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Quik Reap
Last time we looked at the method of bisetion for �nding the rootof the equation f(x) = 0.

Now, we are take a short detour in order to explore how

Root �nding: f(x) = 0is related to Fixed point iteration: f(p) = p.
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Fixed Point Iteration ⇔ Root FindingIf f(p) = p, then we say that p is a �xed point of the funtion

f(x). We note a strong relation between root �nding and �nding�xed points:To onvert a �xed-point problem

g(x) = xto a root �nding problem, de�ne

f(x) = g(x)− x, and look for roots of f(x) = 0To onvert a root �nding problem

f(x) = 0to a �xed point problem, de�ne
g(x) = f(x) + x, and look for �xed points g(x) = x
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Why Consider Fixed Point Iteration?If �xed point iterations are (in some sense) equivalent to root �nding,why not just stik to root �nding???

1. Sometimes easier to analyze.

2. What we learn from the analysis will help us �nd good root�nding strategies.

3. Fixed point iterations pose some �ute� problems by themselves.
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Example: The Bored Student Fixed Point � CobwebbingA �famous� �xed point is p = 0.73908513321516 (radians), i.e. thenumber you get by repeatedly hitting cos on a alulator.

This number solves the �xed point equation:

cos(p) = pWith a starting value of p = 0.3 we get:
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1.4 Iteration #7:

p = 0.71278594551835,

cos(p) = 0.75654296195845
p = 0.75654296195845Figure produes a Cobweb
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When Does Fixed-Point Iteration Converge?The following theorem tells us when a �xed point exists:

Theorem: Convergene of Fixed Point Iteration �
a. If f ∈ C[a, b] and f(x) ∈ [a, b], ∀x ∈ [a, b], then f has a�xed point p ∈ [a, b]. (Existene of a �xed point � BrouwerFixed Point Theorem)
b. If, in addition, the derivative f ′(x) exists on (a, b) and

|f ′(x)| ≤ k < 1,∀x ∈ (a, b), then the �xed point is unique.(Contration Mapping Priniple gives uniqueness)

How does this apply to cos(x)???

Note 1: f ∈ C[a, b] � �f is ontinuous in the interval [a, b].� (input)Note 2: f(x) ∈ [a, b] � �f takes values in [a, b].� (output)
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Proof of the Fixed Point Theorem 1 of 2

a. If f(a) = a, or f(b) = b, then we are done.

Otherwise, f(a) > a and f(b) < b.

We de�ne a new funtion h(x) = f(x)− x.

Sine both f(x) and x are ontinuous, we have h(x) ∈ C[a, b],further h(a) > 0 and h(b) < 0 by onstrution.

Now, the intermediate value theorem guarantees ∃p∗ ∈ (a, b):
h(p∗) = 0.

We have 0 = h(p∗) = f(p∗)− p∗, or p∗ = f(p∗).
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Proof of the Fixed Point Theorem 2 of 2

b. |f ′(x)| ≤ k < 1. Suppose we have two �xed points p∗ 6= q∗.Without loss of generality we may assume p∗ < q∗.

The mean value theorem tells us ∃r ∈ (p∗, q∗):

f ′(r) =
f(p∗)− f(q∗)

p∗ − q∗Now

|p∗ − q∗| = |f(p∗)− f(q∗)|
= |f ′(r)| · |p∗ − q∗|
≤ k|p∗ − q∗|
< |p∗ − q∗|The ontradition |p∗ − q∗| < |p∗ − q∗| shows that the premise

p∗ 6= q∗ is false. Hene, the �xed point is unique.
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Convergene of the Fixed Point SequeneOr, �how ome hitting cos onverges???�

Take a look at the theorem we just proved� part (a) guarantees the existene of a �xed point.� part (b) tells us when the �xed point is unique.

We have no information about �nding the �xed point!

