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Why Review Cal
ulus???

It's a good warm-up for our brains!

When developing numeri
al s
hemes we will use theorems from
al
ulus to guarantee that our algorithms make sense.

If the theory is sound, when our programs fail we look for bugs in the
ode!
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Ba
kground Material � A Crash Course in Cal
ulus

Key 
on
epts from Cal
ulus

• Limits

• Continuity

• Convergen
e

• Di�erentiability

• Rolle's Theorem

• Mean Value Theorem

• Extreme Value Theorem

• Intermediate Value Theorem

• Taylor's Theorem
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Limit / Continuity
De�nition: Limit � A fun
tion f de�ned on a set X of realnumbers X ⊂ R has the limit L at x0, written

lim
x→x0

f(x) = Lif given any real number ǫ > 0 (∀ǫ > 0), there exists a real number

δ > 0 (∃δ > 0) su
h that |f(x) − L| < ǫ whenever x ∈ X and

0 < |x− x0| < δ.

De�nition: Continuity (at a point) �Let f be a fun
tion de�ned on a set X of real numbers, and

x0 ∈ X. Then f is 
ontinuous at x0 if

lim
x→x0

f(x) = f(x0).
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Example: Continuity at x0
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Here we see how the limit x → x0 (where x0 = 0.5) exists for thefun
tion f(x) = x + 1
2 sin(2πx).

Numerical Analysis and Computation: Lecture Notes #2 – p.5/37

Examples: Jump Dis
ontinuity
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The fun
tion
f(x) =

 x + 1
2 sin(2πx) x < 0.5

x + 1
2 sin(2πx) + 1 x > 0.5has a jump dis
ontinuity at x0 = 0.5.
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Examples: �Spike� Dis
ontinuity
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The fun
tion

f(x) =

 1 x = 0.5

0 x 6= 0.5has a dis
ontinuity at x0 = 0.5.
The limit exists, but

lim
x→0.5

f(x) = 0 6= 1
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Continuity / Convergen
e

De�nition: Continuity (in an interval) �The fun
tion f is 
ontinuous on the set X (denoted f ∈ C(X))if it is 
ontinuous at ea
h point x in X.

De�nition: Convergen
e of a sequen
e �Let x = {xn}∞n=1 be an in�nite sequen
e of real (or 
omplexnumbers). The sequen
e x 
onverges to x (has the limit x) if

∀ǫ > 0, ∃N(ǫ) ∈ Z+: |xn − x| < ǫ ∀n > N(ǫ). The notation

lim
n→∞xn = xmeans that the sequen
e {xn}∞n=1 
onverges to x.
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Illustration: Convergen
e of a Complex Sequen
e
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k>=N

N−2

N−1

A sequen
e in z = {zk}∞k=1 
onverges to z0 ∈ C (the bla
k dot) if forany ǫ (the radius of the 
ir
le), there is a value N (whi
h depends on

ǫ) so that the �tail� of the sequen
e zt = {zk}∞k=N is inside the 
ir
le.
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Di�erentiability
Theorem: If f is a fun
tion de�ned on a set X of real numbers and

x0 ∈ X , then the following statements are equivalent:
(a) 
ontinuous at x0

(b) {xn}∞n=1 is any sequen
e in X 
onverging to x0, then
limn→∞ f(xn) = f(x0).

De�nition: Di�erentiability (at a point) � Let f be a fun
tion de-�ned on an open interval 
ontaining x0 (a < x0 < b). f is di�erentiableat x0 if

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

exists.If the limit exists, f ′(x0) is the derivative at x0.

De�nition: Di�erentiability (in an interval) � If f ′(x0) exists ∀x0 ∈
X , then f is di�erentiable on X
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Illustration: Di�erentiability
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Here we see that the limit

lim
x→x0

f(x)− f(x0)
x− x0exists � and approa
hes the slope / derivative at x0, f ′(x0).
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Continuity / Rolle's Theorem

Theorem: Di�erentiability ⇒ Continuity �If f is di�erentiable at x0, then f is 
ontinuous at x0.

