Monte Carlo Techniques

The Monte Carlo method (or method of statistical trials) consists of solving various problems
of computational mathematics by means of some random process. This process is used for complex
modeling problems which are too difficult to solve by simpler modeling techniques which can be
handled analytically or via deterministic methods. The Monte Carlo method uses knowledge from
past experience to assign probabilities to individual events. A set of rules for a simulation are
established, then a series of simulations are performed to determine optimal solutions to the problem
or identification of unknown parameters in the system.

The first example that we will consider is a based on the work of H. H. Schmitz and N, K.
Kwak (Operations Research 20, 1171-1180 (1970)). They used Monte Carlo methods to determine
how many operating rooms were needed, how long the recovery rooms needed to be staffed, and
how many beds would be needed in the recovery rooms. They derived their data from plans at
Deaconesse Hospital in 1970 to expand their facilities to include 144 new beds. The question arose
as to how this would effect the surgery facilities at the hospital. More specifically, how many more
surgical procedures will be performed based on this increase in bed capacity and how will this effect
the operating and recovery room facilities at the hospital?

The data in 1970 indicate that 42% of the patients staying at the hospital required surgery.
This implies that 60 of the 144 new beds would be used primarily for surgery patients assuming
that the mix of patients admitted to the hospital came in the same proportions. One could see the
possibility that this assumption fails as new facilities would lkely encourage more “non-essential”
surgical procedures. However, it makes a reasonable first assumption for our modeling purposes.
The researchers examined the past history of surgical procedures and concluded that the 60 new
beds would result in 3376 new surgical cases giving the hospital a total yearly load of 9669 surgery
cases. If these cases are spread evenly over the entire year, then the daily case load would be 27.
(If one omitted Sundays and 10 holidays, then this case load would increase to 32 cases per day.)

To answer our questions about details on how many operating rooms are needed, we need
more information on the types of procedures performed and the length of time of the operations.
Also, we need some idea of how these operations effect the recovery room facilities. With this
information, can the hospital determine how it should schedule its surgeries and staff its recovery
rooms? An analysis was made on the surgeries performed on 445 patients, and it was found that
the length of stay in the operating room is exponentiaily distributed with an interarrival time mean
of 1.03 hours. This indicates that if 4 operating rooms were used then operations would occupy
the operating rooms for about 7 hours per day, while 5 operating rooms would cause this to drop
to about 6 hours per day. Below we will show how a Monte Carlo simulation can be used $o show
more sbout the variation in use of the operating room facilities.

A survey of types of surgery performed gave the results summarized in Table 1. This table
shows the length of the surgery, the relative frequency, and the random numbers associated with
each type of surgery.

Schmitz and Kwak assume that if the procedure lasts from 0.0-0.5, then they use 0.5 hours.
Other procedures are assumed to Jast the length of time which matches the midpoint of the interval
with the last case assumed to last exactly 4 hours. Notice that this assumption does violate the
exponential form that they found holds for surgical procedures. A more complicated simulation
could be performed by subdividing the randem numbers to more closely match the exponential
form of the distribution function for time of surgery.

Below we lst the rules that are applied in the Monte Carlo simulation.

1. The daily case load is assumed to be fixed iﬁ 27 cases.

O G A

1

® x>

10.
11.

12.
13.

Type of Surgery Time Interval Relative Frequency Random Numbers

Far-MNose-Throat 0.6-0.5 15.8 060-1537
Urology (To RR) 0.0-0.5 8.4 158-241
Urology (No RR) 0.0-0.5 8.5 242-326
Opthalmology (No RR) 0.0-0.5 5.8 327-384
(ther Surgery 0.5-1.0 23.8 385-620
Gther Surgery 1.6-1.5 14.5 621768
Other Burgery 1.5-2.0 8.0 T767-858
Other Surgery 2.6.2.5 5.5 857-911
Other Surgery 2.5-3.0 3.4 912-945
Gther Surgery 3.0-3.5 2.1 946-966
Other Surgery 3.5-4.9 1.3 967-97%
Other Surgery >4.0 2.0 980-988

Random numbers are generated independently for each day.
All ENT, urology, and ophthamology cases last 0.5 hours.
Half the urclogy cases and all ophthamology cases do not go to the recovery room.

Al ENT and the other half of urclogy cases go to the recovery room and are assumed to stay
for 1.5 hours.

Any operation over 0.5 hours is considered major and requires 3 hours in the recovery room.
Surgery begins at 7:30 a.m.

Preparation time is .25 hours in the operating room.

Tt takes .08 hours to transport patients from operating room to the recovery room.

It takes .25 hours to prepare the recovery room for the next occupant.

Operating rooms are used continuously as need arises with the first one vacated being the
first one used.

The first vacated recovery bed is the first one filled as needed.

