) a polynomial of degree nand we are using Horner's method of omputing P (xi) and P ′(xi),then after N iterations, xN is an approximation to one of the rootsof P (x) = 0.
We have

P (x) = (x− xN )Q(x) + b0, b0 ≈ 0

Let r̂1 = xN be the �rst root, and Q1(x) = Q(x).

We an now �nd a seond root by applying Newton's method to

Q1(x).
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De�ation � Finding All the Zeros of a PolynomialAfter some number of iterations of Newton's method we have

Q1(x) = (x− r̂2)Q2(x) + b
(2)
0 , b

(2)
0 ≈ 0

If P (x) is an nth-degree polynomial with n real roots, we an applythis proedure (n − 2) times to �nd (n − 2) approximate zeros of

P (x): r̂1, r̂2, . . ., r̂n−2, and a quadrati fator Qn−2(x).

At this point we an solve Qn−2(x) = 0 using the quadrati formula,and we have n roots of P (x) = 0.

This proedure is alled De�ation.
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Quality of De�ationNow, the big question is �are the approximate roots r̂1, r̂2, . . ., r̂ngood approximations of the roots of P (x)???�

Unfortunately, sometimes, no.

In eah step we solve the equation to some tolerane, i.e.
|b(k)

0 | < tol

Even though we may solve to a tight tolerane (10−8), the errorsaumulate and the inauraies inrease iteration-by-iteration...

Question: Is de�ation therefore useless???
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Improving the Auray of De�ationThe problem with de�ation is that the zeros of Qk(x) are not goodrepresentatives of the zeros of P (x), espeially for high k's.

As k inreases, the quality of the root r̂k dereases.

Maybe there is a way to get all the zeros with the same quality?

The idea is quite simple... in eah step of de�ation, instead of justaepting r̂k as a root of P (x), we re-run Newton's method on thefull polynomial P (x), with r̂k as the starting point � a ouple ofNewton iterations should quikly onverge to the root of the fullpolynomial.
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Improved De�ation � Algorithm Outline

1. Apply Newton's method to P (x) → r̂1, Q1(x).

2. For k = 2, 3, . . . , (n− 2) do 3-4
3. Apply Newton's method to Qk−1 → r̂∗k, Q∗

k(x).

4. Apply Newton's method to P(x) with r̂∗k as the initial point

→ r̂kApply Horner's method to Qk−1(x) with x = r̂k

→ Qk(x)

5. Use the quadrati formula on Qn−2(x) to get the two remain-ing roots.
Note: �Inside� Newton's method, the evaluations of polynomials andtheir derivatives are also performed using Horner's method.
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De�ation & Improvement Wilkinson PolynomialsThe Wilkinson Polynomials

PW

n (x) =
n∏

k=1

(x− k)

have the roots {1, 2, . . . , n}, but provide surprisingly tough numerialroot-�nding problems. (Additional details in Math543.)

In the next few slides we show the results of De�ation and ImprovedDe�ation applied to Wilkinson polynomials of degree 9, 10, 12, and13.
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De�ation & Improvement P W
9 (x) and P W
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Figure: [Left℄ The result of the two algorithms on the Wilkinson polyno-mial of degree 9; in this ase the roots are omputed so that |b(k)
0 | < 10−6.[Right℄ The result of the two algorithms on the Wilkinson polynomial ofdegree 10; in this ase the roots are omputed so that |b(k)

0 | < 10−6. In bothases the lower line orresponds to improved de�ation and we see thatwe get an improvement in the relative error of several orders of magnitude.
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De�ation & Improvement P W
12 (x) and P W
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Figure: [Left℄ The result of the two algorithms on the Wilkinson polyno-mial of degree 12; in this ase the roots are omputed so that |b(k)
0 | < 10−4.[Right℄ The result of the two algorithms on the Wilkinson polynomial ofdegree 13; in this ase the roots are omputed so that |b(k)

0 | < 10−3. In bothases the lower line orresponds to improved de�ation and we see thatwe get an improvement in the relative error of several orders of magnitude.
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What About Complex Roots???One interesting / annoying feature of polynomials with real oe�-ients is that they may have omplex roots, e.g. P (x) = x2 + 1 hasthe roots {−i, i}. Where by de�nition i =
√−1.

