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Algorithms
De�nition: Algorithm �An algorithm is a pro
edure that des
ribes, in an unambiguousmanner , a �nite sequen
e of steps to be performed in a spe
i�
order.

In this 
lass, the obje
tive of an algorithm is to implement a pro
edureto solve a problem or approximate a solution to a problem.

Most homes have a 
olle
tion of algorithms in printed form � wetend to 
all them �re
ipes.�

There is a 
olle
tion of algorithms �out there� 
alled Numeri
alRe
ipes, google for it!
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Pseudo-
ode
De�nition: Pseudo-
ode �Pseudo-
ode is an algorithm des
ription whi
h spe
i�es the in-put/output formats.

Note that pseudo-
ode is not 
omputer language spe
i�
, but shouldbe easily translatable to any pro
edural 
omputer language.

Examples of Pseudo-
ode statements:

for i = 1,2,. . .,n

Set xi = ai + i ∗ h

While i < N do Steps 17 - 21

If ... then ... else
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Key Con
epts for Numeri
al Algorithms Stability

De�nition: Stability �An algorithm is said to be stable if small 
hanges in the input,generates small 
hanges in the output.

At some point we need to quantify what �small� means!

If an algorithm is stable for a 
ertain range of initial data, then is itsaid to be 
onditionally stable.

Stability issues are dis
ussed in great detail in Math 543 .
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Key Con
epts for Numeri
al Algorithms Error GrowthSuppose E0 > 0 denotes the initial error, and En represents the errorafter n operations.

If En ≈ CE0 · n (for a 
onstant C whi
h is independent of n), thenthe growth is linear .

If En ≈ CnE0, C > 1, then the growth is exponential � in this 
asethe error will dominate very fast (undesirable s
enario).

Linear error growth is usually unavoidable, and in the 
ase where

C and E0 are small the results are generally a

eptable. � Stablealgorithm.
Exponential error growth is una

eptable. Regardless of the size of

E0 the error grows rapidly. � Unstable algorithm.
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Example BF-1.3.3 1 of 2The re
ursive equation

pn =
10
3

pn−1 − pn−2, n = 2, 3, . . . ,∞has the exa
t solution

pn = c1

(
1
3

)n

+ c23n

for any 
onstants c1 and c2. (Determined by starting values.)

In parti
ular, if p0 = 1 and p1 = 1
3 , we get c1 = 1 and c2 = 0, so

pn =
(

1
3

)n for all n.Now, 
onsider what happens in 5-digit rounding arithmeti
...
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Example BF-1.3.3 2 of 2Now, 
onsider what happens in 5-digit rounding arithmeti
...

p∗0 = 1.0000, p∗1 = 0.33333whi
h modi�es

c∗1 = 1.0000, c∗2 = −0.12500 · 10−5

The generated sequen
e is

p∗n = 1.0000 (0.33333)n − 0.12500 · 10−5(3.0000)n︸ ︷︷ ︸Exponential Growth
p∗n qui
kly be
omes a very poor approximation to pn due to the ex-ponential growth of the initial roundo� error.
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Redu
ing the E�e
ts of Roundo� ErrorThe e�e
ts of roundo� error 
an be redu
ed by using higher-order-digit arithmeti
 su
h as the double or multiple-pre
ision arithmeti
available on most 
omputers.

Disadvantages in using double pre
ision arithmeti
 are that it takesmore 
omputation time and the growth of the roundo� error isnot eliminated but only postponed.

Sometimes, but not always, it is possible to redu
e the growth of theroundo� error by restru
turing the 
al
ulations.
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Key Con
epts Rate of Convergen
e

De�nition: Rate of Convergen
e �Suppose the sequen
e β = {βn}∞n=1 
onverges to zero, and α =
{αn}∞n=1 
onverges to a number α.If ∃K > 0: |αn−α| < Kβn, for n large enough, then we say that

{αn}∞n=1 
onverges to α with a Rate of Convergen
e O(βn)(�Big Oh of βn�).We write

αn = α +O(βn)

Note: The sequen
e β = {βn}∞n=1 is usually 
hosen to be

βn =
1
npfor some positive value of p.
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Examples: Rate of Convergen
eExample #1
If

αn = α +
1√
nthen for any ǫ > 0

|αn − α| = 1√
n
≤ (1 + ǫ)︸ ︷︷ ︸

K

1√
n︸︷︷︸

βnhen
e

αn = α +O
(

1√
n

)
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Examples: Rate of Convergen
eExample #2: Consider the sequen
e (as n →∞)

αn = sin
(

1
n

)
− 1

nWe Taylor expand sin(x) about x0 = 0:

sin
(

1
n

)
∼ 1

n
− 1

6n3
+O

(
1
n5

)

Hen
e

|αn| =
∣∣∣∣ 1
6n3

+O
(

1
n5

)∣∣∣∣It follows that

αn = 0 +O
(

1
n3

)

Note:

O
(

1
n3

)
+O

(
1
n5

)
= O

(
1
n3

)
, sin
e 1

n5
≪ 1

n3
, as n →∞
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Generalizing to Continuous Limits