If no bed available in the recovery room, then a new one is created.

The attached sheet shows the results of one simulation. Four days were simulated with 5
operating rooms. The attached simulation shows that surgery ended at 14:24, while the recovery
room was cleared by 17:44. The latest surgery lasted to 17:30 for the 4 days with the recovery
room clearing by 20:36. This was the optimal solution found by Schmitz and Kwak. The use of 4
operating rooms made for days going too long, while 6 operating rooms often completed all surgery

before noon.

Problem

MC1. Perform a two simulations each for 4 and 5 operating rooms using a patient load of 32 patients
per day (which would be the case load with Snn%ays and some holidays off). You can obtain your

sh. The computer has several good random number

source that vou wi

random mumbers from any

generators which you may wish to use.

- " - - N & GCEL 1 SLEl 060 90¢ LT
894891 4 £e9l £E'El A g el | 08701 540 Qg8 9z
R 11 £E9l1 tEEl A I Szel | ogcl EPARY £6t Gz
EEFl Gl 80°T1 8G°C1 A i gget | 00'cl 080 14l [
ECV1 4 8071 8a'Cl A [08¢l | 0021 050 606 £e
8O'F1 6 £8°El £eel A g QT SAT1 g0 a11 (&4
ga'el |3 £4a1 EECIL A i geel | 05711 gL0 30F 1z
8EET g ECE1 eRLl A |4 SL11] gg'1t 050 S10 07
EEEl ! 20'gl BGI1 A G 0611 ¢ 0011 ag-a BEC 61
80°91 [4 E8T1 el A € L1171 00°i1 L0 vi¥ g1
£8°¢1 1 BGTL 80T A 4 00°11 | 0501 0g°a ¥ig 41
€441 g 8yl 8 ¥l A 4 OF vl | 8201 4 286 91
20°FL 01 £8°b1 £8°01 A 4 6401 | 0001 8.0 L8 Gl
8471 9 £CTl EE 11 A i G¢ 1T | 0001 Gl 81y Pl
8021 6 €811 £e 0l A i GEOL | 946 0%'d 110 !
€811 4 ga'll 8001 A G goor | 056 0480 £60 3!

N - - N N g S4B Ce6 050 6LE 1T
3071 i £8°E1 £8'01 A € GL°6L | 006 G4 (457 a1
£ell 9 8011 846 A ¥y 046 00°'6 040 144 B

- N) N N g 006 048 0%'0 04¢ 3
8C'01 g £L°T1 £€°6 A [4 5¢'6 0g's L0 09 4
8501 |4 £e'0l €88 A € L8 T’y 080 890 g
8911 [€1l £E'8 A 4 Ge'8 05°2 G40 ALY]
20°C1 € €911 R A v GL'8 09°2 GC'1] |4

” N - - N £ 00°¢ 04’4 0s0 q9¢ £
91l ! EE'11 £y A 4 a8 084 840 96¢ 4
80°%1 4 £8°C1 £8°6 A ! 8L'6 084 GLe 684 1

spqeleay | # pegd spusy surgag] N/A # wooy | spuy | suideq | wvoneredy
Pegl MU HH Rieaooay] | Aea000y] | Ameaoomy | Sunjeredqy | ewl], | oW, | Jo Yjdudr] | # wopueyy | # justye

Modeling a Chain Reaction

Walt Disney studios once filmed a simulated chain reaction’ which took place as follows. A
large number of cocked mousetraps was placed on the fioor of 2 bare room. Each trap was specially
built so that when it was sprung it would throw two ping pong balls into the air. Flying ping
pong balls that landed on unsprung traps would spring the traps and thereby set more balls flying.
This exampie provides a good model for nuclear reactions {critical mass) or for some epidemics
(threshhold phenomenon}. The reaction was started by tossing a single ping pong ball into the
room. How should the simulation be designed so that the duration of the chain reaction will be
reasonable, i.e., the audience must be able to see the process, but it shouldn't last too long? Also,
we'd like to determine at the peak of the simulation how many balls are in the air, so that the
simulation has the right dramatic effect on the audience. There are three obvious ways to influence
the duration of the simulation: Change (1) the flight time of the balls, (2) the number of traps
per square foot, or (3} the size of the room (keeping the density of the traps the same). We shall
consider each of these events separately.

It can be observed that the flight times of the balls for a given brand of mousetrap are nearly
the same. We assume for simplicity that they're identical. After hitting a trap, very few balls are
able to rebound enough to hit another trap with sufficient force to spring it. Thus a ball that hits
a sprung trap or an unsprung trap becomes dead in most cases. We shall assume that this always
happens. A ball that hits the bare floor may or may not rebound enough to be able to set off a
trap; it depends on the floor material. At any rate, there is a probability p that a random ball will
land on a trap with enough force to spring it (if it is still cocked}. The value of p depends only on
how far apart the traps are and on the nature of the floor. (The latter is a fourth variable which
we can adjust. You should convince yourself that this would have the same effect as changing the
spacing of the traps.)

