1. a. In the lecture notes, we examined the ODE

$$
y^{\prime \prime}-y=0 .
$$

Show that $y_{1}(t)=e^{t}$ and $y_{2}(t)=e^{-t}$ are solutions to the differential equation. In addition, show that this pair form a linearly independent set using the definition of linear independence.
b. Also, show that $y_{1}(t)=\sinh (t)$ and $y_{2}(t)=\sinh (1-t)$ are solutions to the differential equation. In addition, show that this pair form another linearly independent set.
2. Consider the following second order linear homogeneous differential equation:

$$
y^{\prime \prime}-2 a y^{\prime}+\left(a^{2}+b^{2}\right) y=0,
$$

where the parameters are fixed and positive, so assume $a>0$ and $b>0$.
a. Find the general solution to this ordinary differential equation (ODE).
b. Find the unique solution to the initial value problem (IVP), where the initial conditions for the ODE are:

$$
y(0)=y_{0} \quad \text { and } \quad y^{\prime}(0)=z_{0} .
$$

c. Now consider the ODE with boundary conditions:

$$
y(0)=A \quad \text { and } \quad y\left(x_{0}\right)=B .
$$

Give conditions on the boundary condition parameters, A, B, and $x_{0}>0$, such that this boundary value problem (BVP) has:
(i) A unique solution. (ii) No solution. (iii) Infinitely many solutions.

When this BVP has a unique solution, give the solution to the BVP.