We need one more theorem � one whih guarantees us that we an�nd the �xed point!
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Convergene of the Fixed Point Sequene TheoremSuppose both part (a) and part (b) of the previous theorem (hererestated) are satis�ed:Theorem: Convergene of Fixed Point Iteration �
a. If f ∈ C[a, b] and f(x) ∈ [a, b], ∀x ∈ [a, b], then f has a�xed point p ∈ [a, b].

b. If, in addition, the derivative f ′(x) exists on (a, b) and

|f ′(x)| ≤ k < 1,∀x ∈ (a, b), then the �xed point is unique.

Theorem: �

c. Then, for any number p0 ∈ [a, b], the sequene de�ned by

pn = f(pn−1), n = 1, 2, . . . ,∞onverges to the unique �xed point p∗ ∈ [a, b].
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Convergene of the Fixed Point Sequene ProofThat's great news! � We an use any starting point, and we areguaranteed to �nd the �xed point.

The proof is straight-forward:

|pn − p∗| = |f(pn−1)− f(p∗)|
= |f ′(r)| · |pn−1 − p∗| by {MVT}
≤ k|pn−1 − p∗| by bSine k < 1, the distane to the �xed point is shrinking every iteration.

In fat,

|pn − p∗| ≤ kn|p0 − p∗| ≤ kn max {p0 − a, b− p0}
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Example: x3 + 4x2 − 10 = 0 1 of 2The equation x3+4x2−10 = 0 has a unique root in the interval [1, 2].

We make a ouple attempts at �nding the root:

1. De�ne g1(x) = x3 + 4x2 − 10 + x, and try to solve g1(x) = x.This fails sine g1(1) = −4, whih is outside the interval [1, 2].

2. De�ne g2(x) =
√

10/x− 4x, and try to solve g2(x) = x.This fails sine g2(x) is not de�ned (or omplex) at x = 2.

3. It turns out that the best form is solving x = g3(x), where

g3(x) = x− x3 + 4x2 − 10
3x2 + 8x

,that's probably not obvious at �rst glane!!! (Continued...)
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Example: x3 + 4x2 − 10 = 0 2 of 2
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2 Iteration #4:

p = 1.3652,

p3 + 4p2 − 10 = 0.0001
g3(p) = 1.3652
p = 1.3652

How did we ome up with this razy funtion g3(x)???It will be explained in the next setion (on Newton's method).The bottom line is that without more analysis, it is extremely hard to�nd the best (or even a funtioning) �xed point iteration whih �ndsthe orret solution.
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Non-uniqueness of the Fixed Point 1 of 6Strange, and sometimes beautiful things happen when part (a)(existene) of the �xed-point theorem is satis�ed, but part (b) isnot...
Let us onsider the family of funtions fa(x) parametrized by a, de-�ned as

fa(x) = 1− ax2, x ∈ [−1, 1]

Given a partiular value of a, the �xed point iteration

xn = fa(xn−1) = 1− ax2
n−1

has a �xed point for values of a ∈ [0, 2].
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Non-uniqueness of the Fixed Point 2 of 6By solving the quadrati equation

ax2 + x− 1 = 0we get the �xed point to be

p∗ = −1−√1 + 4a
2athe other root is outside the interval [−1, 1].The derivative of fa(x) = 1− ax2 at the �xed point is:

fa
′(p∗) = −2a

[
1−√1 + 4a

2a

]
=
√

1 + 4a− 1 > 0

|fa
′(p∗)| = √

1 + 4a− 1as long as a < 3/4 we have |fa
′(p∗)| < 1, but something de�nitelybreaks when a > 3/4...

Solutions of Equations in One Variable: Fixed Point Iteration; Root Finding;Error Analysis for Iterative Methods – p.15/53

Non-uniqueness of the Fixed Point 3 of 6Let's look at the theoretial �xed point, and the omputed values ofthe �xed point iteration... for values of a between 0 and 1.
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Indeed, something strange happened around a = 0.75.
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Non-uniqueness of the Fixed Point 4 of 6It turns out that when |f ′(p∗)| > 1 the �xed point exists, but is nolonger �attrative,� i.e. the �xed point iteration does not onverge toit.
Instead we settled in to a 2-orbit; � where the iteration �jumps�between the upper and lower branhes of the diagram.

