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Biological Summary:

Marine Phage and Bacteria
• Estimated1.2 × 1030 phage in the oceans

• Predominant biomass in oceans are bacteria (about1.1 × 1013 kg of
carbon)
• Important players in global carbon cycling
• Bacteria concentration104 − 106/ml
• Phage concentration105 − 107/ml

• Bacterial half-life is approximately 24 hours
• About 50% of marine bacteria destroyed by phage
• Phage:Bacteria ratio is about 10:1 for many environments
• Phage are important for horizontal gene transfer
• Phage are important disease agents

• Phage induce the toxin for cholera bacteria
• Phage trigger the toxin for diphtheria
• Phage genes affect virulence in Group A Streptococcus for

rheumatic fever and toxic shock syndrome
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Biological Experiment
• Start with a 200 liter sample
• Filter water so only phage particles remain
• Extract the phage DNA
• Randomly break the DNA (Hydroshear)
• PCR amplify the DNA fragments
• Sequence about 1000 to create a shotgun sequence library

(Linker-amplified shotgun libraries)
• Sequence lengths average 650 bp (used 663)
• Contig spectrum is obtained
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What is a Contig?
• Contigsare contiguous sequences of DNA fragments
• An n-contig is an assembly ofn overlapping DNA fragments
• An assembly is determined by 98% identity over at least 20 bp
• Below is a diagram showing a phage genome with a collection of

fragments
• The diagram has one1-contig, two 2-contigs, and a3-contig
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Experimental Contig Spectrum

- Scripp’s Pier sample
• 1021 one-contigs, 17 two contigs, 2 three contigs

- Mission Bay sample
• 841 one-contigs, 13 two contigs, 2 three contigs

- Mission Bay Sediment Sample
• 1152 one-contigs, 2 two contigs
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Lander-Waterman Analysis - Single Genome

- Probability that two starting points on a genome of lengthL = 50, 000 bp
are not more thanx = 643 (thus forming a contig) is

p = 1 − e−nx/L,

wheren are the number of DNA fragments

- The probability that a random fragment is part of aq-contig is

wq = qpq−1(1 − p)2

a negative binomial distribution

- With n samples from the genome, the expected number ofq-contigs is

cq = nwq
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Modified Lander-Waterman Analysis

- Populations

- If there areM viral types each with populations ofni, then the expected
q-contigs observed are

cq =

M∑

i=1

niwqi

- Various forms of species distributions were tried and the best form for
marine phages was the power law

ni = ai−b (1 ≤ i ≤ M)

- Other population distributions tried included exponential

ni = ae−ib (1 ≤ i ≤ M),

logarithmic, log normal, and several others

- A Monte Carlo simulation was performed using a power law distribution
with each pair ofM anda values 150,000 times for a grid covering
100 × 500 parameter pairs for each of 3 data sets
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Species Diversity
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Summary of Species Diversity Analysis

All systems above were best fit by a power series distributionof species.

% abundance evenness richness Shannon
a b M index

Monte Carlo
Scripp’s 1.9 ± 0.5 0.61 ± 0.06 2600 ± 800 7.4
MB 2.5 ± 0.5 0.70 ± 0.05 5100 ± 2100 7.8
MB Sed 0.1 ± 0.4 0.28 ± 0.45 10000 ± 6400 9.2

ML-W Model
Scripp’s 2.0 ± 4.5 0.64 ± 0.98 3300 ± 3000 7.6
MB 2.7 ± 5.5 0.73 ± 0.11 7000 ± 12000 8.0
MB Sed 0.012 0 8600 9.0

- Breitbartet al (2002) Genomic analysis of uncultured marine viral communities, PNAS

99:14250-14255

- Breitbartet al (2002) Diversity and population structure of a nearshore marine sediment viral

community, Proc Royal Society B271:565-574
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PHACCS -

