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Algorithms

Definition: Algorithm —
An algorithm is a procedure that describes, in an unambiguous

manner, a finite sequence of steps to be performed in a specific

order.

In this class, the objective of an algorithm is to implement a procedure

to solve a problem or approximate a solution to a problem.

Most homes have a collection of algorithms in printed form — we

tend to call them "recipes.”

There is a collection of algorithms “out there” called Numerical

Recipes, google for it!
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Pseudo-code

Definition: Pseudo-code —
Pseudo-code is an algorithm description which specifies the in-

put/output formats.

Note that pseudo-code is not computer language specific, but should

be easily translatable to any procedural computer language.
Examples of Pseudo-code statements:

for i =1,2,...,n
Set z;=a;+ix*xh
Wiile i< N do Steps 17 - 21

If ... then ... else
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Key Concepts for Numerical Algorithms Stability

Definition: Stability —
An algorithm is said to be stable if small changes in the input,

generates small changes in the output.

At some point we need to quantify what “small” means!

If an algorithm is stable for a certain range of initial data, then is it

said to be conditionally stable.

Stability issues are discussed in great detail in Math 543.
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Key Concepts for Numerical Algorithms Error Growth

Suppose Ey > 0 denotes the initial error, and E,, represents the error

after n operations.

If E, ~ CEp-n (for a constant C which is independent of n), then
the growth is linear.

If £, ~C"Ey, C > 1, then the growth is exponential — in this case

the error will dominate very fast (undesirable scenario).

Linear error growth is usually unavoidable, and in the case where
C and Ej are small the results are generally acceptable. — Stable

algorithm.

Exponential error growth is unacceptable. Regardless of the size of
Ejy the error grows rapidly. — Unstable algorithm.
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Example BF-1.3.3 1 of 2

The recursive equation

10
Pn = = Pn-1—Pn-2, N=2,3,...,00

3
1 n
Pn =01 (§> + c3"

has the exact solution
for any constants ¢; and cp. (Determined by starting values.)

In particular, if pg = 1 and p; = % we get ¢; = 1 and ¢ = 0, so

Pp = (%)n for all n.

Now, consider what happens in 5-digit rounding arithmetic...
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Example BF-1.3.3 2 of 2

Now, consider what happens in 5-digit rounding arithmetic...

py = 1.0000, pi = 0.33333
which modifies
¢} =1.0000, 5= —0.12500-107°
The generated sequence is

pl, = 1.0000 (0.33333)"™ — 0.12500 - 10~>(3.0000)"

Exponential Growth

pr quickly becomes a very poor approximation to p, due to the ex-

ponential growth of the initial roundoff error.
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Reducing the Effects of Roundoff Error

The effects of roundoff error can be reduced by using higher-order-
digit arithmetic such as the doubl e or multiple-precision arithmetic

available on most computers.
Disadvantages in using doubl e precision arithmetic are that it takes
more computation time and the growth of the roundoff error is

not eliminated but only postponed.

Sometimes, but not always, it is possible to reduce the growth of the

roundoff error by restructuring the calculations.
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Key Concepts Rate of Convergence

Definition: Rate of Convergence —
Suppose the sequence 3 = {f,}72, converges to zero, and a =

o0
{an}52; converges to a number a.

If 3K > 0: |y, — | < K, for n large enough, then we say that
{an}32, converges to o with a Rate of Convergence O(f5,)
("Big Oh of 5,,").

We write
an =a+ 0(6,)

Note: The sequence 3 = {f3,};2, is usually chosen to be

ﬁn:i

np

for some positive value of p.
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Examples: Rate of Convergence

Example #1

If

then for any € > 0

hence
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Examples: Rate of Convergence

Example #2: Consider the sequence (as n — o)

_ (1) 1
op=sin|—|——
n n

We Taylor expand sin(z) about z9 = 0:

. 1 1 1 1
SIH(E>NE_W+O(F>

Hence
It follows that
Note:

1 1 1 1 1
O(m>+0<$>20<$>, since $<<$, as n— oo
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Generalizing to Continuous Limits

Definition: Rate of Convergence —
Suppose

lim G(h) =0, and lim F(h)=1L
B\ AN

If 3K > 0:
|[F'(h) — L| < K|G(h)|

Vh < H (for some H > 0), then
F(h) =L+ O(G(h))

we say that F'(h) converges to L with a Rate of Convergence

O(G(h)).

