Numerical Analysis and Computation

Calculus Review; Computer Artihmetic and Finite Precision
Lecture Notes \#2

Joe Mahaffy

Department of Mathematics and Statistics
San Diego State University
San Diego, CA 92182-7720
mahaffy@math.sdsu.edu

http: //www-rohan.sdsu.edu/~jmahaffy

\$Id: lecture.tex,v 1.25 2007/08/31 19:49:27 blomgren Exp \$

Key concepts from Calculus

- Limits
- Continuity
- Convergence
- Differentiability
- Rolle's Theorem
- Mean Value Theorem
- Extreme Value Theorem
- Intermediate Value Theorem
- Taylor's Theorem

It's a good warm-up for our brains!

When developing numerical schemes we will use theorems from calculus to guarantee that our algorithms make sense.

If the theory is sound, when our programs fail we look for bugs in the code!

Limit / Continuity

Definition: Limit - A function f defined on a set X of real numbers $X \subset \mathbb{R}$ has the limit L at x_{0}, written

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

if given any real number $\epsilon>0(\forall \epsilon>0)$, there exists a real number $\delta>0(\exists \delta>0)$ such that $|f(x)-L|<\epsilon$ whenever $x \in X$ and $0<\left|x-x_{0}\right|<\delta$.

> Definition: Continuity (at a point) -
> Let f be a function defined on a set X of real numbers, and $x_{0} \in X$. Then f is continuous at x_{0} if

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) .
$$

Here we see how the limit $x \rightarrow x_{0}$ (where $x_{0}=0.5$) exists for the function $f(x)=x+\frac{1}{2} \sin (2 \pi x)$.

Examples: "Spike" Discontinuity

The function
The limit exists, but

$$
f(x)= \begin{cases}1 & x=0.5 \\ 0 & x \neq 0.5\end{cases}
$$

has a discontinuity at $x_{0}=0.5$.

Examples: Jump Discontinuity

The function

$$
f(x)= \begin{cases}x+\frac{1}{2} \sin (2 \pi x) & x<0.5 \\ x+\frac{1}{2} \sin (2 \pi x)+1 & x>0.5\end{cases}
$$

has a jump discontinuity at $x_{0}=0.5$.
Numerical Analysis and Computation: Lecture Notes \#2-p.6/37

Continuity / Convergence

Definition: Continuity (in an interval) -

The function f is continuous on the set X (denoted $f \in C(X)$)
if it is continuous at each point x in X.

$$
\begin{array}{||l||}
\hline \text { Lefinition: Convergence of a sequence }- \\
\text { Let } \underline{\mathbf{x}}=\left\{x_{n}\right\}_{n=1}^{\infty} \text { be an infinite sequence of real (or complex } \\
\text { numbers). The sequence } \underline{\underline{x}} \text { converges to } x \text { (has the limit } x \text {) if } \\
\forall \epsilon>0, \exists N(\epsilon) \in \mathbb{Z}^{+}:\left|x_{n}-x\right|<\epsilon \forall n>N(\epsilon) \text {. The notation } \\
\qquad \lim _{n \rightarrow \infty} x_{n}=x
\end{array}
$$

means that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x.

A sequence in $\underline{\mathbf{Z}}=\left\{z_{k}\right\}_{k=1}^{\infty}$ converges to $z_{0} \in \mathbb{C}$ (the black dot) if for any ϵ (the radius of the circle), there is a value N (which depends on ϵ) so that the "tail" of the sequence $\underline{\mathbf{z}}_{t}=\left\{z_{k}\right\}_{k=N}^{\infty}$ is inside the circle.

Theorem: If f is a function defined on a set X of real numbers and $x_{0} \in X$, then the following statements are equivalent:
(a) continuous at x_{0}
(b) $\left\{x_{n}\right\}_{n=1}^{\infty}$ is any sequence in X converging to x_{0}, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.

Definition: Differentiability (at a point) - Let f be a function defined on an open interval containing $x_{0}\left(a<x_{0}<b\right)$. f is differentiable at x_{0} if

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \quad \text { exists. }
$$

If the limit exists, $f^{\prime}\left(x_{0}\right)$ is the derivative at x_{0}.