Phage Communities from Contig Spectrum
• Our group has developed an online tool to access the biodiversity of

uncultured viral communities
• Models community structure with modified Lander-Waterman

algorithm
• Relative rank-abundance forms

- Power law:ni = ai−b, 1 ≤ i ≤ M

- Logarithmic:ni = a(log(i + 1))−b, 1 ≤ i ≤ M

- Exponential:ni = ae−ib, 1 ≤ i ≤ M

- Broken stick:ni = N
M

∑M
k=i

1

k , 1 ≤ i ≤ M

- Niche preemption:ni = Nk(1 − k)i−1, 1 ≤ i ≤ M − 1 and
nM = N(1 − k)M

- Lognormal (A more complicated popular ecological model)
• Most samples tested show Power law and Lognormal as best fits to

contig spectrum, but number of species predicted is very different
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Shannon-Wiener Index
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Modeling Directions and Assumptions
• Classical models based on chemostat
• Explain stable 10:1 ratio of phage to bacteria
• Ocean is a heterogeneous environment
• Create simplified single phage-host model, assuming no other

interactions
• Assume this pair is roughly 1% of the total population (fairly

abundant)
• Compare different strategies

- Kill-the-winner

- Lysogenic/lytic switch
• Narrow the parameter range
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Two Compartments

UBC Jan 2006 – p. 15/34



Lytic Phage
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Lytic Model-Phage Dynamics

dPA(t)

dt
= −γPA + βλIA − κPASA

dIA(t)

dt
= (r − gA)IA − λIA + κPASA

dSA(t)

dt
= (r − gA)SA + mVr(SB − αSA) − κPASA

dSB(t)

dt
= −gBSB − mVr(SB − αSA)

Link to bifurcation
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Lytic Model-Phage Dynamics
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dt
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The parameterγ is the decay rate for the phage.

UBC Jan 2006 – p. 17/34
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The parameterγ is the decay rate for the phage.
The parametersβ andλ are the burst size and rate of lysis for lytic phage
emerging from infected bacteria.
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Lytic Model-Phage Dynamics

dPA(t)

dt
= −γPA + βλIA − κPASA

dIA(t)

dt
= (r − gA)IA − + κPASA

dSA(t)

dt
= (r − gA)SA + mVr(SB − αSA) − κPASA

dSB(t)

dt
= −gBSB − mVr(SB − αSA)

The parameterγ is the decay rate for the phage.
The parametersβ andλ are the burst size and rate of lysis for lytic phage
emerging from infected bacteria.
The parameterκ is the rate of infection of the bacteria by phage.
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Lytic Model-Bacteria Dynamics

dPA(t)

dt
= −γPA + βλIA − κPASA

dIA(t)

dt
= (r − gA)IA − λIA + κPASA

dSA(t)

dt
= (r − gA)SA + mVr(SB − αSA) − κPASA

dSB(t)

dt
= −gBSB − m(SB − αSA)

The marine bacteria are divided among activeinfected (IA) andsusceptible
(SA) and inactivesusceptible (SB).
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Lytic Model-Bacteria Dynamics
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Lytic Model-Bacteria Dynamics
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The parameterr is the growth rate for the bacteria.
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bacteria.
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Lytic Model-Bacteria Dynamics

dPA(t)

dt
= −γPA + βλIA − κPASA

dIA(t)

dt
= (r − gA)IA − λIA + κPASA

dSA(t)

dt
= (r − gA)SA + mVr(SB − αSA) − κPASA

dSB(t)

dt
= −gBSB − m(SB − αSA)

The parameterr is the growth rate for the bacteria.
The parametersgA andgB represent the grazing of the protists on the
bacteria.
The parameterm is the migration rate of the bacteria between
CompartmentsA andB with the scaling for volumeVr, andα represents
the fraction not adhering to nutrients.

