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Why Review Calculus???

It's a good warm-up for our brains!

When developing numerical schemes we will use theorems from

calculus to guarantee that our algorithms make sense.

If the theory is sound, when our programs fail we look for bugs in the

code!
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Background Material — A Crash Course in Calculus

Key concepts from Calculus
e Limits
e Continuity
e Convergence
e Differentiability
e Rolle’s Theorem
e Mean Value Theorem
e Extreme Value Theorem
e Intermediate Value Theorem

e Taylor's Theorem
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Limit / Continuity

Definition: Limit — A function f defined on a set X of real
numbers X C R has the limit L at zq, written

lim f(z)=1L

T—xo

if given any real number € > 0 (Ve > 0), there exists a real number
d > 0 (35 > 0) such that |f(z) — L| < € whenever x € X and
0< |$ — :ZJO| < 4.

Definition: Continuity (at a point) —
Let f be a function defined on a set X of real numbers, and
2o € X. Then f is continuous at x if

lim f(z) = f(zo).

r—XQ
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Example: Continuity at z¢

0.8 —

0.6 —

0.4 —

0.2 |

0 1 l 1 l 1 l 1 l 1
0 0.2 0.4 0.6 0.8 1

Here we see how the limit  — x¢ (where o = 0.5) exists for the
function f(z) =z + § sin(2mz).
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Examples: Jump Discontinuity

0.5— —

The function

x + Lsin(2nx) x < 0.5
f(z) = -
r+ 3sin(2rz)+1  x>0.5

has a jump discontinuity at 2o = 0.5.
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Examples: “Spike” Discontinuity

i Ps -
0.8 -
0.6~ -
0.4 -
0.2 —
o L | L | L | L | L
0 0.2 0.4 0.6 0.8 1
The function The limit exists, but
1 z=0.5 lim f(x)=0#1
0 x#05

has a discontinuity at g = 0.5.
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Continuity / Convergence

Definition: Continuity (in an interval) —
The function f is continuous on the set X (denoted f € C'(X))

if it is continuous at each point z in X.

Definition: Convergence of a sequence —

Let x = {x,}22, be an infinite sequence of real (or complex
numbers). The sequence x converges to x (has the limit z) if
Ve >0, IN(e) € Z*: |z, — x| < € Yn > N(€). The notation

lim z, ==z
n—oo

means that the sequence {x,}5°; converges to .

Numerical Analysis and Computation: Lecture Notes #2 — p.8/37




Illustration: Convergence of a Complex Sequence

1
2 (@]
3 (@]
4 O
(@]
N-2
(@]
k>=N
O O
N-1 Ce
© o O

A sequence in z = {2}, converges to zg € C (the black dot) if for
any e (the radius of the circle), there is a value N (which depends on

€) so that the “tail” of the sequence z, = {2z }72  is inside the circle.

Numerical Analysis and Computation: Lecture Notes #2 — p.9/37

Differentiability

Theorem: If f is a function defined on a set X of real numbers and
xo € X, then the following statements are equivalent:
(a) continuous at xg
(b) {z,}S2, is any sequence in X converging to x, then
limy, 0 f(zn) = f(20).

Definition: Differentiability (at a point) — Let f be a function de-
fined on an open interval containing zo (a < zo < b). f is differentiable
at xg if

f'(xo) = lim M

T—To r — X

exists.

If the limit exists, f'(zg) is the derivative at z.

Definition: Differentiability (in an interval) — If f'(x() exists Vxy €
X, then f is differentiable on X
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Illustration: Differentiability

0.8—
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Here we see that the limit

i 1@ = o)

T—XTQ r — X0

exists — and approaches the slope / derivative at zq, f'(x0).
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Continuity / Rolle’s Theorem

Theorem: Differentiability = Continuity —

If f is differentiable at xq, then f is continuous at xg.

Theorem: Rolle’s Theorem —
Suppose f € Cla,b] and that f is differentiable on (a,b). If
f(a) = f(b), then 3¢ € (a,b): f'(c) = 0.

a c b

T
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Mean Value Theorem Extreme Value Theorem

Theorem: Mean Value Theorem— Theorem: Extreme Value Theorem —
If f € Cla,b] and f is differentiable on (a,b), then 3¢ € (a,b): If f € Cla,b] then Jey,co € [a,b]: fle1) < fx) < f(eo) Va €
Fle) = f(b) — f(a)_ [a,b]. If fis differentiable on (a,b) then the numbers ¢1, co occur
b-a either at the endpoints of [a, b] or where f'(z) = 0.
A A A

a<c2<b
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Taylor’s Theorem Illustration: Taylor’'s Theorem f(z) = sin(z)
Theorem: Taylor’'s Theorem — o 2 R 1ot .
Suppose f € C"[a,b], f™*Y3 on [a,b], and zo € [a,b]. Then i} /\4 i
vV € (a,b), 3¢(x) € (x, ) with f(z) = Py(x) + Ry (x) where ° ° ’