If the initial approximation given to Newton's method is real, allthe suessive iterates will be real... whih means we will not �ndomplex roots.
One way to overome this is to start with a omplex initial approxi-mation and do all the omputations in omplex arithmeti.

Another solution is Müller's Method...
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Müller's MethodMüller's method is an extension of the Seant method...

Reall that the seant method uses two points xk and xk−1 andthe funtion values in those two points f(xk) and f(xk−1). Thezero-rossing of the linear interpolant (the seant line) is used as thenext iterate xk+1.

Müller's method takes the next logial step: it uses three points: xk,

xk−1 and xk−2, the funtion values in those points f(xk), f(xk−1)and f(xk−2); a seond degree polynomial �tting these three points isfound, and its zero-rossing is the next iterate xk+1.

Next slide: f(x) = x4 − 3x3 − 1, xk−2 = 1.5, xk−1 = 2.5, xk = 3.5.
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Müller's Method � Illustration f(x) = x4 − 3x3 − 1

0 1 2 3 4

0

20
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Müller's Method � Fitting the Quadrati PolynomialWe onsider the quadrati polynomial

m(x) = a(x− xk)2 + b(x− xk) + cat the three �tting points we get

f(xk−2) = a(xk−2 − xk)2 + b(xk−2 − xk) + c

f(xk−1) = a(xk−1 − xk)2 + b(xk−1 − xk) + c

f(xk) = cWe an solve for a, b, and c:

a =
(xk−1 − xk)(f(xk−2)− f(xk))− (xk−2 − xk)(f(xk−1)− f(xk))

(xk−2 − xk)(xk−1 − xk)(xk−2 − xk−1)

b =
(xk−2 − xk)2(f(xk−1)− f(xk))− (xk−1 − xk)2(f(xk−2)− f(xk))

(xk−2 − xk)(xk−1 − xk)(xk−2 − xk−1)

c = f(xk)
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Müller's Method � Identifying the ZeroWe now have a quadrati equation for (x − xk) whih gives us twopossibilities for xk+1:

xk+1 − xk =
−2c

b±√b2 − 4acIn Müller's method we selet

xk+1 = xk − 2c
b + sign(b)

√
b2 − 4ac

we are maximizing the (absolute) size of the denominator, hene weselet the root losest to xk.

Note that if b2 − 4ac < 0 then we automatially get omplex roots.
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Müller's Method � Algorithm

Input: x0, x1, x2; tolerane tol ; max iterations N0

Output: Approximate solution p, or failure message.

1. Set h1 = (x1 − x0), h2 = (x2 − x1), δ1 = [f(x1) − f(x0)]/h1,

δ2 = [f(x2)− f(x1)]/h2, d = (δ2 − δ1)/(h2 + h1), j = 3.

2. While j ≤ N0 do 3-7
3. b = δ2 + h2d, D =

√
b2 − 4f(x2)d complex?

4. If |b−D|<|b + D| then set E = b + D else set E = b−D

5. Set h = −2f(x2)/E, p = x2 + h

6. If |h| < tol then output p; stop program

7. Set x0 = x1, x1 = x2, x2 = p, h1 = (x1−x0), h2 = (x2−x1),

δ1 = [f(x1) − f(x0)]/h1, δ2 = [f(x2) − f(x1)]/h2,

d = (δ2 − δ1)/(h2 + h1), j = j + 1

8. output � �Müller's Method failed after N0 iterations.�

Solutions of Equations in One Variable,Interpolation and Polynomial Approximation – p. 37/56

Now We Know �Everything� About Solving f(x) = 0Let's reap... Things to remember...

The relation between root �nding (f(x) = 0) and �xed point(g(x) = x).
Key algorithms for root �nding: Bisetion, Seant Method, andNewton's Method . � Know what they are (the updates), how tostart (one or two points? braketing or not braketing the root?),an the method break, an breakage be �xed? Convergene properties.

Also, know the mehanis of the Regula Falsi method, and understandwhy it an run into trouble.

Fixed point iteration: Under what onditions do FP-iteration onvergefor all starting values in the interval?
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Reap, ontinued...Basi error analysis: order α, asymptoti error onstant λ. � Whihone has the most impat on onvergene? Convergene rate forgeneral �xed point iterations?

