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shysiological emphasis); (3) Sections 8.3 and 8.7 {population biology); (4) Sections
3, 8.4, 8.6, and 8.8 (mathematical techniques with examples drawn from molecu-
r models).

ONDUCTION, THE ACTION POTENTIAL,
'DGKIN-HUXLEY EQUATIONS

me of the leading frontiers of biophysics is the study of neurophysiology, which
nly several decades ago spawned an understanding of the basic processes underly-
1g-the-unique-electrochemical communication system.{hat_constitutes our nervous
ystem. Our brains and every other subsystem in the nervous system are composed
f cells called neurons. While these vary greatly in size, shape, and properties, such
ells commonly share certain typical features (see Figure 8.2). Anatomicaily, the
ell body (soma) is the site at which the nucleus and major subcellular structures are
scated and is the central point from which synthesis and metabolism are coordi-
ated.

A more prominent feature is a long tube-like structure called the axon whose
sngth can exceed 1 meter (that is, ~10° times the dimension of the cell body). It is
nown that the propagation of a nerve signal is electrical in nature; after being ini-
iated at a site called the axon hillock (see Figure 8.2) propagates down the length of
he axon to terminal branches, which form loose connections {synapses) with neigh-
)oring neurons. A propagated signal is called an action potential (see Figure 8.3).

A neuron has a collection of dendrites (branched, “root-like” appendages),
vhich receive incoming signals by way of the synapses and convey them to the
oma.

How the detailed electrochemical mechanism operates is a fascinating story
hat, broadly speaking, is now well understood. It is known that neuronal signals
ravel along the cell membrane of the axon in the form of a local voltage difference
\cross the membrane. A word of explanation is necessary. In the resting state the
sytoplasm (cellular fiuid) inside the axon contains an ionic composition that makes
he cell interior slightly negative in potential (—50 mV difference) with respect to
e outside (see Figure 8.4). Such a potential difference is maintained at a metabolic
sxpense to the cell by active pumps located on the membrane. These continuaily
ransport sodium ions (Na®) to the outside of the cell and convey potassium ions
(K*) inwards so that concentration gradients in both species are maintained. The dif-
ferences in these and other jonic concentrations across the membrane result in the
net electric potential that is maintained across the membrane of the living cell. In
this section we take the convention that the voltage v is the potential difference
(inside minus outside) for the membrane.

Thinking of the axon as a long electrical cable is a vivid but somewhat erro-
neous conception of its electrical properties. First, while a current is implicated, it is
predominantly made up of ionic flow (not electrons), and its direction is not longitu-
dinal but transverse (into the cell) as shown in Figure 8.5. Second, while a passive
cable has fixed resistance per unit length, an axon has an excitable membrane whose
resistance to the penetration of ions changes as the potential difference v is raised.
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- action potential consists of local signal is generally propagated along the neuronal
age across the axon membrane axon from soma to terminal branches. [Afier
y changes in the conductivities of the Hodgkin and Huxley (1 952), from Kuffler, Nicholls,
Ta* and K*(gn, 8x) In a time and Martin {1984) p. 151, fig, 13A, From Neuron

n here. (Note: mho, a unit commonly  to Brain, 2nd edition, by permission of Sinauer
ctance, is equivalent 1o 1 Johm.) This  Associates Inc.}

The flow of charged ions across a cell membrane is restricted to specific
molecular sites called pores, which are sprinkied liberally along the membrane sur-
face. It is now known that many different kinds of pores (each specific to a given
ion) are present and that these open and close in response to local conditions includ-
ing the electrical potential across the membrane. This can be broadly understood in
terms of changes in the conformation of the proteins making up these pores, al-
though the biophysical details are not entirely known.

To understand the process by which an action potential signal is propagated,
we must look closely at events happening in the immediate vicinity of the mem-
brane. Starting the process requires a threshold voltage: the potential difference must
be raised to about —30 to —20 mV at some site on the membrane. Experimentally

Cellular Extraceliular
+ 30 117 Na®
+ L R K
+ 4 f———120 i
+

lij————b(} AT

. the resting state, cells have an ionic higher potassium (K*) concentration inside the cell.
given here in millimolar units} that Cl” and A~ represent respectively chiorine ions and
at of their environment. Active other ionic species such as proteins.

nigins a lower sodium (Na™) and a
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he axon Of @ newron receives o membrane, creating local currents. Since adjacent
simulus at some point along its portions of the membrane are thereby stimulated,
tivities of the membrane for Na* the wave of activity known as the action potential
Fhis permits ions to cross the can be propagated.

s can be done by a stimulating electrode that pierces a single neuron. Biologically
s happens at the axon hillock in response to an integrated appraisal of excitatory
suts impinging on the soma. As a result of reaching this threshold voltage, the fol-
wing sequence of events OCCurs (see Figure 8.6):

Sodium channels open, letting a flood of Na* ions enter the cell interior. This
causes the membrane potential to depolarize further; that is, the inside be-
comes positive with respect to the outside, the reverse of resting-state polariza-
tion.

After a slight delay, the potassium channels open, letting K" leave the cell.
This restores the original polarization of the membrane, and further causes an
overshoot of the negative rest potential.

 The sodium channels then close in response to a decrease in the potential dif-
ference.