"L ) (20) 1 1 ]
Pu(x) =) @ )", I b T
s e e e
(n+1)
(n+1)!
P, (z) is called the Taylor polynomial of degree n, and R, (x) 1 4 5 s 1 g 1 41 1 43
P —r— — e e B il
is the remainder term (truncation error). 13(@) =@ 31" i 50 T * o T1m” * 13!
—_———
P5(ac)

Note: f("*13 on [a,b], but is not necessarily continuous.
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Taylor’'s Theorem: Computer Programming — Maple

e A Taylor polynomial of degree n requires all derivatives up
to order n and degree n + 1 for the Remainder.

e In general, derivatives may be complicated expressions.

e Maple computes derivatives accurately and efficiently — differ-
entiation uses the command diff(f(x), x);

e Maple has a routine for Taylor series expansions — finding the
Taylor’s series uses the command taylor(f(x), x=x0, n);,
meaning the Taylor series expansion about z = x( using n
terms in the expansion.

e A Maple worksheet is available with many of these basic com-

mands through my webpage for this class.
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Taylor’'s Theorem: Computer Programming — MatLab

e Most versions of MatLab have a symbolic package that includes
Maple, so this symbolic package can help with derivatives.

e Often easier to play to the strengths of each language and let
Maple find the Taylor coefficients to employ in the MatLab
code.

e MatLab provides relatively efficient numerical programs that
are similar and based on C Programming.

e A MatLab code is provided to show the convergence of the
Taylor series to the cosine function with increasing numbers of
terms. This is shown on the Maple worksheet also, and the

code is accessible through my webpage.
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Taylor’s Approximation for Cosine Function

e A series of Taylor polynomials approximating cos(z) with n = 2,

4, 6, and 8 are shown below.

Taylor Series Approx to Cosine
T T
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Computer Arithmetic and Finite Precision

Computer Arithmetic and Finite Precision
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Finite Precision A single char

Computers use a finite number of bits (0's and 1's) to represent

numbers.

For instance, an 8-bit unsigned integer (a.k.a a “char”) is stored:

27 | 26 | 95| 24 | 93|92 |9l ] 90
ol1l0]0|1]1]0]1

Here, 26 +23 + 22 420 =64 + 8+ 4+ 1 = 77, which represents the
upper-case character “M" (US-ASCII).
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Finite Precision A 64-bit real number, doubl e

The Binary Floating Point Arithmetic Standard 754-1985 (IEEE —
The Institute for Electrical and Electronics Engineers) standard spec-

ified the following layout for a 64-bit real number:
SC10C9 ... C1 CoInyy M5p ... M7 INg

Where

Symbol Bits Description

S 1 The sign bit — O=positive, 1=negative
c 11 The characteristic (exponent)
m 52 The mantissa

r=(—=1)72¢7103 (1 4 m), c—chQk m = 2252k
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Burden-Faires’ Description is not complete...

As described in previous slide, we cannot represent zero!

There are some special signals in IEEE-754-1985:

Type S (1 bit) C (11 bits) M (52 bits)
signaling NaN u 2047 (max)  .Ouuuuu—u (with at least one 1 bit)
quiet NaN u 2047 (max)  .luuuuu—u
negative infinity 1 2047 (max)  .000000—0
positive infinity 0 2047 (max)  .000000—0
negative zero 1 0 .000000—0
positive zero 0 0 .000000—0

From: http://ww. freesoft. org/ Cl E/ RFC/ 1832/ 32. ht m
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Examples: Finite Precision

r=(=1)%2c71038 (1 4 f), c—chQk m= 2252k

Example #1: 3.0

010000000000 100000000000000000000000000000000000000000000000000

1 3
ry = (210 2201028 (1 + 5) —12' 2 =30

Example #2: The Smallest Positive Real Number
000000000000 000000000000000000000000000000000000000000000000001

ry = (—1)0 . 2071023 (1+2° 52) (142752).27103 1 & 10308
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Examples: Finite Precision

10 51
_ k m
P = (—1)° 2071023 (1 4 p), C:chQa m:ZQSQ—_k
k=0 k=0

Example #3: The Largest Positive Real Number

011111111110111111111111111171111111111111711111711111111111111111

Something is Missing — Gaps in the Representation 1of3

There are gaps in the floating-point representation!
Given the representation

000000000000 000000000000000000000000000000000000000000000000001

271023
for the value 55

The next larger floating-point value is

) 1 1 1 1
rg = (—1)0.210%. <1+—+—2+~~+3+5>
22 2 2 000000000000 000000000000000000000000000000000000000000000000010
1 _
21024, (2 - 252) ~ 10308 i.e. the value 2 21,223
The difference between these two values is 2_215223 = 2~ 1075,
9—1023 9—1023

Any number in the interval <2527 251) is not representable!
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Something is Missing — Gaps in the Representation 20of 3 Something is Missing — Gaps in the Representation 30f3

A gap of 271975 doesn’t seem too bad...
However, the size of the gap depend on the value itself...

