Math 241 - Maple Workshop
Fall Semester, 2002
Maplets

 © 2001, All Rights Reserved, SDSU & Joseph M. Mahaffy
San Diego State University -- This page last updated 07-Oct-02


  Maplets

The more recent versions of Maple have added an additional package called Maplets, which allows the user to create a Java applet-like interface. This type of package porvides a user friendly interface for applications that are used for instruction of people unfamiliar with Maple or for easy access and changes to routines that are used frequently.

Below is a Maplet created by Jason Schattman of Waterloo Maple for use in a seminar teaching the new features of Maple 7.0. It provides two Maplets to illustrate the ideas of Riemann sums. As always, there is a hyperlink to obtain the Maple version of this worksheet. An additional hyperlink is provided for another demonstration that comes from the Maple Applications center.

>    restart:

>    with(student);

[D, Diff, Doubleint, Int, Limit, Lineint, Product, Sum, Tripleint, changevar, completesquare, distance, equate, integrand, intercept, intparts, leftbox, leftsum, makeproc, middlebox, middlesum, midpoin...
[D, Diff, Doubleint, Int, Limit, Lineint, Product, Sum, Tripleint, changevar, completesquare, distance, equate, integrand, intercept, intparts, leftbox, leftsum, makeproc, middlebox, middlesum, midpoin...
[D, Diff, Doubleint, Int, Limit, Lineint, Product, Sum, Tripleint, changevar, completesquare, distance, equate, integrand, intercept, intparts, leftbox, leftsum, makeproc, middlebox, middlesum, midpoin...

>    leftbox( x^3, x=-1..1, 15);

[Maple Plot]

>   

>    restart: with(Maplets):with(Maplets[Elements]):

>    riemann := Maplet(
Window['W1'](
  [ ["Enter a function f(x)=", TextField['f']("x^2")],
    ["Enter left endpoint a=", TextField['a']("0", 3),
    "Enter right endpoint b=", TextField['b']("1", 3)], #end 1
    [Plotter['P']()], #end 2
    [Button['b1']("Plot f(x)", 'onclick'=Evaluate('P'='plot(f, x=a..b)'))], #end 3
    ["Choose number of rectangles"],
    [Slider['s1'](0..100, 10, 'majorticks'=20, 'minorticks'=5, 'snapticks'='false')], #end 4
    [Button['b2']("Show Riemann sum", 'onclick'=Evaluate('P'='student[leftbox](f, x=a..b, s1)'))]
  ]
 )
):

>    Display(riemann);

Initializing Java runtime environment.

>    riemann2 := Maplet(
Window['W1']
 (
  [ ["Enter a function f(x)=", TextField['f']("x^2")],
    ["Enter left endpoint a=", TextField['a']("0", 3),
     "Enter right endpoint b=", TextField['b']("1", 3)], #end 1
    [Plotter['P']()], #end 2
    [Button['b1']("Plot f(x)", 'onclick'=Evaluate('P'='plot(f, x=a..b)'))], #end 3
    ["Choose number of rectangles"],
    [Slider['s1'](0..100, 10, 'majorticks'=20, 'minorticks'=5, 'snapticks'='false')], #end 4

    [Button['b2']("Show Riemann sum", 'onclick'='ShowSum')],
    #["Riemann sum", TextField['sum'](),
    ["Riemann sum", MathMLViewer['sum'](height=70, width=200),
     "Numeric approximation", TextField['numericSum'](4)]
  ]
 ),
Action['ShowSum'](Evaluate('sum'='MathML[Export](student[leftsum](f, x=a..b, s1))'),
                  Evaluate('numericSum'='evalf(student[leftsum](f, x=a..b, s1), 5)'),
                  Evaluate('P'='student[leftbox](f, x=a..b, s1)')                  
 )
):

>    Display(riemann2);

>