Usually G(h) = hP, p > 0.
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Examples: Rate of Convergence

Example #2-b: Consider the function «(h) (as h — 0)
a(h) =sin(h) — h

We Taylor expand sin(z) about z¢ = 0:

. h3 5
s1n(h)~h—g—|—@(h )
Hence
h3 5
a(h)| = |5 +0 (1)

It follows that

- _ 3
%{%Oz(h) =0+0(h’)
Note:

@) (h3) + 0O (h5) =0 (hg) , since hP<h® as h—0
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Solutions of Equations of One Variable

Our new favorite problem:

fla)=0
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Solutions of Equations of One Variable Introduction

We are going to solve the equation f(z) = 0 (i.e. finding root to the
equation), for functions f that are complicated enough that there is

no closed form solution (and/or we are too lazy to find it?)
In a lot of cases we will solve problems to which we can find the closed

form solutions — we do this as a training ground and to evaluate how

good our numerical methods are.
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The Bisection Method 1of4

Suppose f is continuous on the interval (ag, bg) and f(ag)- f(bo) <O

— This means the function changes sign at least once in the interval.

The intermediate value theorem guarantees the existence of
¢ € (agp,bp) such that f(c) = 0.

Without loss of generality (just consider the function — f(z)), we can
assume (for now) that f(ag) < 0.

We will construct a sequence of intervals containing the root ¢:

(ao,bo) D (al,bl) DD (anfl,bnfl) D (an,bn) S cC
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The Bisection Method 2 of 4

The sub-intervals are determined recursively:

ag—1 +br_1

Given (ag—1,bk—1), let my = 5

be the mid-point.

If f(my) =0, we're done, otherwise

(mk,bkfl) if f(mk) <0

(akvbk) = .
(ak—1,my) if f(my) >0

This construction guarantees that f(ag) - f(br) < 0 and ¢ € (ag, bg).

Numerical Analysis and Computation: Lecture Notes #2.5 — p.17/23

The Bisection Method 3of 4

After n steps, the interval (ay,b,) has the length

1 n
b= aul = (5) oo ol

we can take

as the estimate for the root ¢ and we have

1 n+1
c=Mpy1 £dy, dyp= <§) |b0 - a0|
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The Bisection Method 4 of 4

Convergence is slow:
At each step we gain one binary digit in accuracy. Since
107! ~ 2733 it takes on average 3.3 iterations to gain one

decimal digit of accuracy.

Note: The rate of convergence is completely independent of the

function f.

We are only using the sign of f at the endpoints of the interval(s)
to make decisions on how to update. — By making more effective

use of the values of f we can attain significantly faster convergence.

First an example...
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The Bisection Method Example, 1 of 2

The bisection method applied to
T\ 2 .
flz) = (5) —sin(z) =0

with (ag,bp) = (1.5, 2.0), and (f(ao), f(bo)) = (—0.4350,0.0907)
gives:

ag be  mry1 f(mesr)
1.5000 2.0000 1.7500 -0.2184
1.7500 2.0000 1.8750 -0.0752
1.8750 2.0000 1.9375 0.0050
1.8750 1.9375 1.9062 —0.0358
1.9062 1.9375 1.9219 -0.0156
1.9219 1.9375 1.9297 -0.0054
1.9297 1.9375 1.9336 -0.0002
1.9336 1.9375 1.9355 0.0024
1.9336 1.9355 1.9346 0.0011
1.9336 1.9346 1.9341 0.0004

© 00 ~NO O WN = O | &
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The Bisection Method Example, 2 of 2
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The Bisection Method Matlab code

% WARNI NG This exanpl e ASSUMES that f(a)<0<f(b)...

X 1.5:0.001: 2;
f =inline(’(x/2).72-sin(x)", x");

a = 1.5;
b = 2.0;
for k = 0:9
plot(x,f(x), k-","linewi dth’, 2)
axis([1.45 2.05 -0.5 .15])
grid on
hol d on
plot([a b],f([a b]), ko', linewdth',5)
hol d of f
m = (atb)/2;
if( f(m <0)
a=m
el se
b=m
end
pause
print(’-depsc’,[ bisec’ int2str(k) '.eps'],’-f1");
end
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Stopping Criteria

When do we stop?

We can (1) keep going until successive iterates are close:
[mpr1 —mg| < e
or (2) close in relative terms

|mk+1 - mk|

<€
g1 ]

or (3) the function value is small enough

|f(mpgy1)] < e

No choice is perfect. In general, where no additional information about
f is known, the second criterion is the preferred one (since it comes

the closest to testing the relative error).
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