Math 541: Numerical Analysis and Computation
Numerical Analysis and Computation
Algorithms and Convergence;
Solutions of Equations of One Variable
Lecture Notes \#2.5

Joe Mahaffy

Department of Mathematics and Statistics
San Diego State University
San Diego, CA 92182-7720
mahaffy@math.sdsu.edu
http://www-rohan.sdsu.edu/~jmahaffy
\$Id: lecture.tex,v 1.25 2008/09/08 19:49:27 mahaffy Exp \$

Numerical Analysis and Computation: Lecture Notes \#2.5-p.1/2

Pseudo-code

Definition: Pseudo-code -

Pseudo-code is an algorithm description which specifies the input/output formats.

Note that pseudo-code is not computer language specific, but should be easily translatable to any procedural computer language.

Examples of Pseudo-code statements:

```
for i = 1,2,...,n
    Set }\mp@subsup{x}{i}{}=\mp@subsup{a}{i}{}+i*
While i<N do Steps 17-21
If ... then ... else
```

[^0]Algorithms
Definition: Algorithm -
An algorithm is a procedure that describes, in an unambiguous
manner, a finite sequence of steps to be performed in a specific
order.

In this class, the objective of an algorithm is to implement a procedure to solve a problem or approximate a solution to a problem.

Most homes have a collection of algorithms in printed form - we tend to call them "recipes."

There is a collection of algorithms "out there" called Numerical Recipes, google for it!

Definition: Stability -

An algorithm is said to be stable if small changes in the input, generates small changes in the output.

At some point we need to quantify what "small" means!

If an algorithm is stable for a certain range of initial data, then is it said to be conditionally stable.

Stability issues are discussed in great detail in Math 543.

Suppose $E_{0}>0$ denotes the initial error, and E_{n} represents the error after n operations

If $E_{n} \approx \mathcal{C} E_{0} \cdot n$ (for a constant \mathcal{C} which is independent of n), then the growth is linear.

If $E_{n} \approx \mathcal{C}^{n} E_{0}, \mathcal{C}>1$, then the growth is exponential - in this case the error will dominate very fast (undesirable scenario).

Linear error growth is usually unavoidable, and in the case where \mathcal{C} and E_{0} are small the results are generally acceptable. - Stable algorithm.

Exponential error growth is unacceptable. Regardless of the size of E_{0} the error grows rapidly. - Unstable algorithm.

Now, consider what happens in 5-digit rounding arithmetic...

$$
p_{0}^{*}=1.0000, \quad p_{1}^{*}=0.33333
$$

which modifies

$$
c_{1}^{*}=1.0000, \quad c_{2}^{*}=-0.12500 \cdot 10^{-5}
$$

The generated sequence is

$$
p_{n}^{*}=1.0000(0.33333)^{n}-\underbrace{0.12500 \cdot 10^{-5}(3.0000)^{n}}_{\text {Exponential Growth }}
$$

p_{n}^{*} quickly becomes a very poor approximation to p_{n} due to the exponential growth of the initial roundoff error.

The recursive equation

$$
p_{n}=\frac{10}{3} p_{n-1}-p_{n-2}, \quad n=2,3, \ldots, \infty
$$

has the exact solution

$$
p_{n}=c_{1}\left(\frac{1}{3}\right)^{n}+c_{2} 3^{n}
$$

for any constants c_{1} and c_{2}. (Determined by starting values.)

In particular, if $p_{0}=1$ and $p_{1}=\frac{1}{3}$, we get $c_{1}=1$ and $c_{2}=0$, so

$$
p_{n}=\left(\frac{1}{3}\right)^{n} \text { for all } n .
$$

Now, consider what happens in 5-digit rounding arithmetic...

Reducing the Effects of Roundoff Error

The effects of roundoff error can be reduced by using higher-orderdigit arithmetic such as the double or multiple-precision arithmetic available on most computers.

Disadvantages in using double precision arithmetic are that it takes more computation time and the growth of the roundoff error is not eliminated but only postponed.

Sometimes, but not always, it is possible to reduce the growth of the roundoff error by restructuring the calculations.

Definition: Rate of Convergence -

Suppose the sequence $\underline{\beta}=\left\{\beta_{n}\right\}_{n=1}^{\infty}$ converges to zero, and $\underline{\alpha}=$ $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to a number α.

If $\exists K>0:\left|\alpha_{n}-\alpha\right|<K \beta_{n}$, for n large enough, then we say that $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to α with a Rate of Convergence $\mathcal{O}\left(\beta_{n}\right)$ ("Big Oh of β_{n} ").