It turns out that the funtion

f2
a (x) ≡ fa(fa(x)) = 1− a(1− ax2)2has a unique �xed point for a in the range [0.75, 1] (at least). Forsome other ritial value of a, the �xed point for fa(fa(x)) (the2-orbit of fa(x)) also beomes unstable... it breaks into a 4-orbit.
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Non-uniqueness of the Fixed Point 5 of 6
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We see how iterations of fa(x) go from �xed-points, to 2-orbits, to4-orbits...
Solutions of Equations in One Variable: Fixed Point Iteration; Root Finding;Error Analysis for Iterative Methods – p.18/53

Non-uniqueness of the Fixed Point 6 of 6As we may imagine, a 4-orbit orresponds to an attrative (stable)�xed point for the funtion f4
a (x) ≡ f2

a (f2
a (x)) ≡ fa(fa(fa(fa(x)))).It turns out we an play this game �forever...�
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Summary: Playing with Fixed Point IterationsThe analysis of suh �bifuration diagrams� is done in Math 538�Dynamial Systems and Chaos...

The dynamis of fa(x) = 1 − ax2 is one of the simples examples ofhaoti behavior in a system.
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Bak to the Program: Quik Reap and Look-aheadSo far we have looked at two algorithms:

1. Bisetion for root �nding .

2. Fixed point iteration.We have see that �xed point iteration and root �nding are stronglyrelated, but it is not always easy to �nd a good �xed-point formulationfor solving the root-�nding problem.

In the next setion we will add three new algorithms for root �nding:

1. Regula Falsi

2. Seant Method

3. Newton's Method
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Newton's Method for Root Finding 1 of 2Reall: we are looking for x∗ so that f(x∗) = 0.

If f ∈ C2[a, b] and we know x∗ ∈ [a, b] (possibly by the intermediatevalue theorem), then we an formally Taylor expand around a point xlose to the root:

0 = f(x∗) = f(x)+(x∗−x)f ′(x)+
(x− x∗)2

2
f ′′(ξ(x)), ξ(x) ∈ [x, x∗]

If we are lose to the root then |x − x∗| is small, whih means that

|x− x∗|2 ≪ |x− x∗|, hene we make the approximation:

0 ≈ f(x) + (x∗ − x)f ′(x), ⇔ x∗ ≈ x− f(x)
f ′(x)
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Newton's Method for Root Finding 2 of 2Newton's Method for root �nding is based on the approximation

x∗ ≈ x− f(x)
f ′(x)whih is valid when x is lose to x∗.

We use the above in the following way: given an approximation xn−1,we get an improved approximation xn by omputing
xn = xn−1 − f(xn−1)

f ′(xn−1)Geometrially, xn is the intersetion of the tangent of the funtion at
xn−1 and the x-axis.
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Two Steps of Newton for f(x) = x3 + 4x2 − 10 = 0
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p1 = p0 − p3
0 + 4p2

0 − 10
3p2
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= 1.45454545454545

p2 = p1 − p3
1 + 4p2

1 − 10
3p2

1 + 8p1
= 1.36890040106952
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The Pros and Cons of Newton's Method

Strategy: Newton's Method �

xn = xn−1 − f(xn−1)
f ′(xn−1)

Fast onvergene: Newton's method onverges the fastest of themethods we explore today. (Quadrati onvergene).Clearly, points where f ′(·) = 0 will ause problems!It is espeially problemati if f(x∗) = f ′(x∗) = 0 � we annot avoidthe point where f ′(·) = 0 in this ase; it is the point we are looking for!Newton's method works best if f ′(·) ≥ k > 0.�Expensive:� We have to ompute the derivative in every iteration.
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Finding a Starting Point for Newton's MethodReall our initial argument that when |x − x∗| is small, then
|x − x∗|2 ≪ |x − x∗|, and we an neglet the seond order term inthe Taylor expansion.In order for Newton's method to onverge we need a good startingpoint!

Theorem: � Let f(x) ∈ C2[a, b]. If x∗ ∈ [a, b] suh that

f(x∗) = 0 and f ′(x∗) 6= 0, then there exists a δ > 0 suh thatNewton's method generates a sequene {xn}∞n=1 onverging to x∗for any initial approximation x0 ∈ [x∗ − δ, x∗ + δ].