. Adjacent to a site that has experienced these events the potential difference ex-
ceeds the threshold level necessary to set in motion step 1. The process re-
peats, leading to spatial conduction of the spike-like signal. The action poten-
tial can thus be transported down the length of the axon without attenuation or
change in shape. Mathematically, this makes it a traveling wave.

The finer details of this somewhat impressionistic description were uncovered
n 1952 in a series of brilliant but painstaking experiments due to Hodgkin, Huxley,
ind Katz on the giant squid axon, a cell whose axonal diameter is large enough to
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s are closed. When a threshold permission of Sinauer Associates Inc.]

i, the m gates open rapidly,

ermit intracellular recording of the voltage by microelectrodes. One technique par-
cularly useful in elucidating the time sequence of ionic conductivities is the
oltage-clamp experiments. In these, an axon is excised from its cell and its contents
re emptied (in a manner akin to squeezing a tube of toothpaste). A thin wire in-
erted into the hollow axon replaces its cytoplasm and permits an artificially constant
oltage to be applied simultaneously along its length. Provided the preparation is
ept physiologically active, one can observe a spatially constant but time-varying
oltage across the membrane. This voltage has typical action-potential characteris-
ics.

It is further possible to follow the time behavior of the ionic conductivities by a
ariety of techniques. These include patch-clamp experiments, in which single pores
re isolated on bits of membrane by suction using fine micropipettes or by selective
snic blocking using agents, such as tetrodotoxin, that bind to ionic pores in a
pecific way. The detailed structure of some ionic pores is beginning to emerge by a
ombination of techniques including electron microscopy. {See Figure 8.7.)

With this physiological description we can now discuss the mathematical
nodel that has played a significant role in the advances in neurophysiology. First, a
stief review of terminology and properties of an electrical circuit is provided in the
0X.

The example given in the box, when somewhat modified, can be used to depict
Jectrical properties of the axonal membrane. The idea underlying the approach on
vhich the Hodgkin-Huxley model is based is to use an electric-circuit analog in
which physical properties such as ionic conductivities are represented as circuit ele-
nents (resistors). The voltage across the membrane thus corresponds to voltage
\cross a collection of resistors, each one depicting a set of ionic pores that selec-
ively permit a limited current of ions. By previous discussions, the resistance {or
:quivalently, the conductrivities of such pores) depends on voltage.
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Electric Circuit

The following terms are applied in describing a circuit, such as the one shown in Figure
8.8{a).

g{1) = the charge (net positive or negative charge carried by particles in the cir-
cuit at time ),

I{#) = the current {rate of flow of charge in the circuit) = dg/dt,

V(1) = the voltage {electromotive force that causes motion of charge; also a

mcasure of the differenice in the elecicdl potential across a given ele-
ment or set of elements),
R = resistance {property of a material that tends to impede the flow of
charged particles),
conductance = 1/R,
capacitance (a property of any element that tends to separate physically
one group of charged particles from another; this causes a difference in
electric potential across the element, called a capacitor).

My oo
]

The following physical relationships hold in a circuit:

1.  Ohm’s low: the voltage drop across a resistor is proportional to the curent
through the resistor; R or 1/g is the factor of proportionality:

Valt) = 1R = © (’ ) (2)

2.  Faraday's law: the voltage drop across a capacitor is proportional to the electric
charge; 1/C is the factor of proportionality:

gl
Ve
(0 === (3)
3. Kirchhoff s law: the voltage supplied is equal to the total voltage drops in the cir-
cuit. For example:
V() = Velt) + Velo).

4. For several elements in parallel, the total current is equal to the sum of currents
in each branch; the voltage across each branch is then the same. In the example
shown in Figure 8.8(5) the current is

v v Vv
IM~MWHM+hmmt+E+E
=Vig: + &2+ 8). (4a)
Also,
V() = g(n)C. (4b)

Differentiating {4b) leads to

o e = (4c)




Limit Cycles, Oscillations, and Excitable Systems 321

Thus

— =gt gt (4d)

In the circuit analog of an axon shown in Figure 8.9, resistance to ionic flow
oss. the-membrane is. depicted by the conductivities gx, g, and gu. Resistance to

ic motion inside the axon in an axial direction is represented by longitudinal ele-
nts whose resistance per unit length is fixed and much higher than that of the
dinm surrounding the outer membrane. {The axon has a small radius, which im-
2 greater resistance o flow.) The finite thickness of the membrane is associated
h its property of capacitance, that is, a separation of charge. We must remember,
looking at this schematic representation, that the axon is cylindrical. Therefore the
lowing modified definitions prove convenient:

gf{x, f) = charge density inside the axon at location x and time 7 (units of
charge per unit length),
C = capacitance of the membrane per unit area,
a = radius of the axon,
I{x, £} = net rate of exit of positive ions from the exterior to the interior
of the axon per unit membrane area at (x, ),
o(x, 1) = departure from the resting voltage of the membrane at {x, .

il

It

1en by previous remarks the following relationship is satisfied:
q(x, 1) = 2maCoelx, 1). (5)

We shall now assume that a voltage clamp is applied to the axon so that
= gq(t), ; = I;(1), and v = (¢) and thus all points on the inside of the axon are at
& same voltage at any instant. This means that charge will not move longitudinaily
here is no force leading to its motion). It can only change by currents that convey
ins across the cell membrane. In this case the rate of change of internal charge can
g written

dg

bl QI;'.