Multipliity of zeros: What does it mean? How do we use thisknowledge to �help� Newton's method when we're looking for a zeroof high multipliity?

Convergene aeleration: Aitken's ∆2-method. Ste�ensen's Method.

Zeros of polynomials: Horner's method, De�ation (with improve-ment), Müller's method.
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New Favorite Problem:

Interpolation and Polynomial Approximation
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Weierstrass Approximation TheoremThe following theorem is the basis for polynomial approximation:

Theorem: Weierstrass Approximation Theorem �Suppose f ∈ C[a, b]. Then ∀ǫ > 0 ∃ a polynomial P (x) :
|f(x)− P (x)| < ǫ, ∀x ∈ [a, b].

Note: The bound is uniform, i.e. valid for all x in the interval.Note: The theorem says nothing about how to �nd the polynomial,or about its order.
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Illustrated: Weierstrass Approximation Theorem
0 2 4 6 8 10
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Figure: Weierstrass approximation Theorem guarantees that we (maybewith substantial work) an �nd a polynomial whih �ts into the �tube�around the funtion f , no matter how thin we make the tube.

Solutions of Equations in One Variable,Interpolation and Polynomial Approximation – p. 42/56

Candidates: the Taylor Polynomials???

Natural Question:Are our old friends, the Taylor Polynomials, good andidates forpolynomial interpolation?Answer:No. The Taylor expansion works very hard to be aurate in theneighborhood of one point. But we want to �t data at manypoints (in an extended interval).[Next slide: The approximation is great near the expansion point x0 =
0, but get progressively worse at we get further away from the point,even for the higher degree approximations.℄
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Taylor Approximation of ex on the Interval [0, 3]
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Taylor Approximation of f(x) = 1/x about x = 1Let

f(x) =
1
xThe Taylor expansion about x0 = 1 is

Pn(x) =
n∑

k=0

(−1)k(x− 1)k.

Note: f(3) = 1/3, but Pn(3) satis�es:

n 0 1 2 3 4 5 6

Pn(3) 1 -1 3 -5 11 -21 43The Taylor's series only onverges |x − 1| < 1 by the ratio test (ageometri series). Thus, not valid for x = 3.
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Lookahead: Polynomial ApproximationClearly, Taylor polynomials are not well suited for approximating afuntion over an extended interval.

We are going to look at the following:
• Lagrange polynomials � Neville's Method. [This Leture℄

• Newton's divided di�erenes.
• Hermite interpolation.
• Cubi splines � Pieewise polynomial approximation.

• (Parametri urves)
• (Bézier urves � used in e.g. omputer graphis)
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Interpolation: Lagrange PolynomialsNew idea: Instead of working hard at one point, we will presribea number of points through whih the polynomial mustpass.As warm-up we will de�ne a funtion that passes through the points
(x0, f(x0)) and (x1, f(x1)). First, lets de�ne

L0(x) =
x− x1

x0 − x1
, L1(x) =

x− x0

x1 − x0
,and then de�ne the interpolating polynomial

P (x) = L0(x)f(x0) + L1(x)f(x1),then P (x0) = f(x0), and P (x1) = f(x1).

� P (x) is the unique linear polynomial passing through

(x0, f(x0)) and (x1, f(x1)).
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An n-degree polynomial passing through n + 1 points

We are going to onstrut a polynomial passing through the points

(x0, f(x0)), (x1, f(x1)), (x2, f(x2)), . . ., (xN , f(xn)).

We de�ne Ln,k(x), the Lagrange oe�ients:

Ln,k(x) =
n∏

i=0, i 6=k

x− xi

xk − xi
=

x− x0

xk − x0
· · · x− xk−1

xk − xk−1
· x− xk+1

xk − xk+1
· · · x− xn1

xk − xn
,

whih have the properties

Ln,k(xk) = 1; Ln,k(xi) = 0, ∀i 6= k.
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Example of Ln,k(x)

0 1 2 3 4 5 6

-0.5

0
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1

This is L6,3(x), for the points xi = i, i = 0, . . . , 6.
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The nth Lagrange Interpolating Polynomial

We use Ln,k(x), k = 0, . . . , n as building bloks for the Lagrangeinterpolating polynomial:

P (x) =
n∑

k=0

f(xk)Ln,k(x),

whih has the property
P (xi) = f(xi), ∀i = 0, . . . , n.