The theorem is interesting, but quite useless for pratial purposes.In pratie: Pik a starting value x0, iterate a few steps. Eitherthe iterates onverge quikly to the root, or it will be lear thatonvergene is unlikely.
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Newton's Method as a Fixed Point IterationIf we view Newton's method as a �xed point iteration...

xn = xn−1 − f(xn−1)
f ′(xn−1)︸ ︷︷ ︸

g(xn−1)Then (the �xed point theorem), we must �nd an interval [x∗−δ, x∗+δ]that g maps into itself, and for whih |g ′(x)| ≤ k < 1.
g ′(x) is quite an expression:

g ′(x) = 1− f ′(x)f ′(x)− f(x)f ′′(x)
[f ′(x)]2

=
f(x)f ′′(x)
[f ′(x)]2

By assumption, f(x∗) = 0, f ′(x∗) 6= 0, so g ′(x∗) = 0. By ontinuity

|g ′(x)| ≤ k < 1 for some neighborhood of x∗... Hene the �xed pointiteration will onverge. (Gory details in the book).
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Algorithm � Newton's Method

Algorithm: Newton's Method �

Input: Initial approximation p0; tolerane TOL; maximumnumber of iterations N0.

Output: Approximate solution p, or failure message.

1. Set i = 1

2. While i ≤ N0 do 3-6
3. Set p = p0 − f(p0)/f ′(p0)

4. If |p− p0| < TOL then

4a. output p

4b. stop program

5. Set i = i + 1

6. Set p0 = p.

7. Output: �Failure after N0 iterations.�
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The Seant Method 1 of 3The main weakness of Newton's method is the need to ompute thederivative, f ′(·), in eah step. Many times f ′(·) is for more di�ult toompute and needs more arithmeti operations to alulate than f(x).

What to do??? � Approximate the derivative!

By de�nition

f ′(xn−1) = lim
x→xn−1

f(x)− f(xn−1)
x− xn−1

Let x = xn−2 and approximate

f ′(xn−1) ≈ f(xn−2)− f(xn−1)
xn−2 − xn−1
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The Seant Method 2 of 3Using the approximation

f ′(xn−1) ≈ f(xn−2)− f(xn−1)
xn−2 − xn−1for the derivative in Newton's method

xn = xn−1 − f(xn−1)
f ′(xn−1)gives us the Seant Method

xn = xn−1 − f(xn−1)[
f(xn−2)−f(xn−1)

xn−2−xn−1

]

= xn−1 − f(xn−1) [xn−2 − xn−1]
f(xn−2)− f(xn−1)
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The Seant Method 3 of 3

Strategy: The Seant Method �

xn = xn−1 − f(xn−1) [xn−2 − xn−1]
f(xn−2)− f(xn−1)
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20 Instead of (as in New-ton's method) getting thenext iterate from the zero-rossing of the tangentline, the next iterate forthe seant method is thezero-rossing of the seantline...
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Algorithm � The Seant Method

Algorithm: The Seant Method �

Input: Initial approximations p0, p1; tolerane TOL; maximumnumber of iterations N0.

Output: Approximate solution p, or failure message.

1. Set i = 2, q0 = f(p0), q1 = f(p1)

2. While i ≤ N0 do 3-6
3. Set p = p1 − q1(p1 − p0)/(q1 − q0)

4. If |p− p1| < TOL then

4a. output p

4b. stop program

5. Set i = i + 1

6. Set p0 = p1, q0 = q1, p1 = p, q1 = f(p1)

7. Output: �Failure after N0 iterations.�
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Regula Falsi (the Method of False Position)Regula Falsi is a ombination of the Seant method and the Bisetionmethod:We start with two points an−1, bn−1 whih braket the root, i.e.

f(an−1) ·f(bn−1) < 0. Let sn be the zero-rossing of the seant-line,i.e.

sn = bn−1 − f(bn−1)
[

an−1 − bn−1

f(an−1)− f(bn−1)

]

Update as in the bisetion method:if f(an−1) · f(sn) > 0 then an = sn, bn = bn−1if f(an−1) · f(sn) < 0 then an = an−1, bn = sn

Regula Falsi is seldom used, but illustrates how braketing an beinorporated.
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Algorithm � Regula Falsi

Algorithm: Regula Falsi �

Input: Initial approximations p0, p1; tolerane TOL; maximumnumber of iterations N0.