We write

$$
\alpha_{n}=\alpha+\mathcal{O}\left(\beta_{n}\right)
$$

Note: The sequence $\underline{\beta}=\left\{\beta_{n}\right\}_{n=1}^{\infty}$ is usually chosen to be

$$
\beta_{n}=\frac{1}{n^{p}}
$$

for some positive value of p.

Examples: Rate of Convergence
Example \#2: Consider the sequence (as $n \rightarrow \infty$)

$$
\alpha_{n}=\sin \left(\frac{1}{n}\right)-\frac{1}{n}
$$

We Taylor expand $\sin (x)$ about $x_{0}=0$:

$$
\sin \left(\frac{1}{n}\right) \sim \frac{1}{n}-\frac{1}{6 n^{3}}+\mathcal{O}\left(\frac{1}{n^{5}}\right)
$$

Hence

$$
\left|\alpha_{n}\right|=\left|\frac{1}{6 n^{3}}+\mathcal{O}\left(\frac{1}{n^{5}}\right)\right|
$$

It follows that

$$
\alpha_{n}=\mathbf{0}+\mathcal{O}\left(\frac{1}{n^{3}}\right)
$$

Note:
$\mathcal{O}\left(\frac{1}{n^{3}}\right)+\mathcal{O}\left(\frac{1}{n^{5}}\right)=\mathcal{O}\left(\frac{1}{n^{3}}\right), \quad$ since $\quad \frac{1}{n^{5}} \ll \frac{1}{n^{3}}, \quad$ as $\quad n \rightarrow \infty$

Examples: Rate of Convergence

Example \#1

If

$$
\alpha_{n}=\alpha+\frac{1}{\sqrt{n}}
$$

then for any $\epsilon>0$

$$
\left|\alpha_{n}-\alpha\right|=\frac{1}{\sqrt{n}} \leq \underbrace{(1+\epsilon)}_{K} \underbrace{\frac{1}{\sqrt{n}}}_{\beta_{n}}
$$

hence

$$
\alpha_{n}=\alpha+\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)
$$

Generalizing to Continuous Limits

Definition: Rate of Convergence -

Suppose

$$
\lim _{h \backslash 0} G(h)=0, \quad \text { and } \quad \lim _{h \backslash 0} F(h)=L
$$

If $\exists K>0$:

$$
|F(h)-L| \leq K|G(h)|
$$

$\forall h<H$ (for some $H>0$), then

$$
F(h)=L+\mathcal{O}(G(h))
$$

we say that $F(h)$ converges to L with a Rate of Convergence $\mathcal{O}(G(h))$.

Usually $G(h)=h^{p}, p>0$.

Example \#2-b: Consider the function $\alpha(h)$ (as $h \rightarrow 0$)

$$
\alpha(h)=\sin (h)-h
$$

We Taylor expand $\sin (x)$ about $x_{0}=0$:

$$
\sin (h) \sim h-\frac{h^{3}}{6}+\mathcal{O}\left(h^{5}\right)
$$

Hence

$$
|\alpha(h)|=\left|\frac{h^{3}}{6}+\mathcal{O}\left(h^{5}\right)\right|
$$

It follows that

$$
\lim _{h \rightarrow 0} \alpha(h)=\mathbf{0}+\mathcal{O}\left(h^{3}\right)
$$

Note:

$$
\mathcal{O}\left(h^{3}\right)+\mathcal{O}\left(h^{5}\right)=\mathcal{O}\left(h^{3}\right), \quad \text { since } \quad h^{5} \ll h^{3}, \quad \text { as } \quad h \rightarrow 0
$$

Numerical Analysis and Computation: Lecture Notes \#2.5-p.13/23

We are going to solve the equation $f(x)=0$ (i.e. finding root to the equation), for functions f that are complicated enough that there is no closed form solution (and/or we are too lazy to find it?)

In a lot of cases we will solve problems to which we can find the closed form solutions - we do this as a training ground and to evaluate how good our numerical methods are.

Our new favorite problem:

$$
f(x)=0
$$

Suppose f is continuous on the interval $\left(a_{0}, b_{0}\right)$ and $f\left(a_{0}\right) \cdot f\left(b_{0}\right)<0$ - This means the function changes sign at least once in the interval.

The intermediate value theorem guarantees the existence of $c \in\left(a_{0}, b_{0}\right)$ such that $f(c)=0$.

Without loss of generality (just consider the function $-f(x)$), we can assume (for now) that $f\left(a_{0}\right)<0$.