o 2 (6)
he current I, can be further expressed as a sum of the three currents Iva, /x, and /o
sodium, potassium, and all other jons) and related to the potential difference that
auses these, as follows:

%; = —2zmalhe + Ik + 1), (7)
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schematic version of the electric and R, represent the resistance of inside and
m roughly equivalent to the axonal outside environments; C depicts the membrane
¢ Ena, and go are the voltage- capacitance. (Note: go is assumed to be constant.)

nductivites to K*, Na*, and CI"; R,

INa = gNa(U - DNS)’ (8(1)
Ix = gx(v - UK), {8b}
I = gulv — v (8cj

Here tx,, Uk, and v, represent that part of the resting membrane potential that is due
to the contributions of the ions Na*, K*, and L (all other mobile species). Further-
more, equation (7) in its entirety may be written in terms of voltage by using equa-
tion (5), with the result that :

dv 1

- = ~ cleml)o - ona) + gx(0)(v ~ v} + glo — w)l. (9)
It is generally assumed that g is independent of v (is constant). At this point
Hodgkin, Huxley, and Katz departed somewhat from a straightforward electrical
analysis and went on to speculate on a possible mechanism governing the ionic con-
ductivities gn. and gx. After numerous trial-and-error models, laboriously solved on
mechanical calculators, they found it necessary to introduce three variables n, m,
and & in the dynamics of the ionic pores. These hypothetical quantities could perhaps
be interpreted as concentrations of proteins that must act in concert to open or close

a pore. {See Figure 8.6.) However, the equations were chosen to fit the data, not
Ll a e Ervmdemaaninl bnawledore nf malaenlar m?ﬂhanisms.
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They defined
8Na =& -ENamshs (10)
gx = Zxn', (11)
sere § '8 are constant conductivity parameters. They suggested that n, m, and h are

ltage-sensitive gate proteins (see Figures 8.6 and 8.7), that obey differential equa-
ns in which voltage dependence is described:

.E:}; = a,(0)(1 —n) — Bulo)n, (12a)
P — anl)l = m) = Bulohm, (12b)
ijg = ai(0)(1 — k) — Balv)h. {12¢)

t addition, the q{lantities Qny Cmy Ohy Bry Bm, and By are assumed to be voltage-de-
sndent as follows:

wv) = 0.1(p + 25) (el 10 — 1), Bnlv) = 4 €, (13a,b)
W) = 0.07 e, Bu(v) = (e®07 + DL (13¢d)
(v) = 0.01v + 10)(eter 1/ — 1), B.(v) = 0.125¢°%. {13e.f)

he values of other constants appearing in the equations are gns = 120, Zx = 36,
nd g = 0.3 mmho em™ v = — 115, g = 12, and v, = —10.5989 mV.

With a physiological system as intricate as the neural axon, it is reasonable to
xpect rather complicated interactions between variables. In assessing the Hodgkin-
juxley model, we should keep in mind that all but one of its equations were tailored
o fit experimental observations. Part of the surprisingly great success of the model
ies in its ability to predict fairly accurately the results of many other observations
10t used in formulating the equations. A valid eriticism of the model is that the inter-
4al variables m, n, and ki do not clearly relate to underlying molecular mechanisms;
‘hese were, of course, unknown at the time).

The Hodgkin-Huxley equations consist of four coupled ODEs with highly non-
linear terms. For this reason they are quite difficult to understand in an analytic
mathematical way. In the next section we explore this model in the elegant way Sug-
gested by Fitzhugh. After drawing certain conclusions about the behavior of these
equations, we will goontoa much simpler model that captures essential features of
the dynamics.

GH’S ANALYSIS OF THE HODGKIN-HUXLEY EQUATIONS

Tn an elegant paper written in 1960 Fitzhugh set out “to expose to view part of the
inner working mechanism of the Hodgkin-Huxley equations.” In the year this paper
appeared, the three most advanced techniques applied to analysis of nerve conduc-

tion models were (1) calculations on a desk calculator (Hodgkin and Huxley’s
i . -t ' tel mmsnbars nF tha late 10808, {3)
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. of the analog computer. Fitzhugh (1960) notes that on the digital computer the
ution was very slow, “involving a week or more for a solution, including time for
aying instructions to the operating personnel . . . . The analog computer used by
zhugh was an electronic device consisting of 40 operational amplifiers, six diode
)ction generators, and five servo multipliers. Being much faster than the digital
«chines then in use, it permitted greater flexibility in experimenting with the equa-
ns, but special precautions were necessary to overcome inaccuracies that would
ve drastically changed the results for reasons that will become clear presently.
Fitzhugh was the first investigator to apply qualitative phase-plane methods to
derstanding the Hodgkin-Huxley equations. Since this is a system of four coupled

wations (in the variables V, m, n, and h), the phase space resides in R*.To make
adway in gaining analytic insight, Fitzhugh first considered the variables that
ange most rapidly, viewing all others as slowly varying parameters of the system.
this way he derived a reduced two-dimensional system that could be viewed as a
ase plane. We follow his method here.

The voltage convention adopted by Fitzhugh V = tou — Ui is unfortunately
posite to what subsequently became entrenched in the scientific literature. Thus
» first and second quadrants of his phase plane appear reversed relative to the
»dgkin-Huxley model. To avoid possible confusion in conventions we use capital
when referring to Fitzhugh'’s analysis.