Consider 7 = 3.0

010000000000 100000000000000000000000000000000000000000000000000
and the next value

010000000000 100000000000000000000000000000000000000000000000001

The difference is 252
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At the other extreme, the difference between
o1111111111011111 111111, 1. 2122121111121 1111111111111 11111
and the previous value

0o1111111111011111111 1111111211 114111111111 1111110
21023

is 5 = 2971 ~1.99 - 10?2,

That's a "fairly significant” gap!!!

The number of atoms in the observable universe can be esti-

mated to be no more than ~ 10%°,
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The Relative Gap

It makes more sense to factor the exponent out of the discussion and

talk about the relative gap:

Exponent | Gap Relative Gap (Gap/Exponent)
9—1023 9—1075 952
91 9—51 9—52
91023 9971 9—52

Any difference between numbers smaller than the local gap is not

representable, e.g. any number in the interval

1
{&Q30+§§)

is represented by the value 3.0.
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The Floating Point “Theorem”

“Theorem:” —
Floating point “numbers” represent intervals!

Since (most) humans find it hard to think in binary representation,
from now on we will for simplicity and without loss of generality
assume that floating point numbers are represented in the normalized
floating point form as...

k-digit decimal machine numbers

+0.dydy - - - dj—1dj, - 107

where
1<di <9, 0<d;<9,i>2, neZ
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k-Digit Decimal Machine Numbers

Any real number can be written in the form
£0.didy - - - doo - 10"

given infinite patience and storage space.
We can obtain the floating-point representation f1 (r) in two ways:

(1) Truncating (chopping) — just keep the first & digits.
(2) Rounding — if dj41 > 5 then add 1 to di. Truncate.

Examples
fles5(m) =0.31415- 101, 1, 5(7) = 0.31416 - 10"

In both cases, the error introduced is called the roundoff error.
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Quantifying the Error

Let p* be and approximation to p, then...

Definition: The Absolute Error —

lp — p*|

Definition: The Relative Error —
lp — p*|

, P#O
p

Definition: Significant Digits —
The number of significant digits is the largest value of ¢ for which
lp — p|

<5-107¢
p
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Sources of Numerical Error Important!!!

1) Representation — Roundoff.
2) Cancellation — Consider:

0.12345678012345 - 101
— 0.12345678012344 - 10*
= 0.10000000000000 - 10~ 13

this value has (at most) 1 significant digit!!!

If you assume a “canceled value” has more significant bits (the com-
puter will happily give you some numbers) — | don't want you pro-

gramming the autopilot for any airlines!!!
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Examples: 5-digit Arithmetic

Rounding 5-digit arithmetic

(96384 + 26.678) — 96410 =
(96384 + 00027) — 96410 =
96411 — 96410 = 1.0000

Truncating 5-digit arithmetic

(96384 + 26.678) — 96410 =
(96384 + 00026) — 96410 =
96410 — 96410 = 0.0000

Rearrangement changes the result:
(96384 — 96410) + 26.678 = —26.000 + 26.678 = 0.67800

Numerically, order of computation matters! (This is a HARD

prOblem) Numerical Analysis and Computation: Lecture Notes #2 — p.34/37

Loss of Significant Digits

Subtractive Cancellation

Consider the recursive relation

1

This sequence can be shown to converge to 0 (in 2 slides).

Subtractive cancellation produces an error which is approximately

equal to the machine precision times n!.
The MatLab code for this example is provided on the webpage.

Maple has a routine rsolve that solves this recursive relation exactly,

using the Gamma function.
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Output from Recursive Example

n Tn n! | n Tn n!
0  0.63212056 1|11 0.07735223 3.99e+007
1 0.36787944 1|12 0.07177325 4.79e+-008
2 0.26424112 2| 13 0.06694778 6.23e+4-009
3 0.20727665 6 | 14 0.06273108 8.72e+4-010
4 0.17089341 24 | 15 0.05903379 1.31e+012
5  0.14553294 120 | 16 0.05545930 2.09e+013
6  0.12680236 720 | 17 0.05719187 3.56e+014
7 0.11238350 5.04e+003 | 18 —0.02945367 6.4e+015
8 0.10093197 4.03e+004 | 19 1.55961974 1.22e+017
9 0.09161229 3.63e+005 | 20 —30.19239489  2.43e+018
10 0.08387707  3.63e+006
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Proof of Convergence to 0

The recursive relation is

Tny1=1—(n+ 1)z,

with
_, R
e TR TR TR
From the recursive relation
_ 111
e R TR
gy l_2 2
T
) 31 31 3
xr3 = 1-— 5:62 = Z - E g —
n! n! n!
= 1— 1 = — — ...
on M = T w2l Tt
This shows that
! ! + 0
X e — e — as n — o0.
"Thntl (n+Dn+2)
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