Output: Approximate solution p, or failure message.
1. Set i = 2, q0 = f(p0), q1 = f(p1)
2. While i ≤ N0 do 3-7
3. Set p = p1 − q1(p1 − p0)/(q1 − q0)
4. If |p− p1| < TOL then
4a. output p

4b. stop program
5. Set i = i + 1, q = f(p)
6. If q · q1 < 0 then set p0 = p1, q0 = q1

7. Set p1 = p, q1 = q

8. Output: �Failure after N0 iterations.�
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Summary � Next IterateMethod Next IterateBisetion Midpoint of braketing interval:

mn+1 = (an + bn)/2:if f(cn+1)f(bn) < 0, then {an+1 = mn+1, bn+1 = bn},else {an+1 = an, bn+1 = mn+1}.Regula Falsi Zero-rossing of seant line:

sn+1 = xn − f(xn) · xn−xn−1
f(xn)−f(xn−1)

:if f(sn+1)f(bn) < 0, then {an+1 = sn+1, bn+1 = bn},else {an+1 = an, bn+1 = sn+1}.Seant Zero-rossing of seant line:
xn+1 = xn − f(xn) · xn−xn−1

f(xn)−f(xn−1)Newton Zero-rossing of tangent line:
xn+1 = xn − f(xn)

f ′(xn)
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Summary � Convergene

Method ConvergeneBisetion Linear � Slow, eah iteration gives 1 binary digit. Weneed about 3.3 iterations to gain one deimal digit...Regula Falsi Linear � Faster than Bisetion.Seant Linear � Slower than Newton.Generally faster than Regula Falsi.Newton Quadrati. � In general. The fastest of the lot, whenit works.
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Summary � Cost
Method CostBisetion Eah iteration is heap � one funtion evaluation, oneor two multipliations and one or two omparisons. Com-parable to Regula Falsi.Regula Falsi Higher ost per iteration ompared with Seant (ondi-tional statements), Requires more iterations then Seant.Higher ost per iteration ompared with Bisetion, butrequires fewer iterations.Seant Cheaper than Newton's Method � no need to omputef '(x).Slightly heaper per iteration than Regula Falsi.Newton "Expensive" � We need to ompute f ′(x) in every it-eration.
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Summary � CommentsMethod CommentsBisetion Can be used to �nd a good starting interval for New-ton's method (if/when we have a problem �nding a goodstarting point for Newton).Regula Falsi The ombination of the Seant method and the Bisetionmethod. All generated intervals braket root (i.e. wearry a "built-in" error estimate at all times.)Seant Breaks down if f(xn) = f(xn−1) [division by zero℄. Un-known basin of attration (.f. Newton's method).Newton If f ′(xk) = 0 we're in trouble. Works best when

|f ′(x)| ≥ k > 0. Iterates do not braket root. Un-known basin of attration (How do we �nd a good start-ing point?). In pratie: Pik a starting point x0, it-erate. It will very quikly beome lear whether we willonverge to a solution, or diverge...
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Newton's Method and Friends � Things to Ponder...

• How to start

• How to update

• Can the sheme break?

→ Can we �x breakage? (How???)

• Relation to Fixed-Point Iteration

In the next setion we will disuss the onvergene in more detail.
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Introdution: Error Analysis

In the previous setion we disussed four di�erent algorithms for�nding the root of f(x) = 0.

We made some (sometime vague) arguments for why one methodwould be faster than another...

Now, we are going to look at the error analysis of iterative methods,and we will quantify the speed of our methods.

