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Classical Marine Food Web
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Biological Summary:
Marine Phage and Bacteria

Estimatedl.2 x 103° phage in the oceans

Predominant biomass in oceans are bacteria (abowt 102 kg of
carbon)

Important players in global carbon cycling

Bacteria concentratiorn* — 10%/ml
Phage concentratiar)®> — 107/ml

Bacterial half-life is approximately 24 hours

About 50% of marine bacteria destroyed by phage
Phage:Bacteria ratio is about 10:1 for many environments
Phage are important for horizontal gene transfer

Phage are important disease agents
Phage induce the toxin for cholera bacteria
Phage trigger the toxin for diphtheria

Phage genes affect virulence in Group A Streptococcus for
rheumatic fever and toxic shock syndrome
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Biological Experiment

* Start with a 200 liter sample

* Filter water so only phage particles remain
* Extract the phage DNA

* Randomly break the DNA (Hydroshear)

* PCR amplify the DNA fragments

® Sequence about 1000 to create a shotgun sequence library
(Linker-amplified shotgun libraries)

® Seguence lengths average 650 bp (used 663)
® Contig spectrum is obtained
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What is a Contig?

Contigs are contiguous sequences of DNA fragments
An n-contig is an assembly of overlapping DNA fragments
An assembly is determined by 98% identity over at least 20 bp

Below is a diagram showing a phage genome with a collection o
fragments

The diagram has onk-contig two 2-contigsand a

Phage Genome

DNA Fragments
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Experimental Contig Spectrum

- Scripp’s Pier sample

® 1021 one-contigs, 17 two contigs, 2 three contigs
- Mission Bay sample

® 841 one-contigs, 13 two contigs, 2 three contigs

- Mission Bay Sediment Sample
® 1152 one-contigs, 2 two contigs
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Lander-Waterman Analysis - Single Genome

- Probability that two starting points on a genome of lengta 50, 000 bp
are not more tham = 643 (thus forming a contig) is

p= 1 — e—nm/Lj

wheren are the number of DNA fragments
- The probability that a random fragment is part af-eontig is

wy = qp? (1 - p)?

a negative binomial distribution
- With n samples from the genome, the expected numbe+aointigs is

Cq — an
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Modified Lander-Waterman Analysis
- Populations

- If there arelM viral types each with populations ef, then the expected
g-contigs observed are

M
Cq = E N Wy
1=1

- Various forms of species distributions were tried and tést fborm for
marine phages was the power law

n; = ai? (1<i< M)
- Other population distributions tried included exponahti
n; = ae” " (1<i< M),

logarithmic, log normal, and several others

- A Monte Carlo simulation was performed using a power laviritigtion
with each pair ofd/ anda values 150,000 times for a grid covering
100 x 500 parameter pairs for each of 3 data sets
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Species Diversity
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Summary of Species Diversity Analysis

All systems above were best fit by a power series distribugf@pecies.

% abundance evenness richness Shannon
a b M Index

Monte Carlo

Scripp’s 1.94+0.5 0.61 £0.06 | 2600 =+ 800 7.4

MB 2.51+0.5 0.70 £0.05 | 5100 £ 2100 7.8

MB Sed 0.1£04 0.28 = 0.45 | 10000 4 6400 9.2
ML-W Model

Scripp’s 2.0+4.5 0.64 £0.98 | 3300 =+ 3000 7.6

MB 2.71+5.5 0.73 £0.11 | 7000 £ 12000 8.0

MB Sed 0.012 0 8600 9.0

- Breitbartet al (2002) Genomic analysis of uncultured marine viral comrtiesj PNAS

99:14250-14255

- Breitbartet al (2002) Diversity and population structure of a nearshorameaediment viral
community, Proc Royal Society B71565-574
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PHACCS -
Phage Communities from Contig Spectrum

Our group has developed an online tool to access the bicilyef
uncultured viral communities

Models community structure with modified Lander-Waterman
algorithm

Relative rank-abundance forms
- Powerlawn; =ai® 1<i< M
- Logarithmic:n; = a(log(i +1))7%, 1<i< M
- Exponentialn; =ae ™, 1<i<M
- Broken stickin; = X7 L 1 <i< M
- Niche preemptionn; = Nk(1 — k)1, 1<i< M —1and
ny = N(1— k)M
Lognormal (A more complicated popular ecological model)

Most samples tested show Power law and Lognormal as beg fit:
contig spectrum, but number of species predicted is vefgreint
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Shannon-Wiener Index

Phage diversity is the highest reported
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Modeling Directions and Assumptions