From the Hodgkin-Huxley equations Fitzhugh noticed that the variables V and
change more rapidly than k and »n, at least during certain time intervals. By arbi-
irily setting A and n to be constant we can isolate a set of two equations which de-
ribe a two-dimensional (V, m) phase plane. Plotting the functional relationships
presenting the nullcline equations (# = 0 and V = 0) we obtain Figure 8.10. On
is figure the three intersections A, B, and C are steady states; A and C are stable
sdes, and B is a saddle point.

The directions of flow in this plane prescribe the following: A small displace-
ent from the “rest state” at A causes a return to this stable node, but a shightly
rger deviation (for example, m = Oand V = —20 mV) will lead to a large excur-
on whose final destination is the attracting point C. Note, however, that the null-
ines intersect at very small angles at the points A and B. [See enlarged view, Fig-
¢ 8.11{a).] Consequently there is great sensitivity to any parameter variations that
nd to produce small displacements in these curves. This essentially is the effect of
corporating the modulating influence of the other variables. As some critical
wameter changes, a displacement is produced, resulting in the following sequence
f dynamic behavior:

. The points A and B approach each other and coalesce.

. These both vanish as the nullclines separate, leaving a single stable steady state
at C. When this transition has occurred, any initial state in the Vm plane is
drawn towards C.

Adding a third variable, we might next consider the (V, m, h} equations. A
euristic interpretation given by Fitzhugh is to imagine that as a point traces out a
ajectory of Figure 8.10(a) the orbits themselves are “wiggling,” so that the phase
lane is changing with time. By considering the equation for h, Fitzhugh remarks
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inhibitory stimulus can cause a greater separation
of A and B, making it less likely that threshold will
be exceeded. [From Fitzhugh (1960}, figs. 3, 5,
and 6. Reproduced from the 1. Gen. Physiol. 1960,
vol. 43, pp. 867-896 by copyright permission of the
Biophysical Society.]

that as V becomes negative, s decreases, causing an upwards movement in the V
nullcline. For small displacements from rest state A this means that B moves to the
left, escaping from the moving phase point, which would then return to A. Larger
displacements may initially lie to the left of B, in a region that is initially attracted
towards C. However, as the geometry shifts, these points may be overtaken by the
moving nuliclines and forced back to the rest state of A. Fitzhugh gives more details,
described in greater subtlety, in a good expository way.

The entire Vmhn phase space was reconstructed and represented by a schematic
diagram, a projection into the Vim plane. In the complete system there is no saddle
point. However, for the variables & and » close to their resting values the system is
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entially equivalent to the reduced (V, m) system in which the point B is a saddle
nt. As seen in Figure 8.10(b) small deviations from the stable resting point do not
{ to excitation, but rather to a gradual return to rest. Larger, above-threshold de-
tions result in a large excursion through phase space, in which V first increases
| finally returns with overshoot to the resting state. Such superthreshold trajecto-
; are the phase-space representations of an action potential. The regions marked
these curves with circled numbers correspond to parts of the physiological re-
ynse which have been called the (1) regenerative, (2) active, (3) absolutely refrac-
¢, and (4) relatively refractory phases.
A familiarity with- the Hodgkin-Huxley equations underscores the following:

Excitability: Above-threshold initial voltage leads to rapid response with large
changes in the state of the system.

Stable oscillations: While not described earlier, the presence of an applied
input current represented by an additional term, I{r), on the RHS of equation
(9) (e.g. a step function with [ = —10 pA cm™?) can lead to the formation of a
stable limit cycle in the full model (see Fitzhugh, 1961).

Working with these basic characteristics of the Hodgkin-Huxley model led
zhugh to propose a simpler model that gives a descriptive portrait of the neural
~itation without direct reference to known or conjectured physiological variables.
preparation for an analysis of his much simpler model we take a mathematical de-
I to become acquainted with several valuable techniques that will prove useful in
mber of apcoming results.

ICARE-BENDIXSON THEORY

; previously mentioned, two-dimensional vector fields and thus also two-dimen-
»nal phase planes have attributes quite unlike those of their n-dimensional counter-
rts. One important feature, on which much of the following theory depends, is the
»t that a simple closed curve (for example, a circle) subdivides a plane into two
sjoint open regions (the “inside” and the “outside™). This result, known as the Jor-
n curve theorem implies (through a chain of reasoning we shall briefly highlight in
spendix 2 for this chapter) that there are restrictions on the trajectories of a smooth
:o-dimensional phase flow. As discussed in Chapter 5, a trajectory can approach as
 limiting value only one of the following: (1) a critical point, (2) a periodic orbit,
} a cycle graph (see Figure 8.12), and (4) infinite xy values. A trajectory contained
a bounded region of the plane can only fall into cases 1 to 3.

‘The following result is particularly useful for establishing the existence of peri-
He orbits.

Theorem 1: The Poincaré-Bendixson Theorem

If for t = t, a trajectory is bounded and does not approach any singular
point, then it is either a closed periodic orbit or approaches a closed peri-
odic orbit for ¢ - o,




Continuous Processes and Ordinary Differential Equations

Comment: The theorem still holds if we replace 1 = fo with 2 = o and ¢ —» % with
t > —o0,

The boxed material outlines properties of a phase plane that are -essentially
equivalent to the Poincaré-Bendixson theorem and that serve equally well for discov-
ering periodic orbits.