This is the unique polynomial passing through the points

(xi, f(xi)), i = 0, . . . , n.
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Error bound for the Lagrange interpolating polynomialSuppose xi, i = 0, . . . , n are distint numbers in the interval [a, b],and f ∈ Cn+1[a, b]. Then ∀x ∈ [a, b] ∃ ξ(x) ∈ (a, b) so that:
f(x) = PLagrange(x) +

f (n+1)(ξ(x))
(n + 1)!

n∏
i=0

(x− xi),

where PLagrange(x) is the nth Lagrange interpolating polynomial.

Compare with the error formula for Taylor polynomials
f(x) = PTaylor(x) +

f (n+1)(ξ(x))
(n + 1)!

(x− x0)n+1,

Problem: Applying the error term may be di�ult...The error formula is important as Lagrange polynomials are used fornumerial di�erentiation and integration methods.
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The Lagrange and Taylor Error TermsJust to get a feeling for the non-onstant part of the error terms inthe Lagrange and Taylor approximations, we plot those parts on theinterval [0, 4] with interpolation points xi = i, i = 0, 1, . . . , 4:
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Figure: [Left℄ The non-onstant error terms for the Lagrange interpolation osil-lates in the interval [−4, 4] (and takes the value zero at the node point xk), and[Right℄ the non-onstant error term for the Taylor extrapolation grows in the interval

[0, 1024].
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Pratial ProblemsApplying (estimating) the error term is di�ult.The degree of the polynomial needed for some desired auray is notknown until after umbersome alulations � heking the error term.If we want to inrease the degree of the polynomial (to e.g.

n + 1) the previous alulations are not of any help...Building blok for a �x: Let f be a funtion de�ned at x0, . . . , xn,and suppose that m1,m2, . . . ,mk are k (< n) distint integers, with

0 ≤ mi ≤ n ∀i. The Lagrange polynomial that agrees with f(x) the

k points xm1 , xm2 , . . . , xmk

, is denoted Pm1,m2,...,mk
(x).Note: {m1,m2, . . . ,mk} ⊂ {1, 2, . . . , n}.
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Inreasing the degree of the Lagrange Interpolation

Theorem: � Let f be de�ned at x0, x1, . . . , xk, and xi and xjbe two distint points in this set, then

P (x) =
(x− xj)P0,...,j−1,j+1,...,k(x)− (x− xi)P0,...,i−1,i+1,...,k(x)

xi − xjis the kth Lagrange polynomial that interpolates f at the k + 1points x0, . . . , xk.We an generate new polynomials reursively:
x0 P0

x1 P1 P0,1

x2 P2 P1,2 P0,1,2

x3 P3 P2,3 P1,2,3 P0,1,2,3

x4 P4 P3,4 P2,3,4 P1,2,3,4 P0,1,2,3,4
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Neville's MethodThe notation in the previous table gets umbersome... We introduethe notation QLast,Degree = PLast�Degree,. . .,Last, the table beomes:
x0 Q0,0

x1 Q1,0 Q1,1

x2 Q2,0 Q2,1 Q2,2

x3 Q3,0 Q3,1 Q3,2 Q3,3

x4 Q4,0 Q4,1 Q4,2 Q4,3 Q4,4Compare with the old notation:

x0 P0

x1 P1 P0,1

x2 P2 P1,2 P0,1,2

x3 P3 P2,3 P1,2,3 P0,1,2,3

x4 P4 P3,4 P2,3,4 P1,2,3,4 P0,1,2,3,4
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Algorithm: Neville's Method � Iterated Interpolation

To evaluate the polynomial that interpolates the n + 1 points

(xi, f(xi)), i = 0, . . . , n at the point x:

1. Initialize Qi,0 = f(xi).

2.

FOR i = 1 : n

FOR j = 1 : i

Qi,j =
(x− xi−j)Qi,j−1 − (x− xi)Qi−1,j−1

xi − xi−j
END

END

3. Output the Q-table.
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