We will construct a sequence of intervals containing the root c :

$$
\left(a_{0}, b_{0}\right) \supset\left(a_{1}, b_{1}\right) \supset \cdots \supset\left(a_{n-1}, b_{n-1}\right) \supset\left(a_{n}, b_{n}\right) \ni c
$$

The sub-intervals are determined recursively:

Given $\left(a_{k-1}, b_{k-1}\right)$, let $m_{k}=\frac{a_{k-1}+b_{k-1}}{2}$ be the mid-point.

If $f\left(m_{k}\right)=0$, we're done, otherwise

$$
\left(a_{k}, b_{k}\right)= \begin{cases}\left(m_{k}, b_{k-1}\right) & \text { if } f\left(m_{k}\right)<0 \\ \left(a_{k-1}, m_{k}\right) & \text { if } f\left(m_{k}\right)>0\end{cases}
$$

This construction guarantees that $f\left(a_{k}\right) \cdot f\left(b_{k}\right)<0$ and $c \in\left(a_{k}, b_{k}\right)$.

Convergence is slow:

At each step we gain one binary digit in accuracy. Since $10^{-1} \approx 2^{-3.3}$, it takes on average 3.3 iterations to gain one decimal digit of accuracy.

Note: The rate of convergence is completely independent of the function f.

We are only using the sign of f at the endpoints of the interval(s) to make decisions on how to update. - By making more effective use of the values of f we can attain significantly faster convergence.

First an example...

After n steps, the interval $\left(a_{n}, b_{n}\right)$ has the length

$$
\left|b_{n}-a_{n}\right|=\left(\frac{1}{2}\right)^{n}\left|b_{0}-a_{0}\right|
$$

we can take

$$
m_{n+1}=\frac{a_{n}+b_{n}}{2}
$$

as the estimate for the root c and we have

$$
c=m_{n+1} \pm d_{n}, \quad d_{n}=\left(\frac{1}{2}\right)^{n+1}\left|b_{0}-a_{0}\right|
$$

Numerical Analysis and Computation: Lecture Notes \#2.5-p.18/23

The Bisection Method
Example, 1 of 2
The bisection method applied to

$$
f(x)=\left(\frac{x}{2}\right)^{2}-\sin (x)=0
$$

with $\left(a_{0}, b_{0}\right)=(1.5,2.0)$, and $\left(f\left(a_{0}\right), f\left(b_{0}\right)\right)=(-0.4350,0.0907)$ gives:

k	a_{k}	b_{k}	m_{k+1}	$f\left(m_{k+1}\right)$
0	1.5000	2.0000	1.7500	-0.2184
1	1.7500	2.0000	1.8750	-0.0752
2	1.8750	2.0000	1.9375	0.0050
3	1.8750	1.9375	1.9062	-0.0358
4	1.9062	1.9375	1.9219	-0.0156
5	1.9219	1.9375	1.9297	-0.0054
6	1.9297	1.9375	1.9336	-0.0002
7	1.9336	1.9375	1.9355	0.0024
8	1.9336	1.9355	1.9346	0.0011
9	1.9336	1.9346	1.9341	0.0004

\% WARNING: This example ASSUMES that $f(a)<0<f(b) \ldots$

$x=1.5: 0.001: 2 ;$

$a=1.5$
b $=2.0$;
for $k=0: 9$
plot (x,f(x),'k-','linewidth', 2)
axis([1.45 2.05 -0.5 .15])
grid on
hold on
plot([a b],f([a b]),'ko','linewidth', 5)
hold off
$m=(a+b) / 2 ;$
if $(\mathrm{f}(\mathrm{m})<0$)
$\mathrm{a}=\mathrm{m} ;$
else
$\mathrm{b}=\mathrm{m} ;$
end
pause
print('-depsc', ['bisec' int2str(k) '.eps'],'-f1');
end

When do we stop?

We can (1) keep going until successive iterates are close:

$$
\left|m_{k+1}-m_{k}\right|<\epsilon
$$

or (2) close in relative terms

$$
\frac{\left|m_{k+1}-m_{k}\right|}{\left|m_{k+1}\right|}<\epsilon
$$

or (3) the function value is small enough

$$
\left|f\left(m_{k+1}\right)\right|<\epsilon
$$

No choice is perfect. In general, where no additional information about f is known, the second criterion is the preferred one (since it comes the closest to testing the relative error).

[^0]: Numerical Analysis and Computation: Lecture Notes \#2.5 - p.3/23

