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Why Review Calulus???

It's a good warm-up for our brains!

When developing numerial shemes we will use theorems fromalulus to guarantee that our algorithms make sense.

If the theory is sound, when our programs fail we look for bugs in theode!
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Bakground Material � A Crash Course in Calulus

Key onepts from Calulus

• Limits

• Continuity

• Convergene

• Di�erentiability

• Rolle's Theorem

• Mean Value Theorem

• Extreme Value Theorem

• Intermediate Value Theorem

• Taylor's Theorem
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Limit / Continuity
De�nition: Limit � A funtion f de�ned on a set X of realnumbers X ⊂ R has the limit L at x0, written

lim
x→x0

f(x) = Lif given any real number ǫ > 0 (∀ǫ > 0), there exists a real number

δ > 0 (∃δ > 0) suh that |f(x) − L| < ǫ whenever x ∈ X and

0 < |x− x0| < δ.

De�nition: Continuity (at a point) �Let f be a funtion de�ned on a set X of real numbers, and

x0 ∈ X. Then f is ontinuous at x0 if

lim
x→x0

f(x) = f(x0).
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Example: Continuity at x0
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Here we see how the limit x → x0 (where x0 = 0.5) exists for thefuntion f(x) = x + 1
2 sin(2πx).
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Examples: Jump Disontinuity
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The funtion
f(x) =

 x + 1
2 sin(2πx) x < 0.5

x + 1
2 sin(2πx) + 1 x > 0.5has a jump disontinuity at x0 = 0.5.
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Examples: �Spike� Disontinuity
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The funtion

f(x) =

 1 x = 0.5

0 x 6= 0.5has a disontinuity at x0 = 0.5.
The limit exists, but

lim
x→0.5

f(x) = 0 6= 1
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Continuity / Convergene

De�nition: Continuity (in an interval) �The funtion f is ontinuous on the set X (denoted f ∈ C(X))if it is ontinuous at eah point x in X.

De�nition: Convergene of a sequene �Let x = {xn}∞n=1 be an in�nite sequene of real (or omplexnumbers). The sequene x onverges to x (has the limit x) if

∀ǫ > 0, ∃N(ǫ) ∈ Z+: |xn − x| < ǫ ∀n > N(ǫ). The notation

lim
n→∞xn = xmeans that the sequene {xn}∞n=1 onverges to x.
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Illustration: Convergene of a Complex Sequene
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A sequene in z = {zk}∞k=1 onverges to z0 ∈ C (the blak dot) if forany ǫ (the radius of the irle), there is a value N (whih depends on

ǫ) so that the �tail� of the sequene zt = {zk}∞k=N is inside the irle.
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Di�erentiability
Theorem: If f is a funtion de�ned on a set X of real numbers and

x0 ∈ X , then the following statements are equivalent:
(a) ontinuous at x0

(b) {xn}∞n=1 is any sequene in X onverging to x0, then
limn→∞ f(xn) = f(x0).

De�nition: Di�erentiability (at a point) � Let f be a funtion de-�ned on an open interval ontaining x0 (a < x0 < b). f is di�erentiableat x0 if

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

exists.If the limit exists, f ′(x0) is the derivative at x0.

De�nition: Di�erentiability (in an interval) � If f ′(x0) exists ∀x0 ∈
X , then f is di�erentiable on X
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Illustration: Di�erentiability
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Here we see that the limit

lim
x→x0

f(x)− f(x0)
x− x0exists � and approahes the slope / derivative at x0, f ′(x0).
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Continuity / Rolle's Theorem

Theorem: Di�erentiability ⇒ Continuity �If f is di�erentiable at x0, then f is ontinuous at x0.

Theorem: Rolle's Theorem �Suppose f ∈ C[a, b] and that f is di�erentiable on (a, b). If

f(a) = f(b), then ∃c ∈ (a, b): f ′(c) = 0.

a bc

f’(c)=0
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Mean Value Theorem
Theorem: Mean Value Theorem�If f ∈ C[a, b] and f is di�erentiable on (a, b), then ∃c ∈ (a, b):

f ′(c) =
f(b)− f(a)

b− a

.

a bc

f’(c)=[f(b)−f(a)] / [b−a]
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Extreme Value Theorem
Theorem: Extreme Value Theorem �If f ∈ C[a, b] then ∃c1, c2 ∈ [a, b]: f(c1) ≤ f(x) ≤ f(c2) ∀x ∈

[a, b]. If f is di�erentiable on (a, b) then the numbers c1, c2 oureither at the endpoints of [a, b] or where f ′(x) = 0.

a b

c1 = a

c2 = b

a b
a < c1 < b

a < c2 < b
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Taylor's Theorem
Theorem: Taylor's Theorem �Suppose f ∈ Cn[a, b], f (n+1)∃ on [a, b], and x0 ∈ [a, b]. Then

∀x ∈ (a, b), ∃ξ(x) ∈ (x0, x) with f(x) = Pn(x) + Rn(x) where
Pn(x) =

n∑
k=0

f (k)(x0)
k!

(x− x0)k,

Rn(x) =
f (n+1)(ξ(x))

(n + 1)!
(x− x0)(n+1).