Note: the disussion may be a little �dry,� but do not despair! In the�old days� before fany-shmany omputers were ommon-plae is was almost true that

numerical analysis ≡ error analysis.
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De�nition of Convergene for a Sequene

De�nition: � Suppose the sequene {pn}∞n=0 onverges to p,with pn 6= p for all n. If positive onstants λ and α exists with

lim
n→∞

|pn+1 − p|
|pn − p|α = λthen {pn}∞n=0 onverges to p of order α, with asymptoti erroronstant λ.An iterative tehnique of the form pn = g(pn−1) is said to be oforder α if the sequene {pn}∞n=0 onverges to the solution p = g(p)of order α.Bottom line:High order (α) ⇒ Faster onvergene (more desirable).

λ has an e�et, but is less important than the order.
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Speial Cases: α = 1 and α = 2

When α = 1 the sequene is linearly onvergent.

When α = 2 the sequene is quadratially onvergent.

When α < 1 the sequene is sub-linearly onvergent (very undesir-able, or �painfully slow�).

When ((α = 1 and λ = 0) or 1 < α < 2), the sequene is super-linearly onvergent.
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Linear vs. QuadratiSuppose we have two sequenes onverging to zero:

lim
n→∞

|pn+1|
|pn| = λp, lim

n→∞
|qn+1|
|qn|2 = λqRoughly this means that

|pn| ≈ λp|pn−1| ≈ λn
p |p0|, |qn| ≈ λq|qn−1|2 ≈ λ2n−1

q |q0|2n

Now, assume λp = λq = 0.9 and p0 = q0 = 1, we get the following
n pn qn0 1 11 0.9 0.92 0.81 0.7293 0.729 0.47829694 0.6561 0.2058911320946495 0.59049 0.03815204244769466 0.531441 0.001310020508637627 0.4782969 0.000001544538359758 0.43046721 0.00000000000021470

Table (Linear vs. Quadratic):

A dramatic difference! After 8 it-

erations, qn has 11 correct dec-

imals, and pn still none. qn

roughly doubles the number of

correct digits in every iteration.

Here pn needs more than 20

iterations/digit-of-correction.
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Convergene of General Fixed Point Iteration

Theorem: � Let g ∈ C[a, b] be suh that g(x) ∈ [a, b] for all

x ∈ [a, b]. Suppose, in addition that g ′(x) is ontinuous on (a, b)and there is a positive onstant k < 1 so that

|g ′(k)| ≤ k, ∀x ∈ (a, b)If g ′(p∗) 6= 0, then for any number p0 in [a, b], the sequene

pn = g(pn−1), n ≥ 1onverges only linearly to the unique �xed point p∗ in [a, b].

In a sense, this is bad news sine we like fast onvergene...
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Convergene of General Fixed Point Iteration ProofThe existene and uniqueness of the �xed point follows from the �xedpoint theorem (slides 6�8).

We use the mean value theorem to write

pn+1 − p∗ = g(pn)− g(p∗) = g ′(ξn)(pn − p∗), ξn ∈ (pn, p∗)Sine pn → p∗ and ξn is between pn and p∗, we must also have

ξn → p∗. Further, sine g ′(·) is ontinuous, we have

lim
n→∞ g ′(ξn) = g ′(p∗)Thus,

lim
n→∞

|pn+1 − p∗|
|pn − p∗| = lim

n→∞ |g
′(ξn)| = |g ′(p∗)|So if g ′(p∗) 6= 0, the �xed point iteration onverges linearly withasymptoti error onstant |g ′(p∗)|.
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Speeding up Convergene of Fixed Point IterationBottom Line: The theorem tells us that if we are looking to designrapidly onverging �xed point shemes, we must design them so that
g ′(p∗) = 0...We state the following without proof:

Theorem: � Let p∗ be a solution of p = g(p). Suppose

g ′(p∗) = 0, and g ′′(x) is ontinuous and stritly bounded by M onan open interval I ontaining p∗. Then there exists a δ > 0 suhthat, for p0 ∈ [p∗−δ, p∗+δ] the sequene de�ned by pn = g(pn−1)onverges at least quadratially to p∗. Moreover, for su�ientlylarge n

|pn+1 − p∗| < M

2
|pn − p∗|2
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Pratial Appliation of the TheoremsThe theorems tell us:�Look for quadratially onvergent �xed point methodsamong funtions whose derivative is zeroat the �xed point.�We want to solve: f(x) = 0 using �xed point iteration. We write theproblem as an equivalent �xed point problem:

g(x) = x− f(x) Solve: x = g(x)

g(x) = x− αf(x) Solve: x = g(x) α a onstant
g(x) = x− Φ(x)f(x) Solve: x = g(x) Φ(x) di�erentiableWe use the most general form (the last one).