Classical models based on chemostat
Explain stable 10:1 ratio of phage to bacteria
Ocean is a heterogeneous environment

Create simplified single phage-host model, assuming no othe
Interactions

Assume this pair is roughly 1% of the total population (fairl
abundant)

Compare different strategies
- Kill-the-winner
- Lysogenic/lytic switch
Narrow the parameter range

UBC Jan 2006 — p. 14



Two Compartments

Compartment A Compartment B

* Is the collection of all space with suitable nutrients * Is a refuge for the host
* Bacteria grow in_this compartm

@ — ﬁ} — oy

* Bactena lack resources for growth

* HNF and Cilliates will graze less

* HNF and Cilliates will target this N intensely in this compartment

compariment preferentially

* Easy to get in, hard to get out

* Phage can infect their hosts , * Phage cannot infect their hosts

* Infected hosts cannot go Iytic
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Lytic Phage
Lytic Lifestyle




Lytic Model-Phage Dynamics

P
d Qt(t) _ —WPA—f—ﬁ)\IA_’%PASA
dlgt(t) = (r—ga)la—AMa+rPaSa
ds§t(t) = (r—ga4)Sa+mV,.(Sp —aSa) — kPaS4
dSp(t)

= —gBSB — mVT(SB — OéSA)
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Lytic Model-Phage Dynamics

P
d Qt(t) _ —WPA—f—ﬁ)\IA_’%PASA
djgt(t) = gala = Ma+ EPaSa
ds§t(t) (r —ga)Sa +mV.(Sp — aSa) — KPaSs
dSp(t)

—gBSB — mVT(SB — OéSA)

IS the decay rate for the phage.
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Lytic Model-Phage Dynamics

dPs(t

;?t() = —YPg+ B4 — kPASa
dl 4(t

gt() = (T—gA)[ — Mg+ KPASH

The parameter is the decay rate for the phage.

The parameters and )\ are the burst size and rate of lysis for lytic phag
emerging from infected bacteria.
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Lytic Model-Phage Dynamics

Falt) —yPa + BAl4 —

dt
d[A(t)

— — [ — A4

o (r—ga)la — &
dsélt(t) = (7“ — gA)SA —+ mW(SB — OzSA) —
d t
Sjt( ) = —gBSB = mVT(SB — OéSA)

The parameter is the-agecay rate for the phage.

The parameters/and ) are the burst size and rate of lysis for lytic phag
emerging from/infected bacteria.

The parameter is the rate of infection of the bacteria by phage.
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Lytic Model-Bacteria Dynamics

Pa(t
! ;?t( ) = =P+ BA 4 — kPASA
I
d gt(t) = (T—gA)]A—)\]A—F/ﬁ:PASA
dsg?t(t) = (7“ — gA)SA -+ me,n( — CMSA) — KPAS 4

= —gB5Sp —m(5p —aSa)

The marine bacteria are divided among activiected (4) andsusceptible
(S4) and inactive
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Lytic Model-Bacteria Dynamics

dP { P Z — 4;5
A( ) = r— gA) A )\IA RI“AO A
d A t S’ _|_ ‘/ - IA A
S ( ) ?“—94) A m T(SB CVSA) K S

dSp(t

dt —gBSB —m(SB —OéSA)

The parameter is the growth rate for the bacteria.
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Lytic Model-Bacteria Dynamics

P
d ;xt(t) _ —WPA—f—ﬁ)\IA_’%PASA
djgt(t) = (r—ga)la— Ma+£PaSa
ds§t(t) = Ar—ga)Sa+mV,.(Sp —aSa) — kPS4
dSp(t)

—gBSB — m(SB — OéSA)

The parametef is the gfowth rate for the bacteria.

The parameterg, andgp represent the grazing of the protists on the
bacteria.
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Lytic Model-Bacteria Dynamics

dP;?t(t) — P4+ BM4 — kPASA

d[gt(t) = (r—ga)la— M4+ kPaSa

ds§t(t) = (r—ga)Sa+£mV.(Sp— Sa) = KkPaSs
dsjt(t) = —g5S5 — (S — Sa)

The parameter is the growth rate for the bacteria.

The parameterg, andgp represent the grazing oi the protists on the
bacteria.