2
Suppose the direction field of the system of equations {Ia,b} has th¢ following proper-
ties:
1.  There is a bounded region D in the plane that contains a single repelling steady
state and into which flow enters but from which it does not exit. Then the system
(1a,b) possesses a periodic solution (represented by a closed orbit lying entirely
inside A or D
2. There is a bounded annular region A in the plane into which flow enters but from
which fiow does not exit, and A contains no steady states of equations {ia,b}.
It is shown in the appendix that the steady state in part 1 can only be an unstable
node or focus.
Two other statements outline the stability properties of periodic solutions.
13
1. If cither of the regions described in theorem 2 contains only a single periodic so-
lution, that solution is a stable limit cycle.
3. T, and I are rwo periodic orbits such that I'; is in the interior of the region
bounded by T'; and no periodic orbits or critical points lie between I'; and T,
then one of the orbits must be unstable on the side facing the other orbit.

Much of the theoretical work on proving the existence of oscillatory solutions
to nonlinear equations such as (Ia,b) rests on identifying regions in the phase plane
that have the properties described in theorem 2. We now summarize the Poincaré-
Bendixson limit-cycle recipe.

ce of Periodic Solutions

If you can find a region in the xy phase plane containing a single repelling steady state
(i.e. unstable node or spiral) and show that the arrows along the boundary of the region
never point outwards, you may conclude that there must be at least one closed periodic
trajectory inside the region.
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the xy plane. There are three possible fates of a
bounded semiorbit: {c) approach to a steady state,
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An analogous statement corresponding to Figure 8.12(bh) can be made. We
see several examples of the usefulness of the Poincaré-Bendixson theory in this
er.

The two following criteria are sometimes useful in ruling out the presence of a
cycle, and for this reason have been called the negative criteria:

Bendixson’s criterion. Suppose D is a simply connected region of the plane (that
is, D is a region without holes). If the expression 8F /dx + 3G/ dy is not identi-
cally zero (i.e. is not zero for all (x, y) in D) and does not change sign in D, then
there are no closed orbits in this region.

Dulac’s criterion: Suppose D is a simply connected region in the plane, and sup-
pose there exists a function B (x, y), continuously differentiable on [, such that

the expression
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8(BF) + #HBG)
ox ay

is not identically zero and does not change sign in I. Then there are no closed
orbits in this region,

The proof of Bendixson’s criterion is based on Green’s theorem and is accessi-
ble to students who have had advanced calculus (see appendix to this chapter). Du-
1ac’s criterion is an extension that results by substituting BF for F and BG for G in

~the proof of Bendixson’s criterion. Fer an-interesting-example-of the utility-of Du-.
lac’s criterion, consider a two-species competition model with carrying capacity x;:

dx _ Ki— X~ Buy .
i rix - (Ha)
dy kY~ Bax

=2y = ) (14b)

For eliminating limit cycles, Bendixson’s criterion fails, but Dulac’s criterion
succeeds by choosing B(x, y) = 1/xy. (See problem 5.) Based on Bendixson’s crite-
rion, the following result is readily established.

' of Bendixson’s Criterion:

If equations (1a,b) are linear in x and y, then the only possible oscillations are the neu-
trally stable ones. (Limit cycles can only be obtained with nonlinear equations.)

To understand why this is true, consider the system (la,b) where f(x, ¥} =
ax + by, G{x,y) = cx + dy; then F; + G, = a + d. This is a constant and has a
fixed sign. Thus the criterion is only satisfied trivially if @ + d = 0 in which case
the equations would be dx/dt = by and dy/dt = dx. Such equations have neutral
cycles {not limit cycles), provided b and d have opposite signs.

Comments: Bendixson’s negative criterion does not say what happens if the ex-
pression 9F/ax + 8G/dy does change sign. (No conclusions <an then be drawn
about the existence of limit cycles.) In other words, the theorem gives a necessary
but not a sufficient condition to test.

"ASE OF THE CUBIC NULLCLINES

As one application of the Poincaré-Bendixson theorem we examine a rather classical
phase-plane geometry that almost invariably leads to the properties of oscillation or
excitability. We first discuss a prototype in which one of the nullclines is a simple
cubic curve [equation (16)]. As the qualitative analysis will illustrate, this
configuration creates the geometry to which the Poincaré-Bendixson theorem ap-
plies. An extension to more general S-shaped nuliclines will easily follow.
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onsider the system of equations

n=v— Gu), {15a)

o= —u, (15b)
for our prototype we take G(u) to be
3

Gl =75 —u (16)

all postpone a discussion of the motivation underlying these equations and
Etrate ﬁrst oh defstan Gii’lg ﬁ'}eirbeh a?i o e impmmfeamreﬁf thefuﬂcu
be exploited presently is that

Glu) = ~G(—u),
. G is an odd function. Nullclines of this system are the loci of points
v = Glu) (the u nullcline), (17}
u=170 (the v nullcline). (18}

The term cubic nullcline now becomes somewhat more transparent. The shape
loci given by equation (17) is that of a cubic curve, symmetric about the

. The two humps to the left and right of the origin also play an important role
properties of the system. (For this reason the function G () = u> would not

isfactory; see problem 10 and Figure 8.13.)

