8.2.2. Consider the heat equation with time-dependent sources and boundary conditions:

7pts

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =k \frac{\partial^{2} u}{\partial x^{2}}+Q(x, t) \\
u(x, 0) & =f(x)
\end{aligned}
$$

Reduce the problem to one with homogeneous boundary conditions if
(b) $u(0, t)=A(t) \quad$ and $\quad \frac{\partial u}{\partial w}(L, t)=B(t)$
8.2.5. Solve the initial value problem for a two-dimensional heat equation inside a circle (of radius a) with time-independent boundary conditions:

15pts

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =k \nabla^{2} u \\
u(a, \theta, t) & =g(\theta) \\
u(r, \theta, 0) & =f(r, \theta) .
\end{aligned}
$$

8.3.1. Solve the initial value problem for the heat equation with time-dependent sources

10pts

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =k \frac{\partial^{2} u}{\partial x^{2}}+Q(x, t) \\
u(x, 0) & =f(x)
\end{aligned}
$$

subject to the following boundary conditions:
(a) $u(0, t)=0$,

$$
\frac{\partial u}{\partial x}(L, t)=0
$$

8.4.2. Use the method of eigenfunction expansions to solve, without reducing to homogeneous boundary conditions:

15pts

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

$$
\left.u(x, 0)=f(x) \quad \begin{array}{l}
u(0, t)=A \\
u(L, t)=B
\end{array}\right\} \text { constanits. }
$$

8.4.3. Consider

15pts

$$
\begin{aligned}
c(x) \rho(x) \frac{\partial u}{\partial t} & =\frac{\partial}{\partial x}\left[K_{0}(x) \frac{\partial u}{\partial x}\right]+q(x) u+f(x, t) \\
u(x, 0) & =g(x) \quad \begin{aligned}
u(0, t) & =\alpha(t) \\
u(L, t) & =\beta(t) .
\end{aligned}
\end{aligned}
$$

Assume that the eigenfunctions $\phi_{n}(x)$ of the related homogeneous problem are known.
(a) Solve without reducing to a problem with homogeneous boundary conditions.
(b) Solve by first reducing to a problem with homogeneous boundary conditions.
9.2.1. Consider

20pts

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =k \frac{\partial^{2} u}{\partial x^{2}}+Q(x, t) \\
u(x, 0) & =g(x)
\end{aligned}
$$

In all cases obtain formulas similar to (9.2.20) by introducing a Green's function.
(c) Solve using any method if

$$
\frac{\partial u}{\partial x}(0, t)=0 \quad \text { and } \quad \frac{\partial u}{\partial x}(L, t)=0
$$

*(d) Use Green's formula instead of term-by-term differentiation if

$$
\frac{\partial u}{\partial x}(0, t)=A(t) \quad \text { and } \quad \frac{\partial u}{\partial x}(L, t)=B(t)
$$

