Homework 7

7.3.1. Consider the heat equation in a two-dimensional rectangular region $0<x<$ $L, 0<y<H$,

$$
\begin{aligned}
& \partial u \\
& \partial t
\end{aligned}=k\left(\begin{array}{l}
\partial^{2} u \\
\partial x^{2}
\end{array}+\begin{array}{l}
\partial^{2} u \\
\partial y^{2}
\end{array}\right)
$$

subject to the initial condition

$$
u(x, y, 0)=f(x, y) .
$$

Solve the initial value problem and analyze the temperature as $t \rightarrow \infty$ if the boundary conditions are

$$
\text { (d) } \ddot{u}(0, y, t)=0, \quad \frac{\partial u}{\partial x}(L, y, t)=0, \quad \frac{\partial u}{\partial y}(x, 0, t)=0, \quad \frac{\partial u}{\partial y}(x, H, t)=0
$$

7.3.2. Consider the heat equation in a three-dimensional box-shaped region, $0<x<L, 0<y<H, 0<z<W$,

$$
\begin{aligned}
& \partial u \\
& \partial t
\end{aligned}=k\left(\begin{array}{l}
\partial^{2} u \\
\partial x^{2}
\end{array}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)
$$

subject to the initial condition

$$
u(x, y, z, 0)=f(x, y, z) .
$$

Solve the initial value problem and analyze the temperature as $t \rightarrow \infty$ if the boundary conditions are
(a) $\begin{array}{r}u(0, y, z, t)=0, \\ u(L, y, z, t)=0,\end{array}$
$\frac{\partial u}{\partial y}(x, 0, z, t)=0$,
$\frac{\partial u}{\partial y}(x, H, z, t)=0$,
$\frac{\partial u}{\partial z}(x, y, 0, t)=0$,
$u(x, y, W, t)=0$
7.3.4. Consider the wave equation for a vibrating reectangular membrane ($0<x<$ $L, 0<y<H)$

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\begin{array}{l}
\partial^{2} u \\
\partial x^{2}
\end{array}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

subject to the initial conditions

$$
u(x, y, 0)=0 \text { and } \begin{aligned}
& \partial u \\
& \partial t \\
& (x, y, 0)=f(x, y) . . ~
\end{aligned}
$$

Solve the initial value problem if

$$
\text { (a) } \quad u(0, y, t)=0, \quad u(L, y, t)=0, \quad \frac{\partial u}{\partial u}(x, 0, t)=0, \quad \frac{\partial u}{\partial y}(x, H, t)=0
$$

7.3.5. Consider

$$
\begin{gathered}
\partial^{2} u \\
\partial t^{2}
\end{gathered}=c^{2}\left(\begin{array}{c}
\partial^{2} u \\
\partial x^{2}
\end{array}+\frac{\partial^{2} u}{\partial y^{2}}\right) .-k \frac{\partial u}{\partial t} \text { with } k>0
$$

(a) Give a brief physical interpretation of this equation.
(b) Suppose that $u(x, y, t)=f(x) g(y) h(t)$. What ordinary differential equations are satisfied by f, g, and h ?
7.5.1. The vertical displacement of a nonuniform membrane satisfies

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right),
$$

where c depends on x and y. Suppose that $u=0$ on the boundary of an irregularly shaped membrane.
(a) Show that the time variable can be separated by assuming that

$$
u(x, y, t)=\phi(x, y) h(t) .
$$

Show that $\phi(x, y)$ satisfies the eigenvalue problem

$$
\begin{equation*}
\nabla^{2} \phi+\lambda \sigma(x, y) \phi=0 \text { with } \phi=0 \text { on the boundary. } \tag{7.5.12}
\end{equation*}
$$

What is $\sigma(x, y)$?
7.5.2. See Exercise 7.5.1. Consider the two-dimensional eigenvalue problem given in (7.5.12).
(a) Prove that the eigenfunction belonging to different eigenvalues are orthogonal (with what weight?).