UBC Jan 2006 – p. 18/34



Lysogenic Phage
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Lysogenic Model

dPA(t)

dt
= −γPA + βλIA − κPASA

dIA(t)

dt
= (r − gA − λ)IA + κPASA + mVr(IB − αIA)

dIB(t)

dt
= −gBIB − m(IB − αIA)

dSA(t)

dt
= (r − gA)SA − κPASA + mVr(SB − αSA)

dSB(t)

dt
= −gBSB − m(SB − αSA)
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Lysogenic Model

dPA(t)

dt
= −γPA + βλIA − κPASA

dIA(t)

dt
= (r − gA − λ)IA + κPASA + mVr(IB − αIA)

dIB(t)

dt
= −gBIB − m(IB − αIA)

dSA(t)

dt
= (r − gA)SA − κPASA + mVr(SB − αSA)

dSB(t)

dt
= −gBSB − m(SB − αSA)

The only difference in this lysogenic model for the marine environment is
that ther > λ, so the infected bacteria survive long enough to migrate to
CompartmentB.
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Parameters
• Many parameters are difficult to measure
• Growth, burst size, and lysis timing vary with conditions
• Phage decay rates vary widely in the literature

Constraints
• Need approximately 10:1 phage to bacteria ratio
• Turnover of bacteria about 24 hour
• Limited range on many parameters in the literature
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Simulation of Models
First the lytic model was fit to reasonable parameters.

Lytic Lysogenic Lysogenic

Changes - λ r, α, Vr

Phage 7.46 × 105 7.46 × 105 8.06 × 105

Bacteria 5.88 × 104 1.14 × 105 5.10 × 104

Ratio 14.4:1 5.93:1 15.8:1

% Inactive 81 % 90 % 88 %

% Infected 10.3 % 62.2 % 94.8 %

Turnover 24.2 hr 47.3 hr 25.3 hr

Behavior Stable Stable Stable

CompartmentB acts like a refuge with most bacteria there.
Lysogeny results in many more infected bacteria.
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Parameter Sensitivity

1. The growth parameterr had the greatest effect

2. Rate of lysisλ of bacteria by phage

3. Parameterα representing fraction of bacteria available to diffuse into
CompartmentB

4. Grazing by protistsgA in CompartmentA

5. ...

6. Minimal effects bygB , m, andκ
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Bifurcation Study (Lytic Model) - r and gA

Link to lytic model
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Lytic Results

The equilibrium phage population is about4.5× 105, while the equilibrium
bacteria population is about3.8 × 104 in CompartmentB (80%) and
0.7 × 104 in CompartmentA.
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Lytic Results
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Lytic Results
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Results of Lytic Model
• Two equilibria
• Found reasonable parameters

- About 10:1 ratio of phage to bacteria

- Approximately net 24 hour for bacterial half-life

- Many parameters span a wide range, yet maintain biologically
feasible solutions

• Stable equilibrium for marine conditions
• Oscillatory solutions for chemostat conditions
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Results of Lysogenic Model
• Two equilibria
• Similar to the Lytic model except

- Only stable behavior observed for non-trivial equilibrium

- Parameters span a narrower range for biologically feasible solutions
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Quorum Switching Model
• Assume phage become lytic when sensing sufficient active bacteria
• Combines lytic and lysogenic models with changes below

- Lytic part of model includes infected inactive bacteria

- Lysogenic part of model has no terms for lysis
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Results of Quorum Switching Model
• Only some preliminary numerical results
• Mixing in active compartment leaves most bacteria infected
• Oscillating solution with Malthusian growth through threshold, then

lysis decays to lower population
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Future Directions
• Use studies for two NSF Biocomplexity grants

- Help explain possible lytic/lysogenic switching behavior (Seasonal
in Tampa Bay)

- Explain varying diversity and concentrations (Solar Saltern study)
• Add nutrient or other limiting factor to 2-compartment model
• Include delays for lysis in model
• Examine additional refuge compartment or spatial component
• Perform detailed mathematical analysis
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Conclusion
- Shotgun libraries of DNA from phage can be analyzed for species

diversity

- Contig analysis often fits a power law giving estimates of species
abundance, evenness, and diversity

- Automated program PHACCS for choosing rank-abundance model

- Heterogeneous environment suggests at least two compartments or some
spatial component in model

- Dynamic models exhibit several behaviors

- Dynamic models aid parameter selection
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