Now consider the pattern of flow along these nullclines. The following points

s deduced from the equations:

The direction must be “vertical” on the u nullcline and “horizontal” on the v
nullcline (since 4 = 0 or & = 0, respectively).

Whenever u is positive, v decreases.

On the v nullcline,  is zero so that G(u) is also zero. Thus by equation (152}
i = v, and & will increase when v is positive and decrease when v is negative.

» conclusions are depicted in Figure 8.13(a).

Now consider a trajectory emanating from some arbitrary point P(xo, Yo} in the
ed annulus in Figure 8.13(b). The flow in proximity to the « nuilcline will
it across and towards decreasing u values. After arriving at Py, the flow drifts
ontally across the v axis and over to the left branch of the cubic curve (P2).
a current in the positive v direction conveys the point to P; and then back
s the top of the hump and into the positive quadrant. From the construction in
iagram it is further evident that the direction of flow is everywhere into or parai-
) the boundary of the annular region, indicating that once a trajectory has en-
the region, it is forever trapped. There are no steady-state points in A, and A is
ded. By the Poincaré-Bendixson theorem we can conclude that there is a limit-
: trajectory inside this region.

Furthermore, it is possible to shrink the thickness of A to an arbitrarily fine re-
and draw similar conclusions. In particular, this means that we can dismiss the
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v o= (Y}

(a) (b)

v = Galu)

N

) (d})

! Flow along cubic nullclines described oscillation contained in the region A (dj more
s (15} and (16); (b) an annular region general shapes of the funciion G that lead to similar
; flow in the uv plane; () a limit cycle results.

possibility that there is more than one limit cycle in the dynamical system. {See
Problem 10.)

‘We have chosen a particular example in which the form of the equations leads
to certain specific features: (steady state at (0, 0), flow symmetric with Tespect to the
origin, and one nullcline along the y axis). These features can be changed somewhat
without losing the main dynamic features of the system. More generally, a broader
class known as the Lienard equations exhibit similar behavior. Sometimes written as

the following single equation,
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du
dr?

be shown to be equivalent to the system of (15a,b), where

+g(u)£§:~+u20, (19)

Glu) = L gls) ds. {20)

the following properties of G («) lead to a generalized cubic that results in es-
Hy identical.conditions: . . .. . .

G(u) = —G(—u) (thus G(u) is an odd function).

G(u) — o for u — < (the right and left branches of G extend to +0o and —%)
and for some positive 8, G(u) > 0 and dG/du > O whenever u > B; (G is
eventually positive and monotonically increasing).

For some positive a, G{a) = 0 and G{u) < 0 whenever u < . (G 18
negative for small positive u values).

Condition 1 means that all trajectories will be symmetric about the origin.
ition 2 is necessary to cause the flow to be trapped or confined to the given an-
_ Condition 3 means that the steady state at (0, 0) is unstable. (Details are in-
sated in problem 11.) An example of a “bumpy” function satisfying these con-
s is shown in Figure 8.13(d). It can be rigorously established (with reasoning
ar to that used earlier) that such conditions guarantee that the system of equa-
(15) (or the single equation 19) admits a nontrivial periodic solution, that is, 2
cycle. In the particular case where a = B, as in the example we have analyzed,
is indeed a single periodic orbit that is asymptotically stable. Rigorous proof
‘urther details may be found in Hale {1980, (p. 57-63).

The example used as a prototype in this section is called the Van der Pol oscil-
, sometimes written in the form

i-k(l—wn+u=0 (k>0 (21)

problem 12.) Van der Pol first used it in 1927 to represent an electric circuit
aining a nonlinear element (a triode valve whose resistance depends on the ap-
| current). Even then, van der Pol realized the parallel between this circuit and
lin biological oscillations such as the heart beat. For large values of the constant
¢ corresponding system of equations

et = v — G, (22a)
O = —UE, {22b)

ains a small parameter € = 1/k. (Recall that this can be exploited in calculating
oximate solutions using techniques of asymptotic expansions. See problem 12
1 taste of the idea.) The solutions to this small-parameter system are called relax-
n oscillations for the following reasons: as long as v is close to G (u) (that is, in
nity of the cubic curve), # and ¢ both change rather slowly. When the trajectory
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departs from this curve, & = [v ~ G(u)}/e is quite large. The horizontal progres-
sion across from P to P; is thus rapid. A plot of u(f) reveals a succession of time
intervals in which u changes slowly followed by ones in which it changes more
rapidly.

Models related to van der Pol’s oscillator have been important in many physi-
cal settings and, as we shall see, have also been valuable in describing oscillating bi-
ological systems. (A example of an application to the heart-beat cycle is discussed in
Jones and Sleeman, 1983.) More generally, the idea underlying s-shaped nullclines
has been exploited in a variety of models for excitable and oscillatory phenomena.

............. Figures-8-14-t0-8:17-are a-sampling drawn from-the literature,-and Section-8:5-deals-
in greater detail with one particular application in the study of neural signals.