Definition: Differentiability (in an interval) - If $f^{\prime}\left(x_{0}\right)$ exists $\forall x_{0} \in$
X, then f is differentiable on X

Numerical Analysis and Computation: Lecture Notes \#2 - p.10/37

Continuity / Rolle's Theorem

Theorem: Differentiability \Rightarrow Continuity -
If f is differentiable at x_{0}, then f is continuous at x_{0}.

Theorem: Rolle's Theorem -

Suppose $f \in C[a, b]$ and that f is differentiable on (a, b). If $f(a)=f(b)$, then $\exists c \in(a, b): f^{\prime}(c)=0$.

Theorem: Mean Value Theorem-

If $f \in C[a, b]$ and f is differentiable on (a, b), then $\exists c \in(a, b)$:
Theorem: Extreme Value Theorem -
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Taylor's Theorem

Theorem: Taylor's Theorem -

Suppose $f \in C^{n}[a, b], f^{(n+1)} \exists$ on $[a, b]$, and $x_{0} \in[a, b]$. Then $\forall x \in(a, b), \exists \xi(x) \in\left(x_{0}, x\right)$ with $f(x)=P_{n}(x)+R_{n}(x)$ where

$$
\begin{array}{r}
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}, \\
R_{n}(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)^{(n+1)} .
\end{array}
$$

$P_{n}(x)$ is called the Taylor polynomial of degree n, and $R_{n}(x)$ is the remainder term (truncation error)

Note: $f^{(n+1)} \exists$ on $[a, b]$, but is not necessarily continuous
Illustration: Taylor's Theorem
$f(x)=\sin (x)$

$P_{5}(x)$

$$
P_{13}(x)=\underbrace{\underbrace{x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}}_{P_{5}(x)}-\frac{1}{7!} x^{7}+\frac{1}{9!} x^{9}-\frac{1}{11!} x^{11}+\frac{1}{13!} x^{13}, ~}_{P_{9}(x)}
$$

- A Taylor polynomial of degree n requires all derivatives up to order n and degree $n+1$ for the Remainder.
- In general, derivatives may be complicated expressions.
- Maple computes derivatives accurately and efficiently - differentiation uses the command $\operatorname{diff}(\mathbf{f}(\mathrm{x}), \mathrm{x})$;
- Maple has a routine for Taylor series expansions - finding the Taylor's series uses the command taylor($\mathbf{f}(\mathbf{x}), \mathbf{x}=\mathbf{x 0}, \mathbf{n})$;, meaning the Taylor series expansion about $x=x_{0}$ using n terms in the expansion.
- A Maple worksheet is available with many of these basic commands through my webpage for this class.
- Most versions of MatLab have a symbolic package that includes Maple, so this symbolic package can help with derivatives.
- Often easier to play to the strengths of each language and let Maple find the Taylor coefficients to employ in the MatLab code.
- MatLab provides relatively efficient numerical programs that are similar and based on C Programming.
- A MatLab code is provided to show the convergence of the Taylor series to the cosine function with increasing numbers of terms. This is shown on the Maple worksheet also, and the code is accessible through my webpage.
- A series of Taylor polynomials approximating $\cos (x)$ with $n=2$, 4,6 , and 8 are shown below.

Computers use a finite number of bits (0 's and 1 's) to represent numbers.

For instance, an 8-bit unsigned integer (a.k.a a "char") is stored:

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
0	1	0	0	1	1	0	1

Here, $2^{6}+2^{3}+2^{2}+2^{0}=64+8+4+1=77$, which represents the upper-case character " M " (US-ASCII).

The Binary Floating Point Arithmetic Standard 754-1985 (IEEE The Institute for Electrical and Electronics Engineers) standard specified the following layout for a 64-bit real number:

$$
\mathbf{s ~ c}_{10} \mathbf{c}_{9} \ldots \mathbf{c}_{1} \mathbf{c}_{0} \mathbf{m}_{51} \mathbf{m}_{50} \ldots \mathbf{m}_{1} \mathbf{m}_{0}
$$

Where

Symbol	Bits	Description
s	1	The sign bit $-0=$ positive, $1=$ negative
c	11	The characteristic (exponent)
m	52	The mantissa

$$
r=(-1)^{s} 2^{c-1023}(1+m), \quad c=\sum_{k=0}^{10} c_{k} 2^{k}, \quad m=\sum_{k=0}^{51} \frac{m_{k}}{2^{52-k}}
$$