Pn(x) is alled the Taylor polynomial of degree n, and Rn(x)is the remainder term (trunation error).

Note: f (n+1)∃ on [a, b], but is not neessarily ontinuous.
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Illustration: Taylor's Theorem f(x) = sin(x)
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Taylor's Theorem: Computer Programming � Maple

• A Taylor polynomial of degree n requires all derivatives upto order n and degree n + 1 for the Remainder .

• In general, derivatives may be ompliated expressions.

• Maple omputes derivatives aurately and e�iently � di�er-entiation uses the ommand diff(f(x), x);

• Maple has a routine for Taylor series expansions � �nding theTaylor's series uses the ommand taylor(f(x), x=x0, n);,meaning the Taylor series expansion about x = x0 using nterms in the expansion.

• A Maple worksheet is available with many of these basi om-mands through my webpage for this lass.
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Taylor's Theorem: Computer Programming � MatLab

• Most versions of MatLab have a symboli pakage that inludesMaple, so this symboli pakage an help with derivatives.
• Often easier to play to the strengths of eah language and letMaple �nd the Taylor oe�ients to employ in the MatLabode.

• MatLab provides relatively e�ient numerial programs thatare similar and based on C Programming.
• A MatLab ode is provided to show the onvergene of theTaylor series to the osine funtion with inreasing numbers ofterms. This is shown on the Maple worksheet also, and theode is aessible through my webpage.
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Taylor's Approximation for Cosine Funtion

• A series of Taylor polynomials approximating cos(x) with n = 2,4, 6, and 8 are shown below.
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Computer Arithmeti and Finite Preision

Computer Arithmeti and Finite Preision
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Finite Preision A single charComputers use a �nite number of bits (0's and 1's) to representnumbers.
For instane, an 8-bit unsigned integer (a.k.a a �har�) is stored:

27 26 25 24 23 22 21 200 1 0 0 1 1 0 1

Here, 26 + 23 + 22 + 20 = 64 + 8 + 4 + 1 = 77, whih represents theupper-ase harater �M� (US-ASCII).
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Finite Preision A 64-bit real number, doubleThe Binary Floating Point Arithmeti Standard 754-1985 (IEEE �The Institute for Eletrial and Eletronis Engineers) standard spe-i�ed the following layout for a 64-bit real number:
s c10 c9 . . . c1 c0 m51 m50 . . . m1 m0Where

Symbol Bits Desription
s 1 The sign bit � 0=positive, 1=negative

c 11 The harateristi (exponent)

m 52 The mantissa
r = (−1)s 2c−1023 (1 + m), c =

10∑
k=0

ck2k, m =
51∑

k=0

mk

252−k
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Burden-Faires' Desription is not omplete...As desribed in previous slide, we annot represent zero!

There are some speial signals in IEEE-754-1985:Type S (1 bit) C (11 bits) M (52 bits)signaling NaN u 2047 (max) .0uuuuu�u (with at least one 1 bit)quiet NaN u 2047 (max) .1uuuuu�unegative in�nity 1 2047 (max) .000000�0positive in�nity 0 2047 (max) .000000�0negative zero 1 0 .000000�0positive zero 0 0 .000000�0

From: http://www.freesoft.org/CIE/RFC/1832/32.htm
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Examples: Finite Preision

r = (−1)s 2c−1023 (1 + f), c =
10∑

k=0

ck2k, m =
51∑

k=0

mk

252−k

Example #1: 3.0

0 10000000000 100000000000000000000000000000000000000000000000000

r1 = (−1)0 · 2210−1023 ·
(

1 +
1
2

)
= 1 · 21 · 3

2
= 3.0

Example #2: The Smallest Positive Real Number

0 00000000000 000000000000000000000000000000000000000000000000001

r2 = (−1)0 · 20−1023 · (1 + 2−52
)

= (1 + 2−52) · 2−1023 · 1 ≈ 10−308
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Examples: Finite Preision

r = (−1)s 2c−1023 (1 + f), c =
10∑

k=0

ck2k, m =
51∑

k=0

mk

252−k

Example #3: The Largest Positive Real Number

0 11111111110 111111111111111111111111111111111111111111111111111

r3 = (−1)0 · 21023 ·
(

1 +
1
2

+
1
22

+ · · ·+ 1
251

+
1

252

)
= 21024 ·

(
2− 1

252

)
≈ 10308
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Something is Missing � Gaps in the Representation 1 of 3There are gaps in the �oating-point representation!Given the representation

0 00000000000 000000000000000000000000000000000000000000000000001for the value 2−1023

252 .

The next larger �oating-point value is
0 00000000000 000000000000000000000000000000000000000000000000010i.e. the value 2−1023

251 .

The di�erene between these two values is 2−1023

252 = 2−1075.

Any number in the interval (2−1023

252
,
2−1023

251

) is not representable!
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Something is Missing � Gaps in the Representation 2 of 3A gap of 2−1075 doesn't seem too bad...

However, the size of the gap depend on the value itself...