Theorem: Rolle's Theorem �Suppose f ∈ C[a, b] and that f is di�erentiable on (a, b). If

f(a) = f(b), then ∃c ∈ (a, b): f ′(c) = 0.

a bc

f’(c)=0
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Mean Value Theorem
Theorem: Mean Value Theorem�If f ∈ C[a, b] and f is di�erentiable on (a, b), then ∃c ∈ (a, b):

f ′(c) =
f(b)− f(a)

b− a

.

a bc

f’(c)=[f(b)−f(a)] / [b−a]
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Extreme Value Theorem
Theorem: Extreme Value Theorem �If f ∈ C[a, b] then ∃c1, c2 ∈ [a, b]: f(c1) ≤ f(x) ≤ f(c2) ∀x ∈

[a, b]. If f is di�erentiable on (a, b) then the numbers c1, c2 o

ureither at the endpoints of [a, b] or where f ′(x) = 0.

a b

c1 = a

c2 = b

a b
a < c1 < b

a < c2 < b
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Taylor's Theorem
Theorem: Taylor's Theorem �Suppose f ∈ Cn[a, b], f (n+1)∃ on [a, b], and x0 ∈ [a, b]. Then

∀x ∈ (a, b), ∃ξ(x) ∈ (x0, x) with f(x) = Pn(x) + Rn(x) where
Pn(x) =

n∑
k=0

f (k)(x0)
k!

(x− x0)k,

Rn(x) =
f (n+1)(ξ(x))

(n + 1)!
(x− x0)(n+1).

Pn(x) is 
alled the Taylor polynomial of degree n, and Rn(x)is the remainder term (trun
ation error).

Note: f (n+1)∃ on [a, b], but is not ne
essarily 
ontinuous.
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Illustration: Taylor's Theorem f(x) = sin(x)
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P13(x) = x− 1
3!
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1
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x5︸ ︷︷ ︸
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Numerical Analysis and Computation: Lecture Notes #2 – p.16/37



Taylor's Theorem: Computer Programming � Maple

• A Taylor polynomial of degree n requires all derivatives upto order n and degree n + 1 for the Remainder .

• In general, derivatives may be 
ompli
ated expressions.

• Maple 
omputes derivatives a

urately and e�
iently � di�er-entiation uses the 
ommand diff(f(x), x);

• Maple has a routine for Taylor series expansions � �nding theTaylor's series uses the 
ommand taylor(f(x), x=x0, n);,meaning the Taylor series expansion about x = x0 using nterms in the expansion.

• A Maple worksheet is available with many of these basi
 
om-mands through my webpage for this 
lass.
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Taylor's Theorem: Computer Programming � MatLab

• Most versions of MatLab have a symboli
 pa
kage that in
ludesMaple, so this symboli
 pa
kage 
an help with derivatives.
• Often easier to play to the strengths of ea
h language and letMaple �nd the Taylor 
oe�
ients to employ in the MatLab
ode.

• MatLab provides relatively e�
ient numeri
al programs thatare similar and based on C Programming.
• A MatLab 
ode is provided to show the 
onvergen
e of theTaylor series to the 
osine fun
tion with in
reasing numbers ofterms. This is shown on the Maple worksheet also, and the
ode is a

essible through my webpage.
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Taylor's Approximation for Cosine Fun
tion

• A series of Taylor polynomials approximating cos(x) with n = 2,4, 6, and 8 are shown below.
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Computer Arithmeti
 and Finite Pre
ision

Computer Arithmeti
 and Finite Pre
ision
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Finite Pre
ision A single charComputers use a �nite number of bits (0's and 1's) to representnumbers.
For instan
e, an 8-bit unsigned integer (a.k.a a �
har�) is stored:

27 26 25 24 23 22 21 200 1 0 0 1 1 0 1

Here, 26 + 23 + 22 + 20 = 64 + 8 + 4 + 1 = 77, whi
h represents theupper-
ase 
hara
ter �M� (US-ASCII).
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Finite Pre
ision A 64-bit real number, doubleThe Binary Floating Point Arithmeti
 Standard 754-1985 (IEEE �The Institute for Ele
tri
al and Ele
troni
s Engineers) standard spe
-i�ed the following layout for a 64-bit real number:
s c10 c9 . . . c1 c0 m51 m50 . . . m1 m0Where

Symbol Bits Des
ription
s 1 The sign bit � 0=positive, 1=negative

c 11 The 
hara
teristi
 (exponent)

m 52 The mantissa
r = (−1)s 2c−1023 (1 + m), c =

10∑
k=0

ck2k, m =
51∑

k=0

mk

252−k
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Burden-Faires' Des
ription is not 
omplete...As des
ribed in previous slide, we 
annot represent zero!