(b A =Ap>K

¥ s 5
{c}X ’K3>Kz
Several regimes of behavior in a model K is the inhibition parameter, o, p, 8 and s, are
inhibition with S-shaped nullclines. s constants {see details in the original reference.) M
ont substrate and cosubstrate. Their and N represent the maximum and minimum points

atics are represented by the equations along the nullcline g = 0, and P is the steady state.
da The transifion a) —> b) —» ¢} is for decreasing ¥-
= g(s, a), = = f{s, a) values. {From Murray (1981}, fig. 2, p. I68.
J. Theor. Biol., 88, 161-199. Reprinted by

permission of Academic Press Inc. (London)]
sa

T T s + B

sa
a(aowa)wi+s+Ksz'

=8 — ¥
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7 (a} S-shaped nullclines in a model for

rillations in the barnacle giant muscle

vr is a limit cycle in o reduced V, N

= voltage and N = fraction of open K
V satisfies an eguation like (9), and N is

dN o -
= MW - N,

4

N. = .1.(1 + tanhm).
2 )

7
4 ¥
- ,:
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/
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] :
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i
i
1
o
Al
i REAL 0 @
b}

{b) The eigenvalues of the linearized system change
as the current is increased and cross the imaginary
axis twice. [From Morris and Lecar (1981), figs. 7
and 8. Reproduced from the Biophysical Journal
(1981) vol 35, 193-213, by copyright permission of
the Biophysical Society. ]

ions

A system of equations {1a,b) in which one of the nullclines x,y)=0o0orGlx,y) = 0
is an S-shaped curve can give rise 10 oscillations provided the steady state on this-curve

is unstable.

When the steady state is stable, the systemn may exhibit a somewhat different be-
havior called excirability, We discuss this property further in Section 8.3,
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IGH-NAGUMO MODEL FOR NEURAL IMPULSES

«ction 8.2 we followed an analysis of the Hodgkin-Huxley model published by
ugh in the biophysical literature in 1960. The elegance of applying phase-plane
ods. and reduced systems of equations to this rather complicated problem should
e underestimated. (Similar ideas are used in more recent examples; see Morris
[ecar, 1981.)

Using such analysis, Fitzhugh was able to explain the occurrence of thresholds
¢ Hodgkin-Huxley model of neural excitation. The analysis was, however, less
notive in demonstrating catises of repetitive impulses {a sequence-of action-po--
als in the neuron) because here the interactions of all four variables—V, m, k,
n— were important [see equations (9) to (12).] A greater reliance on numerical,
;r than analytic techniques was thus necessary.

In a succeeding paper published in 1961, Fitzhugh proposed to demonstrate
the Hodgkin-Huxley model belongs to a more general class of systems that ex-
| the properties of excitability and oscillations. As a fundamental prototype, the
der Pol oscillator was an example of this class, and Fitzhugh therefore used it
. suitable modification). A similar approach was developed independently by
umo et al. (1962) so the following model has subsequently been called the
hugh-Nagumo equations.

To avoid misunderstanding, it should be emphasized that the main purpose of
model is not to portray accurately quantitative properties of impulses in the axon.
sed, the variables in the equations have somewhat imprecise meanings, and their
rrelationship does not correspond to exact physiological facts or conjectures.
her, the system is meant as a simpler paradigm in which one can exhibit the sorts
nteractions between variables that lead to properties such as excitability and os-
ations (repetitive impulses).

Fitzhugh proposed the following equations:

dx x?
i cly +x— 3 + z{1}}, (23a)
dy _x—at by
o —-—-m—-“—“c . (23b)

these equations the variable x represents the excitability of the system and could
identified with voltage (membrane potential in the axon); y is a recovery variable,
resenting combined forces that tend to return the state of the axonal membrane to
1. Finally, z(#) is the applied stimulus that leads to excitation (such as input cur-
1t). In typical physiological situations, such stimuli might be impulses, step func-
ns, or rectangular pulses. It is thus of interest to explore how equations (23a,b)
have when various functions z(f) are used as inputs. Refore addressing this ques-
n we first take z = O and analyze the behavior of the system in the xy phase
ine.

In order to obtain suitable behavior, Fitzhugh made the following assumptions
out the constants g, b, and ¢:
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I—-%l?-<a<l, 0<b <, b < ¢t : (24)

Inspection reveals that when z = 0, nullclines of equations (23a,b) are given by the
following loci:

y=3-=x (% = 0, the x nullcline), (25)

r= b {} Gs the ¥ i‘lki‘ﬁt,}i;gc}, (2 ﬂ}

The humps on the cubic curve are located at x = %1,
We shall not explicitly solve for the steady state of this system, which satisfies
the cubic equation

3

X 1 a
ey + x("b" - 1) =5 (27)

However, the conditions given by equation (24) on the parameters guarantee that
there will be a single (real) steady-state value (X, 7) located just beyond the negative
hump on the cubic x nullcline, at its intersection with the skewed y nullcline, as
shown in Figure 8.18.