De�nition: Rate of Convergen
e �Suppose

lim
hց0

G(h) = 0, and lim
hց0

F (h) = LIf ∃K > 0:

|F (h)− L| ≤ K |G(h)|
∀h < H (for some H > 0), then

F (h) = L +O(G(h))we say that F (h) 
onverges to L with a Rate of Convergen
e

O(G(h)).
Usually G(h) = hp, p > 0.
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Examples: Rate of Convergen
eExample #2-b: Consider the fun
tion α(h) (as h → 0)

α(h) = sin (h)− hWe Taylor expand sin(x) about x0 = 0:

sin (h) ∼ h− h3

6
+O (

h5
)

Hen
e

|α(h)| =
∣∣∣∣h3

6
+O (

h5
)∣∣∣∣It follows that

lim
h→0

α(h) = 0 +O (
h3

)

Note:

O (
h3

)
+O (

h5
)

= O (
h3

)
, sin
e h5 ≪ h3, as h → 0
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Solutions of Equations of One Variable

Our new favorite problem:

f (x) = 0
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Solutions of Equations of One Variable Introdu
tion

We are going to solve the equation f(x) = 0 (i.e. �nding root to theequation), for fun
tions f that are 
ompli
ated enough that there isno 
losed form solution (and/or we are too lazy to �nd it?)

In a lot of 
ases we will solve problems to whi
h we 
an �nd the 
losedform solutions � we do this as a training ground and to evaluate howgood our numeri
al methods are.
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The Bise
tion Method 1 of 4Suppose f is 
ontinuous on the interval (a0, b0) and f(a0) ·f(b0) < 0� This means the fun
tion 
hanges sign at least on
e in the interval.

The intermediate value theorem guarantees the existen
e of

c ∈ (a0, b0) su
h that f(c) = 0.

Without loss of generality (just 
onsider the fun
tion −f(x)), we 
anassume (for now) that f(a0) < 0.

We will 
onstru
t a sequen
e of intervals 
ontaining the root c:

(a0, b0) ⊃ (a1, b1) ⊃ · · · ⊃ (an−1, bn−1) ⊃ (an, bn) ∋ c
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The Bise
tion Method 2 of 4The sub-intervals are determined re
ursively:

Given (ak−1, bk−1), let mk =
ak−1 + bk−1

2

be the mid-point.

If f(mk) = 0, we're done, otherwise

(ak, bk) =

 (mk, bk−1) if f(mk) < 0

(ak−1,mk) if f(mk) > 0

This 
onstru
tion guarantees that f(ak) · f(bk) < 0 and c ∈ (ak, bk).
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The Bise
tion Method 3 of 4After n steps, the interval (an, bn) has the length
|bn − an| =

(
1
2

)n

|b0 − a0|we 
an take

mn+1 =
an + bn

2

as the estimate for the root c and we have

c = mn+1 ± dn, dn =
(

1
2

)n+1

|b0 − a0|
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The Bise
tion Method 4 of 4Convergen
e is slow:At ea
h step we gain one binary digit in a

ura
y. Sin
e

10−1 ≈ 2−3.3, it takes on average 3.3 iterations to gain onede
imal digit of a

ura
y.Note: The rate of 
onvergen
e is 
ompletely independent of thefun
tion f .

We are only using the sign of f at the endpoints of the interval(s)to make de
isions on how to update. � By making more e�e
tiveuse of the values of f we 
an attain signi�
antly faster 
onvergen
e.

First an example...
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The Bise
tion Method Example, 1 of 2The bise
tion method applied to

f(x) =
(x

2

)2 − sin(x) = 0with (a0, b0) = (1.5, 2.0), and (f(a0), f(b0)) = (−0.4350, 0.0907)gives:

k ak bk mk+1 f(mk+1)0 1.5000 2.0000 1.7500 �0.21841 1.7500 2.0000 1.8750 �0.07522 1.8750 2.0000 1.9375 0.00503 1.8750 1.9375 1.9062 �0.03584 1.9062 1.9375 1.9219 �0.01565 1.9219 1.9375 1.9297 �0.00546 1.9297 1.9375 1.9336 �0.00027 1.9336 1.9375 1.9355 0.00248 1.9336 1.9355 1.9346 0.00119 1.9336 1.9346 1.9341 0.0004
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The Bise
tion Method Example, 2 of 2
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The Bise
tion Method Matlab 
ode
% WARNING: This example ASSUMES that f(a)<0<f(b)...

x = 1.5:0.001:2;
f = inline(’(x/2).b2-sin(x)’,’x’);
a = 1.5;
b = 2.0;

for k = 0:9
plot(x,f(x),’k-’,’linewidth’,2)
axis([1.45 2.05 -0.5 .15])
grid on
hold on
plot([a b],f([a b]),’ko’,’linewidth’,5)
hold off
m = (a+b)/2;
if( f(m) < 0 )

a = m;
else

b = m;
end
pause
print(’-depsc’,[’bisec’ int2str(k) ’.eps’],’-f1’);

end
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Stopping CriteriaWhen do we stop?

We 
an (1) keep going until su

essive iterates are 
lose:

|mk+1 −mk| < ǫor (2) 
lose in relative terms

|mk+1 −mk|
|mk+1| < ǫor (3) the fun
tion value is small enough

|f(mk+1)| < ǫNo 
hoi
e is perfe
t. In general, where no additional information about

f is known, the se
ond 
riterion is the preferred one (sin
e it 
omesthe 
losest to testing the relative error).
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