There are some spe
ial signals in IEEE-754-1985:Type S (1 bit) C (11 bits) M (52 bits)signaling NaN u 2047 (max) .0uuuuu�u (with at least one 1 bit)quiet NaN u 2047 (max) .1uuuuu�unegative in�nity 1 2047 (max) .000000�0positive in�nity 0 2047 (max) .000000�0negative zero 1 0 .000000�0positive zero 0 0 .000000�0

From: http://www.freesoft.org/CIE/RFC/1832/32.htm
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Examples: Finite Pre
ision

r = (−1)s 2c−1023 (1 + f), c =
10∑

k=0

ck2k, m =
51∑

k=0

mk

252−k

Example #1: 3.0

0 10000000000 100000000000000000000000000000000000000000000000000

r1 = (−1)0 · 2210−1023 ·
(

1 +
1
2

)
= 1 · 21 · 3

2
= 3.0

Example #2: The Smallest Positive Real Number

0 00000000000 000000000000000000000000000000000000000000000000001

r2 = (−1)0 · 20−1023 · (1 + 2−52
)

= (1 + 2−52) · 2−1023 · 1 ≈ 10−308

Numerical Analysis and Computation: Lecture Notes #2 – p.24/37



Examples: Finite Pre
ision

r = (−1)s 2c−1023 (1 + f), c =
10∑

k=0

ck2k, m =
51∑

k=0

mk

252−k

Example #3: The Largest Positive Real Number

0 11111111110 111111111111111111111111111111111111111111111111111

r3 = (−1)0 · 21023 ·
(

1 +
1
2

+
1
22

+ · · ·+ 1
251

+
1

252

)
= 21024 ·

(
2− 1

252

)
≈ 10308
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Something is Missing � Gaps in the Representation 1 of 3There are gaps in the �oating-point representation!Given the representation

0 00000000000 000000000000000000000000000000000000000000000000001for the value 2−1023

252 .

The next larger �oating-point value is
0 00000000000 000000000000000000000000000000000000000000000000010i.e. the value 2−1023

251 .

The di�eren
e between these two values is 2−1023

252 = 2−1075.

Any number in the interval (2−1023

252
,
2−1023

251

) is not representable!
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Something is Missing � Gaps in the Representation 2 of 3A gap of 2−1075 doesn't seem too bad...

However, the size of the gap depend on the value itself...

Consider r = 3.0

0 10000000000 100000000000000000000000000000000000000000000000000and the next value

0 10000000000 100000000000000000000000000000000000000000000000001The di�eren
e is 2
252
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Something is Missing � Gaps in the Representation 3 of 3At the other extreme, the di�eren
e between

0 11111111110 111111111111111111111111111111111111111111111111111and the previous value

0 11111111110 111111111111111111111111111111111111111111111111110is 21023

252
= 2971 ≈ 1.99 · 10292.

That's a �fairly signi�
ant� gap!!!

The number of atoms in the observable universe 
an be esti-mated to be no more than ∼ 1080.
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The Relative GapIt makes more sense to fa
tor the exponent out of the dis
ussion andtalk about the relative gap:

Exponent Gap Relative Gap (Gap/Exponent)

2−1023 2−1075 2−52

21 2−51 2−52

21023 2971 2−52

Any di�eren
e between numbers smaller than the lo
al gap is notrepresentable, e.g. any number in the interval[
3.0, 3.0 +

1
251

)

is represented by the value 3.0.
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The Floating Point �Theorem�

�Theorem:� �Floating point �numbers� represent intervals!

Sin
e (most) humans �nd it hard to think in binary representation,from now on we will for simpli
ity and without loss of generalityassume that �oating point numbers are represented in the normalized�oating point form as...
k-digit de
imal ma
hine numbers

±0.d1d2 · · · dk−1dk · 10n

where

1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9, i ≥ 2, n ∈ Z
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k-Digit De
imal Ma
hine NumbersAny real number 
an be written in the form

±0.d1d2 · · · d∞ · 10n

given in�nite patien
e and storage spa
e.

