1. a. For $x^{3}=5$ with $x_{0}=1$, then $x_{1}=2.333333, x_{2}=1.861678, x_{3}=1.722002$, with the actual solution being $x=1.709976$, which requires 5 Newton iterates for this accuracy.
b. For $x^{4}=13$ with $x_{0}=1$, then $x_{1}=4, x_{2}=3.050781, x_{3}=2.402545$, with the actual solution being $x=1.898829$, which requires 7 Newton iterates for this accuracy.
2. a. For $f(x)=4+8 x^{2}-x^{4}, f^{\prime}(x)=16 x-4 x^{3}$ and $f^{\prime \prime}(x)=16-12 x^{2}$.
b. The y-intercept is $(0,4)$, which is also a relative minimum. The two relative maxima are $(\pm 2,20)$. The points of inflection are $(\pm 2 / \sqrt{3}, 116 / 9) \simeq(\pm 1.15470,12.8889)$
c. This is an even function, and its graph is below.
d. From Newton's Method starting with $x_{0}=3$, we approximate the x-intercept with $x_{1}=2.916667$ and $x_{2}=2.910723$, with the actual intercept being $x=2.910693$, which requires 3 Newton iterates for this accuracy.

3. a. For $f(x)=x^{3}-3 x-3$, there is a maximum at $(-1,-1)$, a minimum at $(1,-5)$, and a point of inflection at $(0,-3)$.
b. This function has no symmetry, and its the graph is below.
c. From Newton's Method starting with $x_{0}=2$, we approximate the x-intercept with $x_{1}=$ 2.111111 and $x_{2}=2.103836$, with the actual intercept being $x=2.103803$, which requires 3 Newton iterates for this accuracy.

4. a. For $f(x)=4 \ln (x)-x, f^{\prime}(x)=\frac{4}{x}-1$. There is a maximum at $(4,4 \ln (4)-4) \simeq(4,1.5452)$. The domain is for $x>0$, and the graph is below.
b. From Newton's Method starting with $x_{0}=1$, we approximate the x-intercept with $x_{1}=1.333333$ and $x_{2}=1.424636$, with the actual intercept being $x=1.429612$, which requires 4 Newton iterates for this accuracy. Starting with $x_{0}=8$, we approximate the other x-intercept with $x_{1}=8.635532$ and $x_{2}=8.613194$, with the actual intercept being $x=8.613169$, which requires 3 Newton iterates for this accuracy.

5. a. The velocity of the spring is $v(t)=y^{\prime}(t)=-4 e^{-0.2 t}(\sin (2 t)+0.1 \cos (2 t))$.
b. Note that $v^{\prime}(t)=0.08 e^{-0.2 t}(20 \sin (2 t)-99 \cos (2 t))$, and Newton's formula is

$$
t_{n+1}=t_{n}-v\left(t_{n}\right) / v^{\prime}\left(t_{n}\right) .
$$

With $t_{0}=1$, the Newton iterates are $t_{1}=1.730563$ and $t_{2}=1.497363$, with $y\left(t_{2}\right)=-1.46646$. The actual minimum is $(t, y)=(1.52096,-1.46812)$.