Burden-Faires' Description is not complete..
Examples: Finite Precision

$$
r=(-1)^{s} 2^{c-1023}(1+f), \quad c=\sum_{k=0}^{10} c_{k} 2^{k}, \quad m=\sum_{k=0}^{51} \frac{m_{k}}{2^{52-k}}
$$

Example \#1: 3.0

010000000000100

$$
r_{1}=(-1)^{0} \cdot 2^{2^{10}-1023} \cdot\left(1+\frac{1}{2}\right)=1 \cdot 2^{1} \cdot \frac{3}{2}=3.0
$$

Example \#2: The Smallest Positive Real Number

001

$$
r_{2}=(-1)^{0} \cdot 2^{0-1023} \cdot\left(1+2^{-52}\right)=\left(1+2^{-52}\right) \cdot 2^{-1023} \cdot 1 \approx 10^{-308}
$$

$$
r=(-1)^{s} 2^{c-1023}(1+f), \quad c=\sum_{k=0}^{10} c_{k} 2^{k}, \quad m=\sum_{k=0}^{51} \frac{m_{k}}{2^{52-k}}
$$

Example \#3: The Largest Positive Real Number

011111111110111

$$
\begin{aligned}
r_{3} & =(-1)^{0} \cdot 2^{1023} \cdot\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{51}}+\frac{1}{2^{52}}\right) \\
& =2^{1024} \cdot\left(2-\frac{1}{2^{52}}\right) \approx 10^{308}
\end{aligned}
$$

Something is Missing — Gaps in the Representation 2 of 3
A gap of 2^{-1075} doesn't seem too bad...
However, the size of the gap depend on the value itself...

Consider $r=3.0$
010000000000100
and the next value
01000000000010001
The difference is $\frac{2}{2^{52}}$

There are gaps in the floating-point representation!
Given the representation
001 for the value $\frac{2^{-1023}}{2^{52}}$.

The next larger floating-point value is
00010
i.e. the value $\frac{2^{-1023}}{2^{51}}$.

The difference between these two values is $\frac{2^{-1023}}{2^{52}}=2^{-1075}$.
Any number in the interval $\left(\frac{2^{-1023}}{2^{52}}, \frac{2^{-1023}}{2^{51}}\right)$ is not representable!

$$
\text { Numerical Analysis and Computation: Lecture Notes \#2-p. } 26 / 37
$$

Something is Missing - Gaps in the Representation 3 of 3
At the other extreme, the difference between

011111111110111

 and the previous value
011111111110110

is $\frac{2^{1023}}{2^{52}}=2^{971} \approx 1.99 \cdot 10^{292}$.
That's a "fairly significant" gap!!!
The number of atoms in the observable universe can be estimated to be no more than $\sim 10^{80}$.

It makes more sense to factor the exponent out of the discussion and talk about the relative gap:

Exponent	Gap	Relative Gap (Gap/Exponent)
2^{-1023}	2^{-1075}	2^{-52}
2^{1}	2^{-51}	2^{-52}
2^{1023}	2^{971}	2^{-52}

Any difference between numbers smaller than the local gap is not representable, e.g. any number in the interval

$$
\left[3.0,3.0+\frac{1}{2^{51}}\right)
$$

is represented by the value 3.0.

k-Digit Decimal Machine Numbers

Any real number can be written in the form

$$
\pm 0 . d_{1} d_{2} \cdots d_{\infty} \cdot 10^{n}
$$

given infinite patience and storage space.

We can obtain the floating-point representation $\mathbf{f l}(\boldsymbol{r})$ in two ways:
(1) Truncating (chopping) - just keep the first k digits.
(2) Rounding - if $d_{k+1} \geq 5$ then add 1 to d_{k}. Truncate.

Examples

$$
\mathbf{f} \mathbf{l}_{t, 5}(\pi)=0.31415 \cdot 10^{1}, \quad \mathbf{f} \mathbf{l}_{r, 5}(\pi)=0.31416 \cdot 10^{1}
$$

In both cases, the error introduced is called the roundoff error.

```
"Theorem:" -
Floating point "numbers" represent intervals!
```

Since (most) humans find it hard to think in binary representation, from now on we will for simplicity and without loss of generality assume that floating point numbers are represented in the normalized floating point form as...
k-digit decimal machine numbers

$$
\pm 0 . d_{1} d_{2} \cdots d_{k-1} d_{k} \cdot 10^{n}
$$

where

$$
1 \leq d_{1} \leq 9, \quad 0 \leq d_{i} \leq 9, \quad i \geq 2, \quad n \in \mathbb{Z}
$$