We 
an obtain the �oating-point representation fl(r) in two ways:

(1) Trun
ating (
hopping) � just keep the �rst k digits.(2) Rounding � if dk+1 ≥ 5 then add 1 to dk. Trun
ate.Examples

flt,5(π) = 0.31415 · 101, flr,5(π) = 0.31416 · 101

In both 
ases, the error introdu
ed is 
alled the roundo� error.

Numerical Analysis and Computation: Lecture Notes #2 – p.31/37

Quantifying the ErrorLet p∗ be and approximation to p, then...De�nition: The Absolute Error �

|p− p∗|

De�nition: The Relative Error �

|p− p∗|
|p| , p 6= 0

De�nition: Signi�
ant Digits �The number of signi�
ant digits is the largest value of t for whi
h

|p− p∗|
|p| < 5 · 10−t
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Sour
es of Numeri
al Error Important!!!1) Representation � Roundo�.

2) Can
ellation � Consider:

0.12345678012345 · 101

− 0.12345678012344 · 101

= 0.10000000000000 · 10−13

this value has (at most) 1 signi�
ant digit!!!

If you assume a �
an
eled value� has more signi�
ant bits (the 
om-puter will happily give you some numbers) � I don't want you pro-gramming the autopilot for any airlines!!!

Numerical Analysis and Computation: Lecture Notes #2 – p.33/37

Examples: 5-digit Arithmeti
Rounding 5-digit arithmeti


(96384 + 26.678)− 96410 =

(96384 + 00027)− 96410 =

96411− 96410 = 1.0000Trun
ating 5-digit arithmeti

(96384 + 26.678)− 96410 =

(96384 + 00026)− 96410 =

96410− 96410 = 0.0000Rearrangement 
hanges the result:
(96384− 96410) + 26.678 = −26.000 + 26.678 = 0.67800Numeri
ally, order of 
omputation matters! (This is a HARDproblem) Numerical Analysis and Computation: Lecture Notes #2 – p.34/37

Loss of Signi�
ant Digits

Subtractive Cancellation

Consider the re
ursive relation

xn+1 = 1− (n + 1)xn with x0 = 1− 1
eThis sequen
e 
an be shown to 
onverge to 0 (in 2 slides).Subtra
tive 
an
ellation produ
es an error whi
h is approximatelyequal to the ma
hine pre
ision times n!.The MatLab 
ode for this example is provided on the webpage.Maple has a routine rsolve that solves this re
ursive relation exa
tly,using the Gamma fun
tion.
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Output from Re
ursive Example

n xn n! n xn n!0 0.63212056 1 11 0.07735223 3.99e+0071 0.36787944 1 12 0.07177325 4.79e+0082 0.26424112 2 13 0.06694778 6.23e+0093 0.20727665 6 14 0.06273108 8.72e+0104 0.17089341 24 15 0.05903379 1.31e+0125 0.14553294 120 16 0.05545930 2.09e+0136 0.12680236 720 17 0.05719187 3.56e+0147 0.11238350 5.04e+003 18 −0.02945367 6.4e+0158 0.10093197 4.03e+004 19 1.55961974 1.22e+0179 0.09161229 3.63e+005 20 −30.19239489 2.43e+01810 0.08387707 3.63e+006
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Proof of Convergen
e to 0The re
ursive relation is

xn+1 = 1− (n + 1)xnwith

x0 = 1− 1

e
= 1− 1

2!
+

1

3!
− 1

4!
+ ...From the re
ursive relation

x1 = 1− x0 =
1

2!
− 1

3!
+

1

4!
− ...

x2 = 1− 2x1 =
1

3
− 2

4!
+

2

5!
− ...

x3 = 1− 3x2 =
3!

4!
− 3!

5!
+

3!

6!
− ......

xn = 1− nxn−1 =
n!

(n + 1)!
− n!

(n + 2)!
+

n!

(n + 3)!
− ...This shows that

xn =
1

n + 1
− 1

(n + 1)(n + 2)
+ ... → 0 as n →∞.
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