Remember, we want g ′(p∗) = 0 when f(p∗) = 0.
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Pratial Appliation of the Theorems

g ′(x) =
d

dx
[x− Φ(x)f(x)] = 1− Φ ′(x)f(x)− Φ(x)f ′(x)

at x = p∗ we have f(p∗) = 0, so

g ′(p∗) = 1− Φ(p∗)f ′(p∗)

For quadrati onvergene we want this to be zero, that's true if

Φ(p∗) =
1

f ′(p∗)

Hene, our sheme is

g(x) = x− f(x)
f ′(x)

, Newton’s Method, rediscovered!

Solutions of Equations in One Variable: Fixed Point Iteration; Root Finding;Error Analysis for Iterative Methods – p.48/53



Newton's MethodWe have �disovered� Newton's method in two senarios:

1. From formal Taylor expansion.

2. From onvergene optimization of Fixed point iteration.

It is lear that we would like to use Newton's method in manysettings. One major problem is that it breaks when f ′(p∗) = 0(division by zero).

The good news is that this problem an be �xed!

� We need a short disussion on the multipliity of zeros.
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Multipliity of Zeros 1 of 2

De�nition: Multipliity of a Root�A solution p∗ of f(x) = 0 is a zero of multipliity m of f if for
x 6= p we an write

f(x) = (x− p∗)mq(x), lim
x→p∗

q(x) 6= 0

Basially, q(x) is the part of f(x) whih does not ontribute to thezero of f(x).
If m = 1 then we say that f(x) has a simple zero.

Theorem: � f ∈ C1[a, b] has a simple zero at p∗ in (a, b) ifand only if f(p∗) = 0, but f ′(p∗) 6= 0.
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Multipliity of Zeros 2 of 2

Theorem: Multipliity and Derivatives �The funtion f ∈ Cm[a, b] has a zero of multipliity m at p∗ in

(a, b) if and only if

0 = f(p∗) = f ′(p∗) = · · · f (m−1)(p∗), but f (m)(p∗) 6= 0

We know that Newton's method runs into trouble when we have azero of multipliity higher than 1.
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Newton's Method for Zeros of Higher Multipliity 1 of 2Suppose f(x) has a zero of multipliity m > 1 at p∗...

De�ne the new funtion

µ(x) =
f(x)
f ′(x)We an write f(x) = (x− p∗)mq(x), hene

µ(x) =
(x− p∗)mq(x)

m(x− p∗)m−1q(x) + (x− p∗)mq ′(x)

= (x− p∗)
q(x)

mq(x) + (x− p∗)q ′(x)

This expression has a simple zero at p∗, sine

q(p∗)
mq(p∗) + (p∗ − p∗)q ′(p∗)

=
1
m
6= 0
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Newton's Method for Zeros of Higher Multipliity 2 of 2Now we apply Newton's method to µ(x):

x = g(x) = x− µ(x)
µ ′(x)

= x−
f(x)
f ′(x)

[f ′(x)]2−f(x)f ′′(x)
[f ′(x)]2

= x− f(x)f ′(x)
[f ′(x)]2 − f(x)f ′′(x)This iteration will onverge quadratially!Drawbaks: We have to ompute f ′′(x) � more expensive and possiblyanother soure of numerial and/or measurement errors. We have to om-pute a more ompliated expression in eah iteration � more expensive.Roundo� errors in the denominator � both f ′(x) and f(x) approah zero,so we are omputing the di�erene between two small numbers; a seriousanellation risk.
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