Calculating the Jacobian of equations (23) leads to

I=| _ (28)

(problem g). Thus, by writing the characteristic equation in terms of ¥, we obtain the
quadratic equation

AT+ ["? - (1 - fz)c}/l +[1~(1 ~%Hb] = 0. (29)
The steady state will therefore be stable provided that
b -
“[- - (1 - x"")c} <0, (30a)

[

1=( -%% > 0. {30b)



z # -QI28

N\

(b

=07 »=038

z:z-04 5
Sichie iimil cycle C
by

Stabie Himid cyoR
¢

gh's model [equations 23a,b]
thase-plane behavior shown in
text for an interpretation of X,
ng point corresponds to the rest
. (b} In the presence of a step
ent {z = -0.128) the system

m analogous to a single action

{2

potential. (c) For a step input of stronger current,
an infinite train of impulses (repetitive action
potentials) are generated. [From Fitzhugh (1961},
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Note that these conclusions are not affected if z in equation (23a) is nonzero. Since
b < 1and b < c?, it may be shown (problem g) that the steady state is stable for all
values of ¥ that are not in the range

—ySX=Y, (31)
where v = (1 — b/c?)"? is a positive number whose magnitude is smaller than 1.
The geometry shown in Figure 8. 18 tells us that if the y nulicline were to0 intersect
the cubic x nulicline somewhere on the middle branch between the two humps, the

steady state would be unstable.
We next consider the behavior of the stimulated neuron, described by equa-

" tions (23a,b) with a nonzero stimulating current z{f). A particularly simpie set of
stimuli might consist of the following:

1. A step functionz = 0 forz < 0,z = ig fort = 0).
2. Apulse z=ifor0=1=t;z= 0 otherwise.
3. A constant current z = ip.

For as long as z = io, the configuration of the x nulicline is given by the equation
x3

This cubic curve has been shifted in the positive y direction if iy is positive and in th
opposite direction if io is negative. Let S* represent the intersection of (32) with th
y nullcline, S° the intersection of (25) with the y nullcline, and § the instantaneou
state of the system. Thus §* and $9 are the steady states of the stimulated and up
stimulated system, respectively and § = (x (D), y(0).

At the instant a stimulus is applied, § = 5° is no longer a rest state, since th
steady state has shifted to S*. This means that § will change, tracing out some i
jectory in the xy plane. The following possibilities arise:

1. If ig is very small, §* will be close to 5°. on the region of the cubic curve f
which steady states are stable and § = (x(f), y(r) will be attracted t0 S
without undergoing a large displacement.

2. If i, is somewhat larger, S* may still be in the stable regime, but a more abrw
dynamics could ensue: in particular, if § falls beyond the separatrix shown
Figure 8.18(a), the state of the system will undergo a large excursion in the ;
plane before settling into the attracting steady state S*.

Such cases represent a single action-potential response that occurs for superthresho
stimuli. (See Figure 8.3.) This type of behavior, in which a steady state is attain
only after a long detour in phase space, is typical of excitable systems. As we ha
seen, it is also a property intimately associated with systems in which one or both
the nullclines have the S shape {also referred to sometimes as N shape or z shag
similar to that of the cubic curve.

3.  For yet larger io, S* will fall into the middle branch of the cubic curve so tt
it is no longer stable. In this case the situation discussed in Section 8.5 occt
and a stable, closed, periodic trajectory is created. All points, and in particu
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S, will undergo cyclic dynamics, approaching ever closer to the stable limit
cycle. This behavior corresponds to repetitive firing of the axon, which results
when a step stimulus of sufficiently high intensity is applied.

In all of these cases, when the applied stimulus is removed (at z = 0), §° be-
mes an attracting rest state once more; the repetitive firing ceases, and the excited
ite eventually returns to rest.

With a few masterful strokes, Fitzhugh has painted a caricature of the behav-
- of neural excitation. His model is not meant to accurately portray the physiologi-
{ mechanisms operating inside the axonal membrane. Rather, it is a behavioral
radigm, phrased in terms of equations that are mathematically tractable. As such it
s played an important role in leading to an understanding of the nature of excitable
stems and in studying more complicated models of the action potential that include
> effect of spatial propagation in the native (nonclamped) axon.

? BIFURCATION

further diagnostic tool that can help in establishing the existence of a limit-cycle
yjectory is the Hopf bifurcation theorem. It is quoted widely, applied in numerous
mtexts, and for this reason merits discussion.

Subject to certain restrictions, this theorem predicts the appearance of a limit
rcle about any steady state that undergoes a transition from a stable to an unstable
cus as some parameter is varied. The result is local in the following sense: (1) The
eorem only holds for parameter values close to the bifurcation value {the value at
hich the just-mentioned transition occurs). (2) The predicted limit cycle is close to
¢ steady state (has a small diameter). (The Hopf bifurcation does not specify what
wppens as the bifurcation parameter is further varied beyond the immediate vicinity
*its critical bifurcation value.)

In the following box the theorem is stated for the case n = 2. A Key require-
ent corresponding to our informal description is that the given steady state be asso-
ated with complex eigenvalues whose real part changes sign (from — to +}. In
spular phrasing, such eigenvalues are said to “cross the real axis.” To recall the
»nnection between complex eigenvalues and oscillatory trajectories, consider the
iscussion in Section 5.7 {and in particular, Figure 5.12 of Chapter 5).

Advanced mathematical staternents of this theoremn and its applications can be
yund in Marsden and McCracken (1976). Odeli {1980) and Rapp (1979) give good
formal descriptions of this result that are suitable for nonmathematical readers.

One of the attractive features of the Hopf bifurcation theorem is that it applies
) larger systems of equations, again subject to certain restrictions. This makes it
»mewhat more applicable than the Poincaré-Bendixson theorem, which holds only
w the case n = 2.