The parametei is the migration rate of the bacteria between
Compartmentst and B with the scaling for volume’,., and represents
the fraction not adhering to nutrients.
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Lysogenic Phage

Lysogenic Lifestyle

event triggering
lytic behavior

division
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Lysogenic Model

dPA(t)
dt
d[A(t)
dt
Al (t)
dt
dSA(t)
dt
4S5 (1)
dt

— —VPA —|—ﬁ)\IA — KPAS 4

= (r—ga—NIa+&PaSa+mV,(Ip — aly)

= —gplp—m(Ip—ala)

= (r—ga)Sa — kPaSa+mV,.(Sg — aSa)

= —gpSp—m(Sp —aSy)
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Lysogenic Model

dP;(t) — APy + BN — kPS4

dlgt(t) = (r—ga—AMIa+rPaSa+mV,(Ip — ala)
d[f;t(t) = —gplg—m(Ig —alx)

dS;xt(t) = (r—ga)Sa— kPaSa+mV,(Sp — aSa)
dSCI;t(t) = —gpSp —m(Sg — aS4)

The only difference in this lysogenic model for the maringisomment is
that ther > ), so the infected bacteria survive long enough to migrate
Compartmens.
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Parameters

Many parameters are difficult to measure
Growth, burst size, and lysis timing vary with conditions
Phage decay rates vary widely in the literature

Constraints

Need approximately 10:1 phage to bacteria ratio
Turnover of bacteria about 24 hour
Limited range on many parameters in the literature
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Simulation of Models

First the lytic model was fit to reasonable parameters.

Lytic Lysogenic | Lysogenic

Changes - A r,a, V,
Phage 7.46 x 10° | 7.46 x 10° | 8.06 x 10°
Bacteria | 5.88 x 10* | 1.14 x 10° | 5.10 x 10*
Ratio 14.4:1 5.93:1 15.8:1
% Inactive 81 % 90 % 88 %

% Infected 10.3 % 62.2 % 94.8 %
Turnover 24.2 hr 47.3 hr 25.3 hr
Behavior Stable Stable Stable

CompartmenB acts like a refuge with most bacteria there.
Lysogeny results in many more infected bacteria.
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Parameter Sensitivity

1. The growth parameterhad the greatest effect
2. Rate of lysis\ of bacteria by phage

3. Parametet representing fraction of bacteria available to diffusei|
Compartmen3

4. Grazing by protistg4 in Compartment4

6. Minimal effects bygg, m, andx
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Bifurcation Study (Lytic Model) - » and g4
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Lytic Results
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The equilibrium phage population is abaus x 10°, while the equilibrium
bacteria population is abo8i8 x 10* in CompartmenB (80%) and
0.7 x 10* in Compartmentd.

UBC Jan 2006 — p. 2¢



B

A1 [ et 5] B30

sl VAVAVAVAVAY

e

.{*nn'n{

L
!lml
g 10000

B

|
i

e - .

RIRRRA

:'II;I‘

n

T
£ e
i |

L=

Il_n_ e
|

o 00
S0 -
00 |

i

A A AR

i
- =
&5
i-]

B3I B0

t



Lytic Results
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Results of Lytic Model

Two equilibria
Found reasonable parameters
- About 10:1 ratio of phage to bacteria
- Approximately net 24 hour for bacterial half-life

- Many parameters span a wide range, yet maintain bioldgical
feasible solutions

Stable equilibrium for marine conditions
Oscillatory solutions for chemostat conditions
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Results of Lysogenic Model

Two equilibria
Similar to the Lytic model except
- Only stable behavior observed for non-trivial equililtnu
- Parameters span a narrower range for biologically feasiblutions
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Quorum Switching Model

Assume phage become lytic when sensing sufficient activieebac
Combines lytic and lysogenic models with changes below

- Lytic part of model includes infected inactive bacteria

- Lysogenic part of model has no terms for lysis
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Results of Quorum Switching Model

Only some preliminary numerical results
Mixing in active compartment leaves most bacteria infected

Oscillating solution with Malthusian growth through thineéd, then
lysis decays to lower population
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Future Directions

Use studies for two NSF Biocomplexity grants

- Help explain possible lytic/lysogenic switching behaviBeasonal
iIn Tampa Bay)

- Explain varying diversity and concentrations (Solar &aitstudy)
Add nutrient or other limiting factor to 2-compartment mbde
Include delays for lysis in model
Examine additional refuge compartment or spatial compbnen
Perform detailed mathematical analysis
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Conclusion

- Shotgun libraries of DNA from phage can be analyzed for sgsec
diversity

Contig analysis often fits a power law giving estimates @&cs@s
abundance, evenness, and diversity

Automated program PHACCS for choosing rank-abundancesinod

Heterogeneous environment suggests at least two comgraitrar some
spatial component in model

Dynamic models exhibit several behaviors

Dynamic models aid parameter selection
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