Obviously, the assumptions of identical traps and the balls only being able to spring one trap
are weaknesses in the model, but it does allow us to make some pretty good predictions {and in
addition there are methods to compensate for these weaknesses in the stochastic model}. Our
assumption of identical traps allows us to assume that the flight time of a ball works as a unit of
time. This would be the hardest parameter to adjust in our simulation of a chain reaction. Also, if
we wanted to increase the simulation time by this parameter, we would lose some of the synchrony
from distributed flight times. Let n be the length of time from the start of the simulation until
b, balls are in the air. Assume that b, is much less than the total number of balls. A first ball
is thrown into the room and either 0 or 2 balls are released. The expected value for this first
generation is b == 2p balls. At the second, generation the expected value is &y = {(2p)%. Clearly,
at the n'™ generation, b, = (2p)" is the expected number of balls in the air. This implies that
n = In{b,)/1n(2p). This expression is valid for small times where only a small percentage of the
traps have been sprung.

One interesting calculation is that if we want to have the same percentage of balls in the air
for two rooms of differing size, then it requires increasing the original room b, times to increase
the time by In(b,)/In(2p) units. This means that at time n, if b,/B balls are in the air for the
first room, then for the same percentage of balls to be in the air for a room b, times larger it
requires a time 2n. The calculation is as follows. Suppose it takes k units of time for z balls
to be in the air in the first room which is 100z/B percent of the balls. For the second room
100z /B = 100b,2/b,B, which implies b,z balls are in the air. But baz = (2p)™(2p)¥, which yields
n+ k= In(b,)/In(2p) + In(z)/In(2p) or an increase of in(b,)/In(2p} time units.

'This example is taken from E. Bender’s book Introduction fo Mathemutical Modeling

4

The above computations are only for the initial times when few traps have sprung. To analyze
the intermediate times ancther type of analysis is needed. Let ¥ be the number of balls in flight
at the time £ = n and U be the number of unsprung traps out of a total of M. The conditional
probability of having exactly 25 balls in flight at time n+ 1, given T traps are hit, is

™ /UNP UNTo
P = (s) G2) (-3)
where (g) = Bﬂ%——igy}g. This expression is a direct result of the fact that if N balls hit T traps, then

U /M is the probability that an unsprung trap is hit, while {1 - %) iz the probability that the ball
hits a trap that has already been hit. To release 25 balls then B unsprung traps must be hit. This
is a binomial distribution. If we assume that no trap is hit by more than one of the N balls {which
would be valid for N « M), then we can use a binomial distribution to see that the probability of
T traps being hit satisfies

H(T)= <§> pra-pt T

These probabilities can be used to show that what Is likely to happen at the next generation, but
analysis is difficult for determining how actual simulations might proceed to completion.

We can use our Monte Carlo simulation methed to simulate how a complete chainreaction might
occur. Below we present a MATLAB program which allows one to view how the chainreaction pro-
ceeds for a case where there a 100 mousetraps. The user inputs a probability p. The computer
generates a 10 x 10 matrix of 1’s indicating no unsprung traps. The program proceeds by deter-
mining the probahility that a trap is hit based on the number of balls in the air using a random
number generator.

MATLAER Program for Monte Carlo Simulation

Yser input for probability of hitting a frap.;

p = ipput (’Probability of a hit: p = *);

¥Tnitialize the number of balls in the air, b, the generatiom time, i,;
“Yand the matrix and vector of unsprung traps, mt and xmt, respectively;
b=1;

i=0;

mt=ones{10,10)

smtemt (1)

%Compute the total number of unsprung traps.;

u=sum{(xmt) ;

fprintf(’ Unsprung Traps = %3.0f, Balls in Air = }2.0f\n’,u,b)
pause %Strike any key to continue.

%Loop for continuing the process until no balls are in the air.;
while b > 0

%Increase the generation time.;

i=i+l;

%Use a2 random number generator to determine how many traps are hit.;
thi=(rand{1i,b)<=p*ones(1,b));

th2=thi{:};

th=sum(th2);

%Use the random number generator to determine exactly which traps are;
Ynit between 1 and 100.

ci=ceil{100=rand(i,th));

c2=c1{:};

YCompute how many balls are released based on unsprung traps and;
Y%transform those traps to ones which are sprung.;

b=2*sum(xmt (c2)) ;

xmt {c2)=0=xmt (c2) ;

mt=reshape (xmt,10,10)

u=sum(xmt) ;

fprintf(’ Unsprung Traps = %3.0f, Balls in Air = %2.0f\n’ ,u,b)
pause £Strike any key to continue.