Quantifying the Error

Let p^{*} be and approximation to p, then...
Definition: The Absolute Error -

$$
\left|p-p^{*}\right|
$$

Definition: The Relative Error -

$$
\frac{\left|p-p^{*}\right|}{|p|}, \quad p \neq 0
$$

Definition: Significant Digits -

The number of significant digits is the largest value of t for which

$$
\frac{\left|p-p^{*}\right|}{|p|}<5 \cdot 10^{-t}
$$

1) Representation - Roundoff.
2) Cancellation - Consider:

$$
\begin{aligned}
& 0.12345678012345 \cdot 10^{1} \\
- & 0.12345678012344 \cdot 10^{1} \\
\hline= & 0.10000000000000 \cdot 10^{-13}
\end{aligned}
$$

this value has (at most) 1 significant digit!!!

If you assume a "canceled value" has more significant bits (the computer will happily give you some numbers) - I don't want you programming the autopilot for any airlines!!!

Loss of Significant Digits

Subtractive Cancellation

Consider the recursive relation

$$
x_{n+1}=1-(n+1) x_{n} \quad \text { with } \quad x_{0}=1-\frac{1}{e}
$$

This sequence can be shown to converge to $\mathbf{0}$ (in 2 slides).
Subtractive cancellation produces an error which is approximately equal to the machine precision times n !.

The MatLab code for this example is provided on the webpage.
Maple has a routine rsolve that solves this recursive relation exactly, using the Gamma function.

Rounding 5-digit arithmetic

$$
\begin{gathered}
(96384+26.678)-96410= \\
(96384+00027)-96410= \\
96411-96410=1.0000
\end{gathered}
$$

Truncating 5-digit arithmetic

$$
\begin{gathered}
(96384+26.678)-96410= \\
(96384+00026)-96410= \\
96410-96410=0.0000
\end{gathered}
$$

Rearrangement changes the result:

$$
(96384-96410)+26.678=-26.000+26.678=0.67800
$$

Numerically, order of computation matters! (This is a HARD problem)
Numerical Analysis and Computation: Lecture Notes \#2-p.34/37

Output from Recursive Example

n	x_{n}	$n!$	n	x_{n}	$n!$
0	0.63212056	1	11	0.07735223	$3.99 \mathrm{e}+007$
1	0.36787944	1	12	0.07177325	$4.79 \mathrm{e}+008$
2	0.26424112	2	13	0.06694778	$6.23 \mathrm{e}+009$
3	0.20727665	6	14	0.06273108	$8.72 \mathrm{e}+010$
4	0.17089341	24	15	0.05903379	$1.31 \mathrm{e}+012$
5	0.14553294	120	16	0.05545930	$2.09 \mathrm{e}+013$
6	0.12680236	720	17	0.05719187	$3.56 \mathrm{e}+014$
7	0.11238350	$5.04 \mathrm{e}+003$	18	-0.02945367	$6.4 \mathrm{e}+015$
8	0.10093197	$4.03 \mathrm{e}+004$	19	1.55961974	$1.22 \mathrm{e}+017$
9	0.09161229	$3.63 \mathrm{e}+005$	20	-30.19239489	$2.43 \mathrm{e}+018$
10	0.08387707	$3.63 \mathrm{e}+006$			

The recursive relation is

$$
x_{n+1}=1-(n+1) x_{n}
$$

with

$$
x_{0}=1-\frac{1}{e}=1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\ldots
$$

From the recursive relation

$x_{1}=1-x_{0}=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\ldots$
$x_{2}=1-2 x_{1}=\frac{1}{3}-\frac{2}{4!}+\frac{2}{5!}-\ldots$
$x_{3}=1-3 x_{2}=\frac{3!}{4!}-\frac{3!}{5!}+\frac{3!}{6!}-\ldots$
$x_{n}=1-n x_{n-1}=\frac{n!}{(n+1)!}-\frac{n!}{(n+2)!}+\frac{n!}{(n+3)!}-.$.
This shows that

$$
x_{n}=\frac{1}{n+1}-\frac{1}{(n+1)(n+2)}+\ldots \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Numerical Analysis and Computation: Lecture Notes \#2-p.37/37