Consider r = 3.0

0 10000000000 100000000000000000000000000000000000000000000000000and the next value

0 10000000000 100000000000000000000000000000000000000000000000001The di�erene is 2
252
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Something is Missing � Gaps in the Representation 3 of 3At the other extreme, the di�erene between

0 11111111110 111111111111111111111111111111111111111111111111111and the previous value

0 11111111110 111111111111111111111111111111111111111111111111110is 21023

252
= 2971 ≈ 1.99 · 10292.

That's a �fairly signi�ant� gap!!!

The number of atoms in the observable universe an be esti-mated to be no more than ∼ 1080.
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The Relative GapIt makes more sense to fator the exponent out of the disussion andtalk about the relative gap:

Exponent Gap Relative Gap (Gap/Exponent)

2−1023 2−1075 2−52

21 2−51 2−52

21023 2971 2−52

Any di�erene between numbers smaller than the loal gap is notrepresentable, e.g. any number in the interval[
3.0, 3.0 +

1
251

)

is represented by the value 3.0.
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The Floating Point �Theorem�

�Theorem:� �Floating point �numbers� represent intervals!

Sine (most) humans �nd it hard to think in binary representation,from now on we will for simpliity and without loss of generalityassume that �oating point numbers are represented in the normalized�oating point form as...
k-digit deimal mahine numbers

±0.d1d2 · · · dk−1dk · 10n

where

1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9, i ≥ 2, n ∈ Z
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k-Digit Deimal Mahine NumbersAny real number an be written in the form

±0.d1d2 · · · d∞ · 10n

given in�nite patiene and storage spae.

We an obtain the �oating-point representation fl(r) in two ways:

(1) Trunating (hopping) � just keep the �rst k digits.(2) Rounding � if dk+1 ≥ 5 then add 1 to dk. Trunate.Examples

flt,5(π) = 0.31415 · 101, flr,5(π) = 0.31416 · 101

In both ases, the error introdued is alled the roundo� error.
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Quantifying the ErrorLet p∗ be and approximation to p, then...De�nition: The Absolute Error �

|p− p∗|

De�nition: The Relative Error �

|p− p∗|
|p| , p 6= 0

De�nition: Signi�ant Digits �The number of signi�ant digits is the largest value of t for whih

|p− p∗|
|p| < 5 · 10−t
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Soures of Numerial Error Important!!!1) Representation � Roundo�.

2) Canellation � Consider:

0.12345678012345 · 101

− 0.12345678012344 · 101

= 0.10000000000000 · 10−13

this value has (at most) 1 signi�ant digit!!!

If you assume a �aneled value� has more signi�ant bits (the om-puter will happily give you some numbers) � I don't want you pro-gramming the autopilot for any airlines!!!
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Examples: 5-digit ArithmetiRounding 5-digit arithmeti

(96384 + 26.678)− 96410 =

(96384 + 00027)− 96410 =

96411− 96410 = 1.0000Trunating 5-digit arithmeti
(96384 + 26.678)− 96410 =

(96384 + 00026)− 96410 =

96410− 96410 = 0.0000Rearrangement hanges the result:
(96384− 96410) + 26.678 = −26.000 + 26.678 = 0.67800Numerially, order of omputation matters! (This is a HARDproblem) Numerical Analysis and Computation: Lecture Notes #2 – p.34/37

Loss of Signi�ant Digits

Subtractive Cancellation

Consider the reursive relation

xn+1 = 1− (n + 1)xn with x0 = 1− 1
eThis sequene an be shown to onverge to 0 (in 2 slides).Subtrative anellation produes an error whih is approximatelyequal to the mahine preision times n!.The MatLab ode for this example is provided on the webpage.Maple has a routine rsolve that solves this reursive relation exatly,using the Gamma funtion.
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Output from Reursive Example

n xn n! n xn n!0 0.63212056 1 11 0.07735223 3.99e+0071 0.36787944 1 12 0.07177325 4.79e+0082 0.26424112 2 13 0.06694778 6.23e+0093 0.20727665 6 14 0.06273108 8.72e+0104 0.17089341 24 15 0.05903379 1.31e+0125 0.14553294 120 16 0.05545930 2.09e+0136 0.12680236 720 17 0.05719187 3.56e+0147 0.11238350 5.04e+003 18 −0.02945367 6.4e+0158 0.10093197 4.03e+004 19 1.55961974 1.22e+0179 0.09161229 3.63e+005 20 −30.19239489 2.43e+01810 0.08387707 3.63e+006
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Proof of Convergene to 0The reursive relation is

xn+1 = 1− (n + 1)xnwith

x0 = 1− 1

e
= 1− 1

2!
+

1

3!
− 1

4!
+ ...From the reursive relation

x1 = 1− x0 =
1

2!
− 1

3!
+

1

4!
− ...

x2 = 1− 2x1 =
1

3
− 2

4!
+

2

5!
− ...

x3 = 1− 3x2 =
3!

4!
− 3!

5!
+

3!

6!
− ......

xn = 1− nxn−1 =
n!

(n + 1)!
− n!

(n + 2)!
+

n!

(n + 3)!
− ...This shows that

xn =
1

n + 1
− 1

(n + 1)(n + 2)
+ ... → 0 as n →∞.
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