end

fprintf(’ Generations = }2.0f\n’,i)

A modified version of this program was run 100 times with each probability, p, listed in the table
below. Below we present tables which summarize some of the statistical results of the simulations
along with the run which has the peak number of balls in the alr and the longest simulation of each

seb,

p= .80 | Mean Median o¢° Peak Long p= .90 | Mean Median o¢* Peak Long
U 51.9 35 318 25 32 Y 34.0 23 286 13 31
brnaz 17.2 20 11.4 40 12 S 28.6 32 134 50 20
H 11.3 14 .67 12 22 % 11.5 13 4.68 11 22

p=.93 | Mean Median o Peak Long p= 99 | Mean Median o0° Peak Long
% 20.8 19 12.8 i6 a3 u 15.6 14 571 5 14
L — 37.0 a8 8.43 62 26 L -~ 42.4 42 8.14 72 30
) 12.3 12 2.33 10 18 i 12.0 12 1.78 il 16

From the tables we see that the higher probabilities have a more dramatic rise with more
balls in the air, while the lower probabilities have slightly longer duration on average {especially
considering the higher failure rate to even start). The variation between simulations becomes much
more evident as the probability of a hit drops though again this is slightly skewed because of the
number of early failures. The simulations do not show how the duration would change if the number
of mousetraps were increased though this would not be difficult to add to the program.

The Monte Carlo simulations are easy to implement; however, they can become very computa-
tionally intensive when there are a large number of events to be considered {(say as one would find
in a nuclear reaction in trying to determine critical mass}. We would like to develop a more deter-
ministic scheme which would better describe the situation for very large numbers of traps and balls.
For large unsprung traps, U, and balls in the air, N, the binomial distributions of P (probability
of 28 balls in flight given T traps hit) and H (probability of T traps hit) can be approximated by
normal disiributions. The means for P and H are UT/M and pV, respectively. The variances of
P and H are given by UT(M — T)/A? and Np(1 — p), respectively. If N, is the expected average
number of balls in the alr at time n, then

Npop o= 2pN,U, /M,

Upser = Up— iNp.
From these formulae, we have a recursive formula for the average number of balls in the air and
the number of unsprung traps. Like most recursive formulae, it gives you a local answer but fails

to show the more general behavior of the scheme.
Let f(n) be the fraction of unsprung traps at time n. From the recursive formulae above

Urﬂ—l - % Nt
M M 2M

*NTH—I
2M.

or fn+1)—f(n)=~

But 2PN, U N
Nor = =22 = 2pN,f(n) and 552 = f(n—1) = f(n),
80
f(n) = F(n+1) = 2p[f (n~ 1) = F(n)]f (n). (1)

This is a nonlinear second order difference equation. This is a deterministic model for the average
fraction of unsprung traps. The initial conditions for this difference equation are f{0) == 1 and
f(1) = 1 ~ p/M. With this information, (1) can be sclved numerically by a very simple program.
The results of a series of simulations which were run until the number of balls in the air dropped
below 2f(1) with M = 100 are presented in the table below.

P % Boaxr 2
80 31.0 201 15
50 203 284 13
85 162 354 12
488 135 385 H

The vahues in this table compare very favorably to the ones computed using the Monte Carlo
simmulation and the computer program and simulation time is substantially less. This type of
simulation fails to show how much variation might be expected from different runs. There are no
techniques that we have developed to analyze nonlinear difference equations. Nonlinear difference
equations as we've seen before can exhibit quite complicated behavior.

In Bender’s book, he takes this example one step further to show that the difference equation
can be transformed into a differential equation. To do this we write a Taylor’s series expansion of

degree two about f{n). This gives

fn+1)=f(n)+ () + 37" (n)
and

fln—1)=f(n) — f'(n) + 1"().

Substituting these expressions into our difference equation, we find
F) = F(m) + F/(m) + 37 ()] = 2p(f () — f'(n) + 47" (n) — F(m)if (m).

This simplifies to
4Pf(n) -~ 2 ’ (4) '
" o RSP Vh A =} T o ———— ,
with initial conditions f(0) = 1 and f/(0) =1 — £, the expected fraction of traps that will spring
initially. Upon integratation we find

F(n) = 20 (n) — %En[‘«’pf(n) L+C

where the constant € = %En[Qp—é— 1] ~ 2 ~ . This equation has no analytical solution. The best
way to see its behavior is to use some numerical scheme.

The numerical simulations for f{n) are given for several values of p, using a Runge-Kutta
scheme.

P U Dpgs 0
B0 306 203 15
.80 19.8 29.7 13
.85 156 337 12
9% 127 374 11

Notice that the solution to this differential equation agrees reasonably well with the solution of the
difference equation though it is even lower than the mean of the Monte Carlo simulations.

